HECLA GREENS CREEK MINING COMPANY

FRESH WATER MONITORING PROGRAM ANNUAL REPORT

WATER YEAR 2011

(October 1, 2010 through September 30, 2011)

Greens Creek -13 July 2011

EXECUTIVE SUMMARY	pg. 1
INTRODUCTION - Information, explanations, and clarifications not presented elsewhere	pg. 3
INTERVENTIONS - Procedural changes, natural phenomena, and mine operational changes that could affect data during Water Year 2011.	pg. 6
MID-YEAR MODIFICATIONS	pg. 8
SAMPLE LOG	pg. 9
SAMPLE SUITES	pg. 10
PERSONNEL INVOLVED - A list of HGCMC and USFS personnel involved with the FWMP during the Water Year 2011, and their function.	pg. 11
Proposed Program Modifications	pg. 12
BIBLIOGRAPHY	pg. 13
SITE 48 "UPPER GREENS CREEK" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend Analysis	SITE 48
SITE 6 "MIDDLE GREENS CREEK" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Seasonal Kendall trend Analysis Site 48 vs. Site 6 X-Y Plots Wilcoxon Signed-Ranks Tests	SITE 6

SITE 54 "LOWER GREENS CREEK" -	SITE 54
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
Site 6 vs. Site 54 X-Y Plots	
Wilcoxon Signed-Ranks Tests	
SITE 49 "UPPER BRUIN CREEK" -	SITE 49
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
SITE 46 "LOWER BRUIN CREEK" -	SITE 46
Interpretive Report	2112 10
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
Site 49 vs. Site 46 X-Y Plots	
Wilcoxon Signed-Ranks Tests	
SITE 57 "MONITORING WELL 23-00-03"-	SITE 57
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
SITE 56 "MONITORING WELL D-00-01"-	SITE 56
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	
Site 57 vs. Site 56 X-Y Plots	
Wilcoxon Signed-Ranks Tests	
SITE 13 "MINE ADIT DISCHARGE EAST" -	SITE 13
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend Analysis	

SITE 58 "MONITORING WELL T-00-01C" -	SITE 58
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis	
SITE 27 "MONITORING WELL 2S" -	SITE 27
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis	
Site 58 vs. Site 27 X-Y Plots	
SITE 29 "MONITORING WELL 3S" -	SITE 29
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis Site 58 vs. Site 29 X-Y Plots	
Site 58 vs. Site 29 X-Y Plots	
SITE 32 "MONITORING WELL 5S" -	SITE 32
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis	
Site 58 vs. Site 32 X-Y Plots	
SITE 59 "MONITORING WELL T-00-01A" -	SITE 59
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis	
SITE 28 "MONITORING WELL 2D" -	SITE 28
Interpretive Report	
Table of Results	
Qualified Data by QA Reviewer Report	
X-Y Plots	
Seasonal Kendall trend analysis	
Site 59 vs. Site 28 X-Y Plots	

SITE 9 "TRIBUTARY CREEK" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots Site 27 vs. Site 9 X-Y Plots	SITE 9
SITE 60 "ALTHEA CREEK LOWER" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	SITE 60
SITE 1185 "MONITORING WELL T-10-08A" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	SITE 1185
SITE 1186 "MONITORING WELL T-10-08B" - Interpretive Report Table of Results Qualified Data by QA Reviewer Report X-Y Plots	SITE 1186
APPENDIX A –	

Summary table of Alaska Water Quality Standards for WY2011

APPENDIX B -

Map – 920 Area FWMP Sites Map – Tails Area FWMP Sites Map – Site 60, Lower Althea Creek

EXECUTIVE SUMMARY

This annual report has been prepared by Hecla Greens Creek Mining Company (HGCMC) in accordance with the mine's General Plan of Operations Appendix 1: Fresh Water Monitoring Program (FWMP). Monitoring data interpretative reports are presented for eight surface water and ten groundwater monitoring sites.

Each site's interpretative report summarizes the annual dataset with respect to several goals and objectives outlined in the FWMP. Each report contains a list of any exceptions, omissions or errors that occurred during data collection. The report lists a comparison of each site's annual dataset to all appropriate applicable Alaska Water Quality Standards (AWQS). Finally, a series of summary tables and X-Y graphs have been generated to meet the specific statistical goals for each site.

During water year 2011, sampling of the two new wells (MW-T-10-08A and MW-T-10-08B) at the tailings facility began with the July 2011 sampling event. Also, this was the first full year of sampling under the newly approved FWMP sampling schedule. All required sampling was accomplished as specified in the monitoring schedule and for each site the specified analytic suite (P or Q) was performed on the collected samples. Applicable holding times were achieved for all analytes, except pH, which for one of the twelve sample events was not within the applicable hold time. Furthermore, no data points were qualified as outliers.

Two exceedances of Alaska Water Quality Standards (AWQS) occurred in the 920 Area at Site 13 for total sulfate with values of 256 mg/L and 317 mg/L. These values were slightly above the AWQS limit of 250 mg/L, and comparable to data seen in previous water years. Though HGCMC removed 13,500 cubic yards of waste rock from the 1350 area during the summer of 2011 the removal activities have not yet occurred in the drainage for Site 13. It is HGCMC's intention to remove the remaining material during the 2012 summer season.

Last water year (2010) there were a number of exceedances along Greens Creek at Site 48, Site 6, and Site 54 for low pH values; however, this water year (2011) the pH values have increased at all of the above sites. It was also discussed last year that there is usually a discrepancy between the field pH and laboratory pH for many of the sites. This subject was discussed at the 2011 Annual Meeting and it was suggested that HGCMC use the field pH to meet the required holding times and for calculation purposes. Though both the laboratory and field data are reported and graphed, this report marks the first time that the statistical analyses are based on the field data.

Exceedances in the tailings area were noted for low pH, low alkalinity, and elevated levels of arsenic and lead. The shallow wells (sites 58, 27, 29, and 32) continued to display a long history of exceedances due to the low pH and low alkalinity that characterize these sites located in organic rich peat sediments. Six exceedances for dissolved lead occurred at two of the three down gradient shallow wells (sites 29 and 32). These exceedances continue the recent history of low to moderate levels of lead that may in part be due to minor amounts of tailings escaping the facility due to fugitive dust or tracking. The single deep, downgradient well, Site 28, had four

exceedances for arsenic. This is a continuation of the trends established in prior years with elevated arsenic levels that are naturally associated with the marine unit that the well is completed in.

Of the remaining two sites, Site 60 had exceedances for low alkalinity, low pH, and elevated mercury. This site's watershed was disturbed when the construction of Pond 7 began in 2004: as the area recovers the water is returning to the naturally low pH and low alkalinity characteristic of the area. It has been theorized that the disturbance resulted in the watershed changing from naturally acidic to alkaline conditions. This change in fundamental chemistry is thought to have caused the naturally occurring, low level, dissolved mercury to adsorb onto soil particles. Now as the area reverts to the natural state of low pH and low alkalinity, this abundance of adsorbed mercury may be dissolving back into solution, resulting in the temporary mercury increase. After this disturbance mercury concentrations had continued to increase yearly until water year 2009, which showed a decrease in concentration. In water year 2010, the highest mercury measurement recorded ($0.0227\mu g/L$) occurred in September 2010. Then the concentration initially decreased and was below AWQS at the beginning of water year 2011, but by September 2011 the concentration was again in exceedance ($0.0183 \mu g/L$). The first sampling (November 2011) of this site during the current water year (2012) had a measured value of $0.0137 \mu g/L$.

The final tailings area site, Site 9, had exceedances for low alkalinity and low pH. The alkalinity values appear to be characteristic of the site since monitoring restarted in water year 2006, whereas the lower pH values have been recorded more recently (2009 -2010). The low alkalinity values are expected given the naturally occurring acidic muskeg conditions in the headwaters near Site 27 and Site 28.

Graphical and non-parametric analyses for trends in the data were performed for all sites monitored. Statistically significant trends were identified for nine sites: Site 48, downward trend in pH, and upward trends in dissolved zinc and total sulfate; Site 54, a downward trend in pH and upward trends in dissolved zinc and total sulfate; Site 54, a downward trend in pH and upward trends in dissolved zinc and total sulfate; Site 49, downward trend in pH and upward trend in dissolved zinc; Site 46, a downward trend in pH and an upward trend in dissolved zinc; Site 57, downward trend in total alkalinity; Site 27, an upward trend in total sulfate; Site 58, an upward trend in dissolved zinc; Site 57, a downward trend in total alkalinity; Site 27, an upward trend in total sulfate; Site 60, a downward trend in total alkalinity; Site 57, a downward trend in total alkalinity; Site 28, downward trend in pH.

Site 48, Site 49, Site 57, and Site 58 are considered upgradient control sites and thus the trends are likely due to natural variation. The decreasing trend in pH for Site 6 is not expected to be caused by our activities in the area. Site 54 is downstream from Site 6 and thus is expected to exhibit similar trends. Both the down gradient sites (6 and 54) had similar seasonal fluctuations in pH values as the upgradient site 48. Also, all three Greens Creek sites show a similar low magnitude increasing trend in dissolved zinc and total sulfate. The magnitude of the dissolved zinc trend for Site 46 is low. The increasing sulfate values measured at Site 27 is low in magnitude. The decreasing trends in total alkalinity and total sulfate at Site 60 were expected to occur as the site returned to pre-disturbance conditions, and the increasing trend in dissolved zinc is low in magnitude.

A non-parametric comparison of medians was performed for all the appropriately paired surface (48-6, 6-54, and 49-46) and groundwater (57-56) sites around the 920 area. Significant differences were noted for the paired datasets from Greens Creek (48-6) for conductivity, total sulfate, and dissolved zinc. These differences have all been noted in previous annual reports and do not appear to be increasing in magnitude. Also, there were significant differences for the paired dataset (6-54) from Greens Creek for conductivity and total sulfate. There were no trends for the total alkalinity, total sulfate, or dissolved zinc data. The Bruin Creek sites (49 and 46) had no significant differences in median values of the analytes. As discussed in the interpretive report for Site 56, the combined effects of the difference in completion units and the different hydrological regimes likely explain the disparity in analyte concentrations found at sites 56 and 57. Therefore, this data was analyzed on an intra-well comparison using the combined Shewhart-CUSUM control chart approach.

INTRODUCTION

This annual report for Water Year 2011 (October 1, 2010 through September 30, 2011) provides the information required by the Fresh Water Monitoring Program (FWMP) for the Hecla Greens Creek Mining Company (HGCMC). It is separated into several sections, the first of which provides general information applicable to the entire program, followed by a comprehensive analysis of the data for each specific site.

To avoid confusion data values reported by the laboratory as being below the Method Detection Limit (MDL) are assigned a value of zero for plotting purposes. This is done so that the values below MDL are visually distinct and thus can be properly interpreted. On several of the graphs presented, changes have occurred in MDL over the period shown. This leads to the visual impression that an upward trend exists when in fact the older analysis had MDL greater than ambient background levels. For the current Water Year's data the actual MDLs for non-detect values are listed in each site's table of results in the interpretative discussion of this report. For prior Water Year's historic MDLs please refer to GPO Appendix 1, Table 8-2.

The monitoring schedule varies from site to site and a request for modification was made with the 2008 FWMP report. These modifications were approved and implemented during January and February of the Water Year 2010. Different sites are monitored for different analytes on different months of the year. Occasionally, sites scheduled for sampling may not be available due to weather or more rarely operational reasons. Copies of the Water Year 2011 sampling log are included on page 9 of this section and any variations from scheduled sampling events are noted on each site's table of results presented in the interpretive section.

Two new sites 1185 and 1186 were added to the sampling schedule for water year 2011 to serve as the potentially new background sites at the tailings facility because the existing upgradient wells (sites 59 and 58) are now no longer upgradient of all activity.

		AWQS	Tre	nd	Calculate	Median
Site	Description	Comparison	Visual	Calc	Median	Comparison
48	Upper GC	х	х	+	х	
6	Middle GC	х	х	+	х	48 vs 6
54	Low er GC	х	х	+	х	6 vs 54
49	Upper Bruin Crk	х	х	+	х	
46	Low er Bruin Crk	х	х	+	х	49 vs 46
13	1350 Audit	х	х	+	х	
57	MW-23-00-03	х	х	+	х	
56	MW-D-00-01	х	х	+	х	57 vs 56
58	MW-T-00-01C	х	х	+	х	
27	MW-2S	х	х	+	х	**
29	MW-3S	х	х	+	х	**
32	MW-5S	х	х	+	х	**
59	MW-T-00-1A	х	х	+	х	
28	MW-2D	х	х	+	х	**
9	Tributary Crk	х				**
60	Althea crk Low er	х				**
1185	MW-T-10-08A	х	х			
1185	MW-T-10-08B	Х	х			

The adjacent table outlines the requested Statistical Information Goals (SIGs) for each site sampled during the Water Year 2011. A comparison to Alaska Water Quality Standards (AWQS)

is required for all sites. In Appendix A the specific water quality criteria used for each comparison are summarized. Trend analysis is carried out by two different methods. The first method is a visual trend analysis for each analyte. For each site sampled a series of time-concentration graphs are constructed for the previous five years of data collected. The second method is a non-parametric statistical method, Kendall seasonal trend analysis that is routinely done for conductivity, pH, alkalinity, and dissolved zinc. These are the key parameters along with sulfate that can be strongly affected by Acid Mine Drainage (AMD). Sulfate was added back into the required list of analytes in the 2002 Water Year. Median calculation is shown in the annual table of results for each site. Finally, for all down gradient sites that are paired with an upgradient reference site, which are monitored with a frequency greater than 4 times per year, a comparison of medians is presented for each specific site. These down gradient sites (upgradient site in parenthesis) include Site 6 (Site 48), Site 54 (Site 6), Site 46 (Site 49), and Site 56 (Site 57). For each of these sites, the statistical information goals requested a comparison of medians for total alkalinity, pH, conductivity, total sulfate and dissolved zinc. The statistical test utilized is a non-parametric, Wilcoxon signed-rank test. A brief summary of the two main statistical procedures, the Wilcoxon-Mann-Whitney rank sum test and the Mann-Kendall seasonal trend are given below.

Statistical Tests

The Mann-Kendall seasonal trend test is a non-parametric test for zero slope of a linear regression of time-ordered data verse time. Briefly the test consists of tabulating the Mann-Kendall statistic S_k (k=1 to 12, for each month) and its variance VAR(S) for data from each season (month). The S_k statistic is simply the sum of the number of positive differences minus the number of negative differences for time ordered data pairs. Any seasonal trend is removed by only considering data pairs taken within the same month. The individual monthly Mann-Kendall statistics (S_k) are tested for homogeneity of trend which is used to determine if it is reasonable to combine the monthly S_k statistics into an overall annual statistic (ΣS_k). If the test for monthly homogeneity is rejected the annualize statistic is not meaningful. However, the individual monthly Mann-Kendall statistics can still be tested for trend and a Sen's slope estimator can be calculated for each month (noted as Q_m in the interpretive section) with a significant trend.

The advantages of the Seasonal Kendall trend test is that it is a rank-based procedure especially suitable for non-normally distributed data, censored data, data containing outliers and non-linear trends. The null hypothesis (H₀) states that the data($x_1, .., x_n$) are a sample of n independent and identically distributed random variables. The trend test statistic Z is used as a measure of trend magnitude, or of its significance. A positive Z value indicates an upward trend while a negative value indicates a downward trend. However, the Z statistic is not a direct quantification of trend magnitude. For trend of significant magnitude a separate statistic, Sen's slope estimator, is calculated by computing the seasonally adjusted (monthly) median value for the slope. For datasets which fail the homogeneity test, individual monthly S_k statistics are compared to a theoretical probability distribution of S derived by Mann and Kendall (Table A18 in Gilbert, 1987). Further guidance and background on these statistical methods can be found in Gilbert (1987) or Helsel and Hirsch (1992).

The Wilcoxon signed-rank test is used to determine if the median difference between paired data points is equal to zero. In general terms the signed-rank is used to determine if a set of paired data observations, x's and y's, come from the same population (i.e. have the same median) or as the alternative hypothesis differ only in the location of the central value (median). If the data are from the same population then the differences of the paired data should be equally distributed around 0, or about half the differences should be greater than 0 and half should be less than 0. Computationally the test is straight forward. First the differences $D_i=x_i-y_i$, i=1...N are computed

for each pair. The absolute values of the differences $|D_i|$, i=1...N are ranked from smallest to largest and data pairs that are tied, thus having differences of zero, are ignored. The ranks of the absolute differences are assigned the sign of the actual differences. For example, negative differences have negative-signed ranks and positive differences have positive-signed ranks thus the term "signed-rank" in the method name. The test statistic W^+ is the sum of all positively signed ranks. The statistic W^+ is then compared to tabled values that vary based on N. The onetailed version of the signed-rank test has been applied to the key indicator analytes of conductivity, pH, total alkalinity, sulfate, and dissolved zinc as listed in the table below.

		median		
Analyte	Rationale	D	Tail	Reject H₀ if:
Specific Conductance	Conductivity, as a proxy for total dissolved solids, <u>increases</u> due to sulfide oxidation.	<0	X's < Y's	$W^{+}(calc)$ < $W(table)_{\alpha,n}$
Lab-pH	pH <u>decreases</u> though the addition of H ⁺ generated by pyrite oxidation.	>0	X's > Y's	$W^{*}(calc)$ > $W(table)_{\alpha,n}$
Total Alkalinity	Total alkalinity <u>decreases</u> by consumption of buffing capacity due to H ⁺ produced by pyrite oxidation.	>0	X's > Y's	W⁺(<i>calc</i>)>W(<i>table</i>) _{α,n}
Total Sulfate	Total sulfate increases due to oxidation of sulfides	<0	X's < Y's	$W^{+}(calc)$ < $W(table)_{\alpha,n}$
Dissolved Zinc	Dissolved zinc increases due to sulfide oxidation and is more readily soluble at neutral pH than other metals.	<0	X's < Y's	$W^{+}(calc)$ < $W(table)_{\alpha,n}$

X: Upgradient Site

Y: Downgradient Site

Further guidance and background on the statistical methods utilized in this report can be found in one of the following references: Helsel and Hirsch (1992), Gilbert (1987), or Section 3.3.3.1 of the EPA document "Guidance for Data Quality Assessment" EPA/600/R-96/084.

<u>**Qualified Data by QA Reviewer -**</u> QA reports provide a summary for each site section of data limitations found in the monthly QA reviews. They list all data for that site that was qualified by the QA Reviewer for Water Year 2011 along with the reason for qualification. These data are all included in the data analyses, unless also identified as an outlier in the Qualified Data Summary.

INTERVENTIONS

This section identifies any procedural changes, natural phenomena, mine operational changes, or other interventions that could have affected data during Water Year 2011. Results of any visual data analyses to detect effects of these interventions are also indicated.

Prior interventions (and negotiated mid-year program modifications such as changes to laboratories, methods, detection limits, and reporting limits), and anything else which may affect data comparability and quality which occurred during previous Water Years, are documented in the "General History" section of the FWMP and in previous annual reports.

There has been an error in the graphical labeling found in the 2004-2009 annual reports. It was recently noticed that on most of the graphs, the line indicating the AWQS is labeled as 'total'. Most of the analytes in this report are dissolved and HGCMC is held to the dissolved AWQS. All analyses have been dissolved during this timeframe, so the graphs were mislabeled and should read 'dissolved'. After reviewing the yearly files it appears that HGCMC was using total standards prior to 2003 when the change was made to using the dissolved standards. This change resulted in modifying the limits and also the graph labels, both of which were correctly done in 2003. Unfortunately, in 2004-2009 both of these modifications were not carried forward. This error in labeling was first corrected in the 2010 FWMP Report.

For several years the graphing and statistical analysis has been carried out in several Excel spreadsheets. This 2012 FWMP report breaks from using Excel with the majority of the graphing and the statistical analysis being carried out in an R system. R is a system for statistical computation and graphics. It provides, among other things, a programming language, high level graphics, interfaces to other languages and debugging facilities.

All of the statistical analysis was also carried out in the Excel files and a comparison was made with the new system ('R'), to ensure that there was continuity in the calculations. Both of the systems were in agreement with the statistical analysis. Also, the layout of the x-y plots has changed. Most of the plots are now composed of two graphs: the top smaller graph has y axis limits that encompass the whole data range, whereas the larger bottom graph has fixed limits that allow for comparison between sites.

MID-YEAR MODIFICATIONS

With the expansion of the tailings facility to the east of its current position, the two upgradient monitoring wells Site 58 and Site 59 are now within the new tailings boundary. During the 2010 summer drill program two new upgradient wells (MW-T-10-08A, MW-T-10-08B) were installed approximately 400 feet upslope and to the north. HGCMC developed these wells during the fall of 2010 and the spring 2011 and subsequently sampled them in September and November of 2011. The results from this monitoring are included in this FWMP report for the first time.

FWMP SAMPLE LOG

Water Year October 2010 Through September 2011 Annual Water Quality Monitoring Schedule-Laboratory Samples

					ig Schedule-Laborator						y Samples		
Site	Site Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
6	Middle Oreene Oreels	10-12	11-02	12-14	01-18	02-17	03-15	04-12	05-18	06-13	07-12	08-10	09-13
6	Middle Greens Creek	Р	Р	Q	Р	Q	Р	Р	Р	Р	Р	Р	Р
9	Tributary Creek-Low er		11-09						05-19		07-12		09-12
9	Tributary Creek-Low er		Q						Q		Q		Q
13	Mine Adit Discharge East		11-02						05-18			08-10	
15	Nille Adit Discharge Last		Q						Q			Q	
27	Monitoring Well 2S		11-09						05-19		07-12		09-12
21			Q						Q		Q		Q
28	Monitoring Well 2D		11-09						05-19		07-12		09-12
			Q						Q		Q		Q
29	Monitoring Well 3S		11-09						05-19		07-12		09-12
			Q						Q		Q		Q
32	Monitoring Well 5S		11-09						05-19		07-12		09-12
	3		Q						Q		Q		Q
46	Low er Bruin Creek		11-02			02-17			05-18			08-10	
			Q			Q			Р			Р	
48	Upper Greens Creek	10-12	11-02	12-14	01-18	02-17	03-15	04-12	05-18	06-13	07-12	08-10	09-13
		Р	Р	Q	Р	Q	Р	Р	Р	Р	Р	Р	Р
49	Control Site Upper Bruin		11-02			02-17			05-18			08-10	
	Creek		P			Q			P			P	
54	Greens Creek below D-Pond	10-12	11-02	12-14	01-18	02-17	03-15	04-12	05-18	06-13	07-12	08-10	09-13
		Р	P	Q	Р	Q	Р	Р	P	Р	Р	P	Р
56	Monitoring Well-D-00-01		11-02						05-18			08-10	
	_		Q						Q			Q	
57	Monitoring Well-23-00-03		11-02						05-18			08-10	
			Q						Q		07-12	Q	09-12
58	Monitoring Well-T-00-01C		11-09						05-19		-		
			Q 11-09						05-19		Q 07-12		Q 09-12
59	Monitoring Well-T-00-01A										-		
			Q 11-09						Q 05-19		Q 07-12		Q 09-12
60	Althea Creek Low er		Q						Q		-		
			Q						Q		Q 07-12		Q 09-12
1185	Monitoring Well-T-01-08A										Q		Q
											07-12		09-12
1186	Monitoring Well-T-01-08B										Q		Q
	Field Blank @ Site	54	46	6	48	49	54	6	60	48	59	57	9
		57	10	5		10	57	5	00	10	00	51	5

Date Suite Date Suite

Regular monthly sample

No Sample taken due to ice

No Sample taken due to lack of access (snow).

No Sample taken due to lack of flow

Wrong Suite sampled

SAMPLE SUITES

Suite P

(Surface water only)

Conductivity pH Temperature Hardness Sulfate Total Alkalinity Dissolved Arsenic Dissolved Cadmium Dissolved Copper Dissolved Lead Dissolved Mercury Dissolved Zinc

Suite Q

(Groundwater and surface water)

Conductivity pН Temperature Hardness Sulfate **Total Alkalinity Dissolved Arsenic Dissolved Barium** Dissolved Cadmium **Dissolved Chromium Dissolved** Copper **Dissolved Lead** Dissolved Mercury **Dissolved Nickel Dissolved Selenium Dissolved Silver Dissolved Zinc**

PERSONNEL INVOLVED

USFS

Chad Van Ormer Monument Manager

Pete Schneider

Sarah Samuelson

Dave Barto

Joe Manning

Biomonitoring (Fish and Game) James Durst

Laura Jacobs

Jackie Timothy Ben Brewster Kate Kanouse

Gordon Willson-Naranjo

HGCMC

Scott Hartman, General Manager HGCMC

Jennifer Saran, Environmental Manager HGCMC

Robin Jung, Environmental Technician HGCMC Ted Morales, Environmental Technician HGCMC Pete Condon, Petros GeoConsulting, Geochemist Christopher Wallace, Environmental Engineer HGCMC Sheri Williamson, Environmental Engineer HGCMC Mitch Brooks, Environmental Engineer HGCMC

Laboratory and Data Review

Suzan Huges, Project Coordinator Environmental Synectics, Inc. Evin McKinney, Senior Scientist Environmental Synectics, Inc. Leticia Sangalang, Senior Scientist Environmental Synectics, Inc.

Brenda Lasorsa, Project Coordinator Battelle Marine Sciences Laboratory

Sue Weber, Project Manager ACZ

David Wetzel, Project Manager Admiralty Environmental

PROPOSED PROGRAM MODIFICATIONS

HGCMC proposes no modifications to the Fresh Water Monitoring Program.

BIBLIOGRAPHY

Environmental Protection Agency (1998). *EPA Guidance for Data Quality Assessment*. EPA QA/G-9, EPA/600-R-96/084. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 219 pp.

Gilbert, Richard O. (1987). *Statistical Methods for Environmental Pollution Monitoring*. Van Nostrand Reinhold, New York. 320 pp.

Helsel, D.R., and Hirsch, R.M. (1992). *Statistical methods in water resource*. Elsevier Publishers, Amsterdam. 510 pp.

INTERPRETIVE REPORT SITE 48 "UPPER GREENS CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers, after review by HGCMC.

Sample Date	Parameter	Value	Qualifier	Notes
01/13/2009	Conductivity Field, µmho	52.00		Field and laboratory values not comparable
01/13/2009	Total Alkalinity, mg/L	16.2		Suspected sample contamination

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified (see table below).

Table of Exceedance for Water Year 2011

	Site 048FI	MS - 'Greens C	reek Uppe	er'	
			Lin	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. In last year's report it was noted that dissolved chromium increased an order of magnitude during water year 2010. During water year 2011 dissolved chromium decreased from a high of 1.99 μ g/L (December 2010) to a low of 0.236 μ g/L (June 2011). This June 2011 value is within historical measurements for this site.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

Si	Site 048FMS - 'Greens Creek Upper'										
	Mann-Ke	ndall test sta	atistics	Sen's slope	estimate						
Parameter	n*	p **	Trend	Q	Q(%)						
Conductivity Field	6	0.09									
pH Field	6	< 0.01	-	-0.1	-1.299						
Alkalinity, Total	6	0.39									
Sulfate, Total	6	< 0.01	+	0.60	4.63						
Zinc, Dissolved	6	< 0.01	+	0.2	6.838						

Table of Summary Statistics for Trend Analysis

* Number of Years ** Significance level

For datasets with a statistically significant trend ($\alpha/2=2.5\%$) a Seasonal-Sen's Slope estimate statistic has also been calculated. For the current water year (2011), total sulfate has a slope estimate of 0.60 µg/L/yr, dissolved zinc showed an increasing trend with a slope estimate 0.2 µg/L/yr, and field pH was negatively trending with a slope estimate of -0.1 su/yr. As noted in the past annual reports, there has been a low and variable change in many of the analytes. Because of this, and the location of Site 48 (upgradient background), this variation in the analytes is considered part of the natural variation that can be expected for this type of monitoring.

Site 048GMS - 'Upper Greens Creek'													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)	4.7	3.9	0.01	0.06	0.01	0.43	1.8	2.75	5.12	6.44	8.08	8.06	3.33
Conductivity-Field(µmho)	61.2	76.9	152	157	139	165	72.6	89.6	94	94	119	108	101.0
Conductivity-Lab (µmho)	65	74	147	156	142	167	158	94	84	98	122	130	126
pH Lab (standard units)	6.48	6.94	6.92	7.64	7.65	7.63	7.8	7.58	7.62	7.22	7.72	7.8	7.63
pH Field (standard units)	6.52	7.62	7.83	7.27	6.9	7.66	7.82	7.95	7.5	6.9	8.06	7.85	7.64
Total Alkalinity (mg/L)	21.6	24	47.2	52.8	46.4	50	51.4	33.7	32.5	38.2	43.5	47.3	45.0
Total Sulfate (mg/L)	5.4	7.1	19.7	21	17.5	21.8	19.5	8.2	9.7	10.1	13.6	14.6	14.1
Hardness (mg/L)	30.1	37.4	73.1	75.7	66.7	78	71.6	42.5	42.9	48.1	56.9	63.7	60.3
Dissolved As (ug/L)	0.221	0.198	0.191	0.228	0.19	0.21	0.194	0.191	0.208	0.197	0.225	0.219	0.203
Dissolved Ba (ug/L)			30.9		28.7				26.8				28.7
Dissolved Cd (ug/L)	0.0376	0.0391	0.0421	0.0466	0.0372	0.0404	0.0403	0.0269	0.0322	0.029	0.0437	0.0378	0.0385
Dissolved Cr (ug/L)			1.99		1.01				0.236				1.010
Dissolved Cu (ug/L)	0.918	1.12	0.296	0.241	0.451	0.279	0.398	0.465	0.236	0.226	0.459	0.352	0.375
Dissolved Pb (ug/L)	0.0479	0.0271	0.003	0.0031	0.0073	0.0052	0.0015	0.0095	0.0048	0.0015	0.0075	0.0015	0.0050
Dissolved Ni (ug/L)			1.2		1.53				0.756				1.200
Dissolved Ag (ug/L)			0.004		0.002				0.002				0.002
Dissolved Zn (ug/L)	3.76	4.21	4.11	3.74	3.41	3.39	3.03	2.39	2.37	2.56	2.48	3.14	3.27
Dissolved Se (ug/L)			1.25		1.4				0.79				1.250
Dissolved Hg (ug/L)	0.00362	0.00304	0.000483	0.000442	0.000811	0.000593	0.000717	0.00103	0.000478	0.000408	0.000516	0.000777	0.000655

Site 0/96MS - 'Upper Greens Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

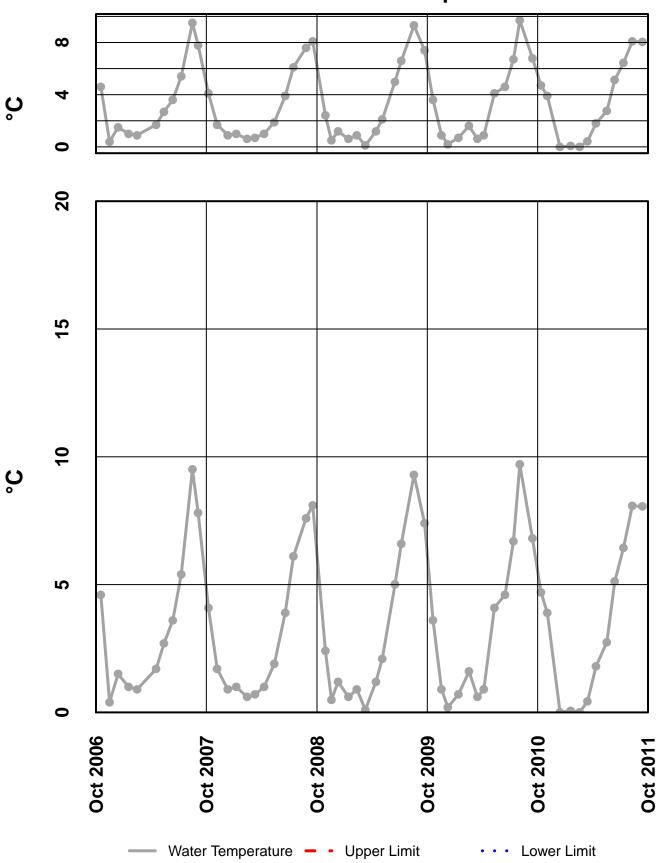
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

Qualified Data by QA Reviewer

Date Range: 10/01/2010 to 09/30/2011

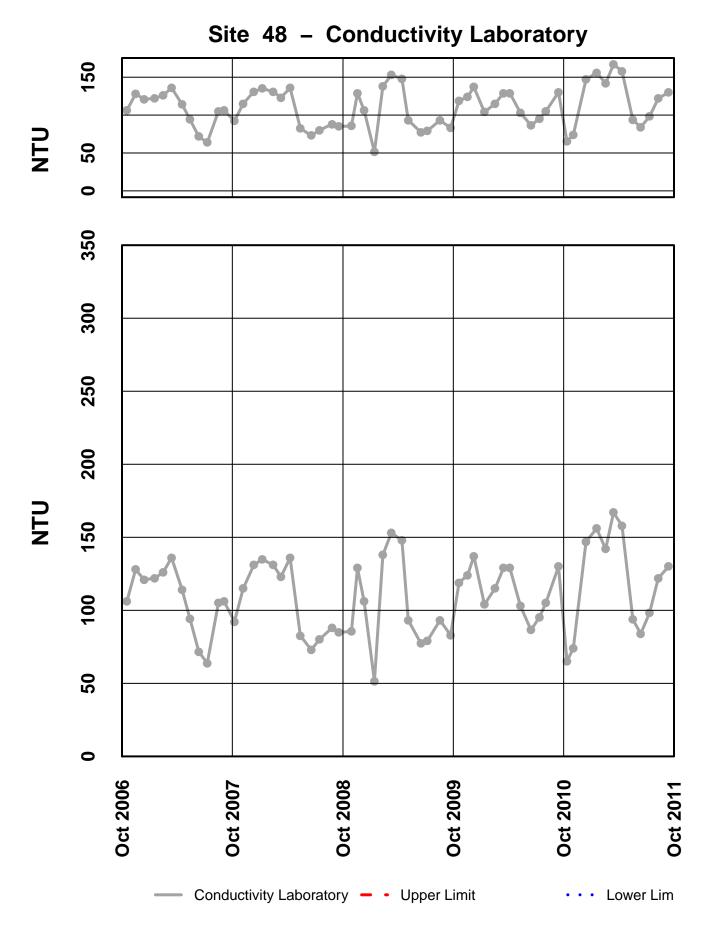
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
3	10/12/2010	12:00 AM				
			pH Lab, su	6.48	R	Hold Time Violation
			SO4 Tot, mg/l	5.4	J	Sample Receipt Temperature
•	12/14/2010	12:00 AM		0.000400		Field Diank Contamination
			Hg diss, µg/l	0.000483	U	Field Blank Contamination
ł	1/18/2011	12:00 AM	Hg diss, µg/l	0.000483	U	Field Blank Contamination
	1/10/2011	12.00 AW	pH Lab, su	7.64	J	Hold Time Violation
			Zn diss, µg/l	3.74	U	Field Blank Contamination
			Pb diss, µg/l	0.0031	U	Field Blank Contamination
			Hg diss, µg/l	0.000442	U	Field Blank Contamination
			SO4 Tot, mg/l	21	J	Sample Reciept Temperature
	2/17/2011	12:00 AM				
			Pb diss, μg/l	0.00729	U	Field Blank Contamination
	3/14/2011	12:00 AM			-	
			pH Lab, su	7.63	J	Hold Time Violation
			SO4 Tot, mg/l	21.8	J	Sample Reciept Temperature
			Pb diss, µg/l	0.00522	U	Field Blank Contamination
	4/12/2011	12:00 AM				
			pH Lab, su	7.8	J	Hold Time Violation
	5/40/0044	40.00.414	Hg diss, µg/l	0.000717	U	Field Blank Contamination
	5/18/2011	12:00 AM	SO4 Tot, mg/l	8.2	J	Sample Reciept Temperature
				7.58	J	Hold Time Violation
			pH Lab, su			
			Cd diss, µg/l	0.0269	U	Trip Blank Contamination Field Blank Contamination
	6/13/2011	12:00 AM	Pb diss, µg/l	0.00947	0	
	0/13/2011	12.00 AW	SO4 Tot, mg/l	9.7	J	Sample Reciept Temperature
			Pb diss, µg/l	0.00481	J	Below Quantitative Range
			Hg diss, µg/l	0.000478	U	Field Blank Contamination
	7/12/2011	12:00 AM				
			SO4 Tot, mg/l	10.1	J	Sample Reciept Temperature
			Cu diss, µg/l	0.22	U	Field Blank Contamination
			Zn diss, µg/l	2.56	U	Field Blank Contamination
			Hg diss, µg/l	0.000408	U	Field Blank Contamination

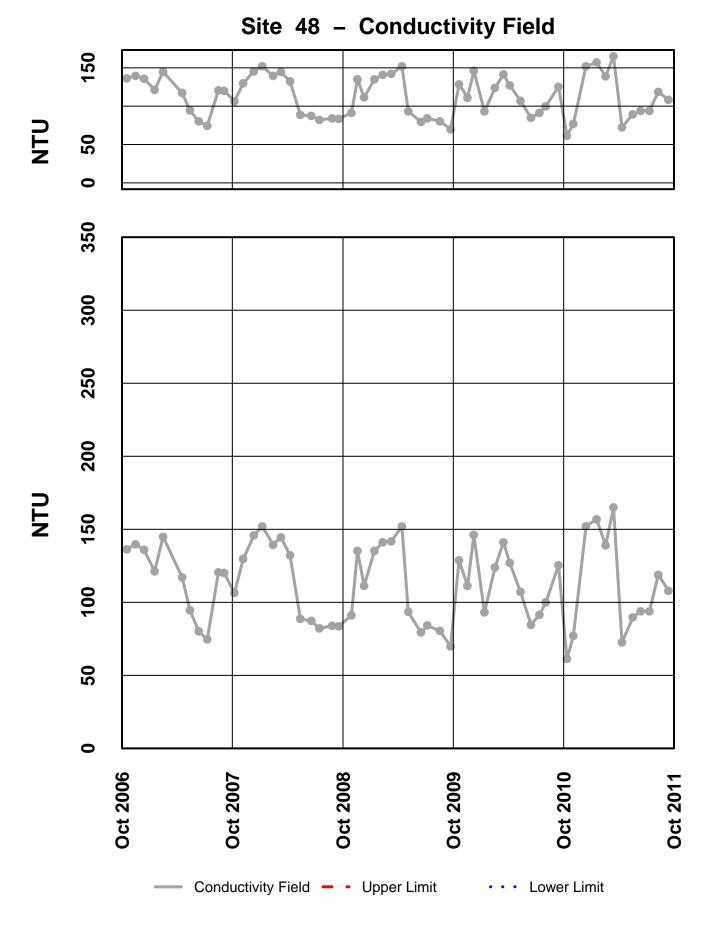

- J Positively Identified Approximate concentration
- N Presumptive Evidence For Tentative Identification
- NJ Tentatively Identified Approximate Concentration
- R Rejected Cannot be Verified
- U Not Detected Above Quantitation Limit
- UJ Not Detected Above Approximate Qu

Qualified Data by QA Reviewer

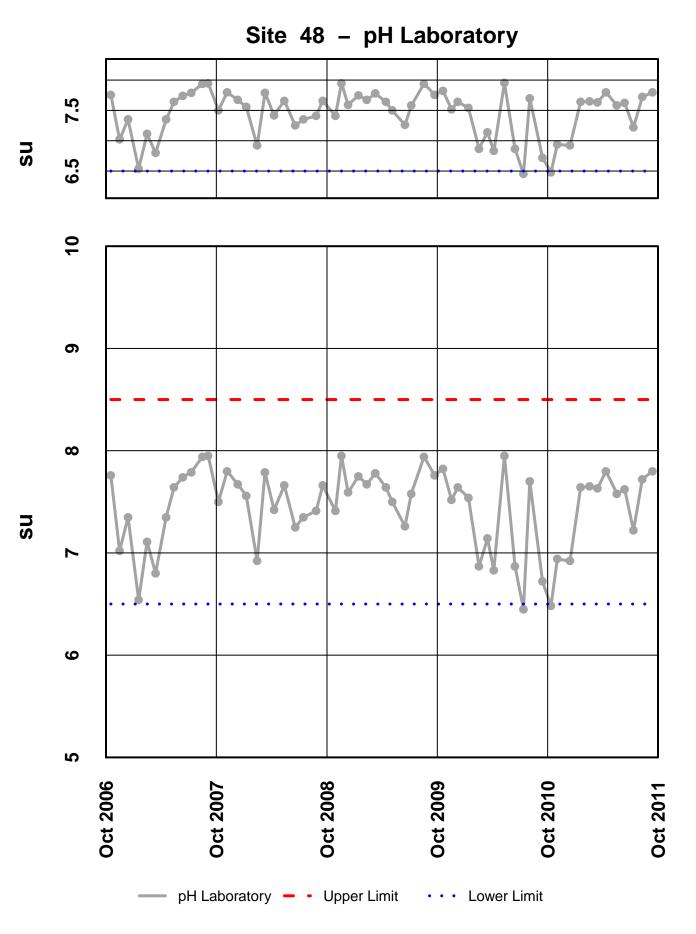
Date Range: 10/01/2010 to 09/30/2011

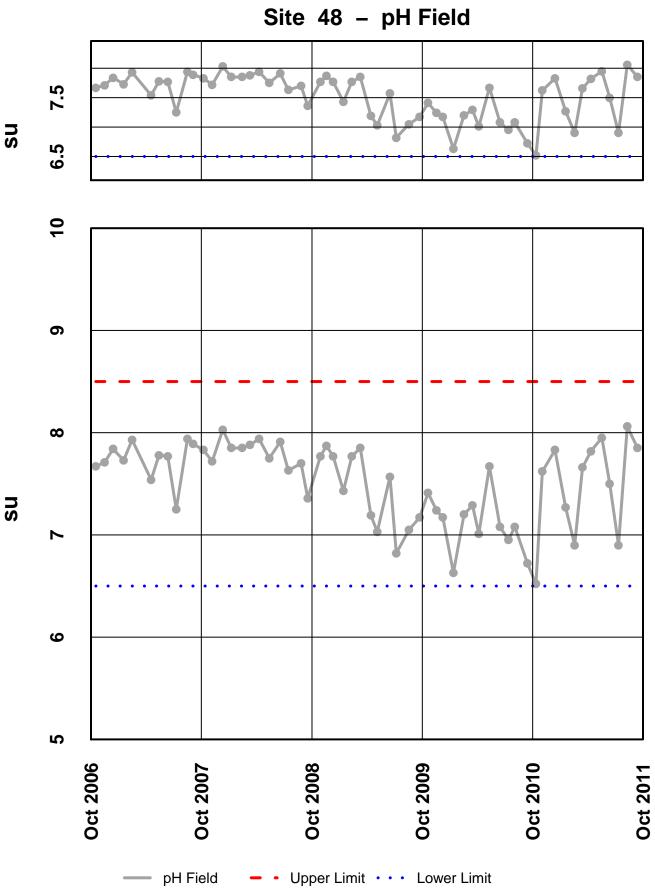
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
48	8/10/2011	12:00 AM				
			Pb diss, µg/l	0.00753	J	Below Quantitative Range
			pH Lab, su	7.72	J	Hold Time Violation
			SO4 Tot, mg/l	13.6	J	Sample Receipt Temperature
			Hg diss, µg/l	0.000516	U	Field Blank Contamination
48	9/13/2011	12:00 AM				
			Hg diss, µg/l	0.000777	U	Field Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

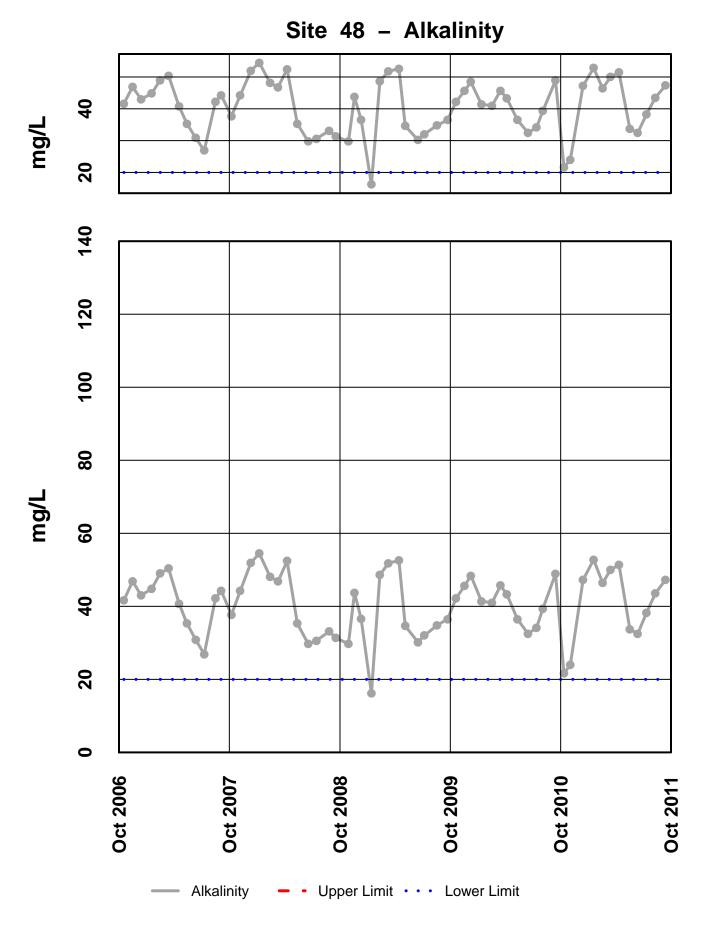

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Site 48 – Water Temperature

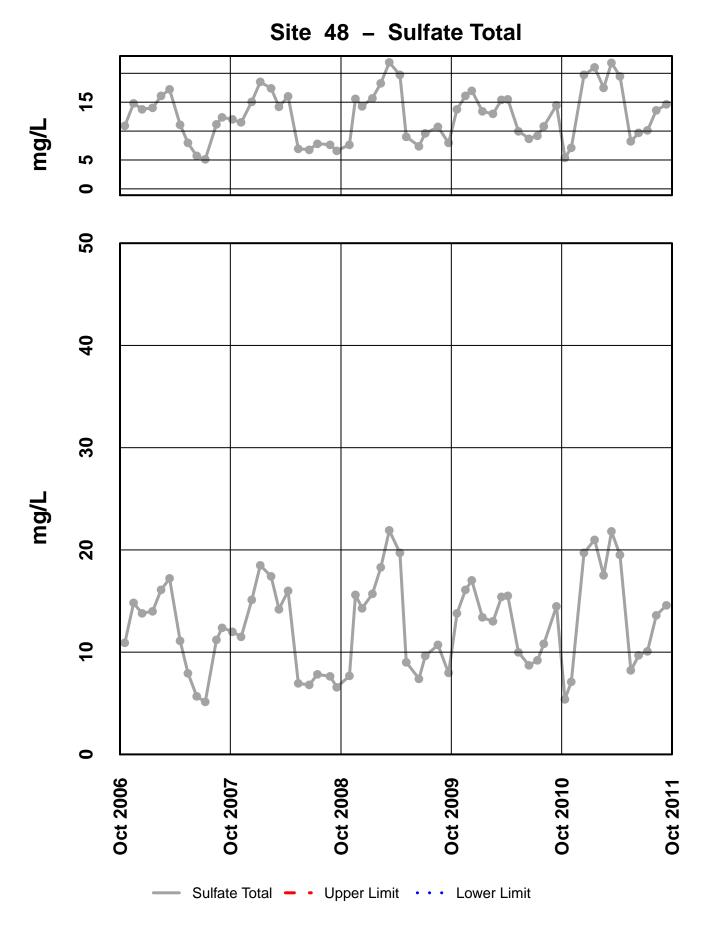

ů


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

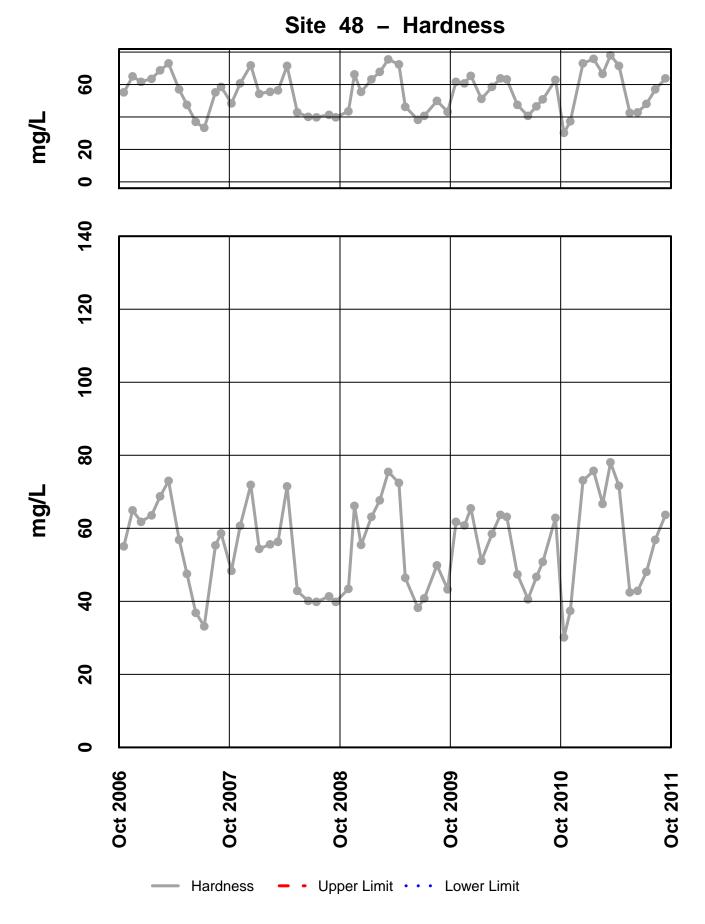
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

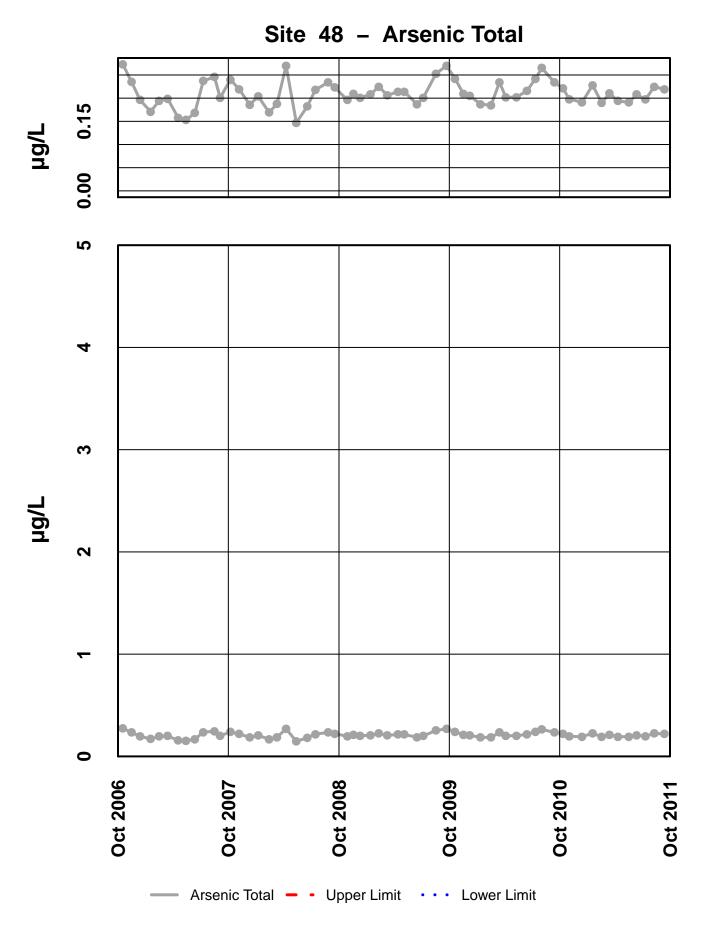


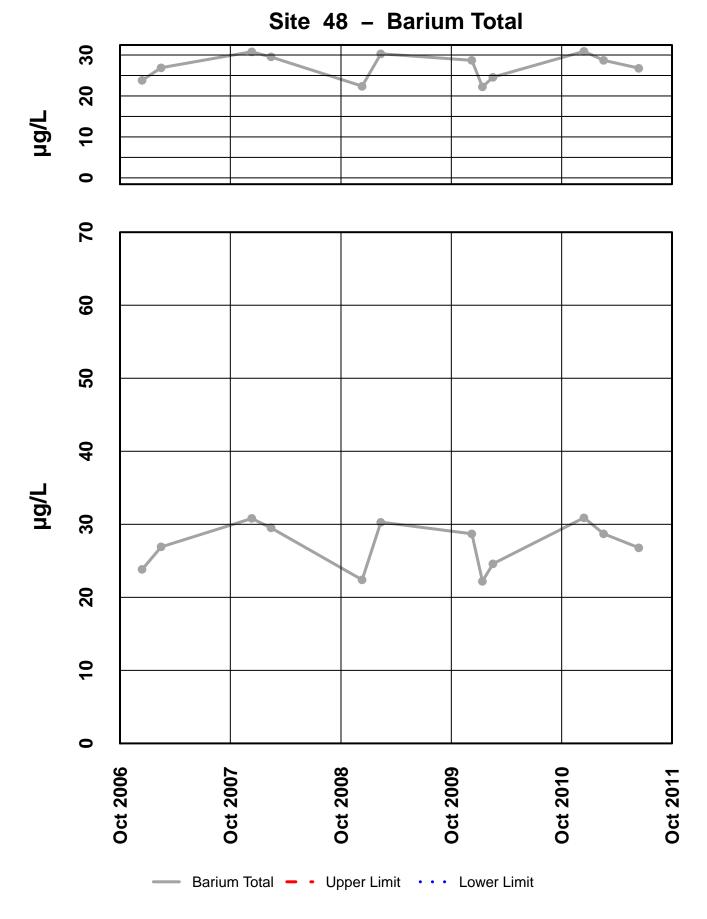
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

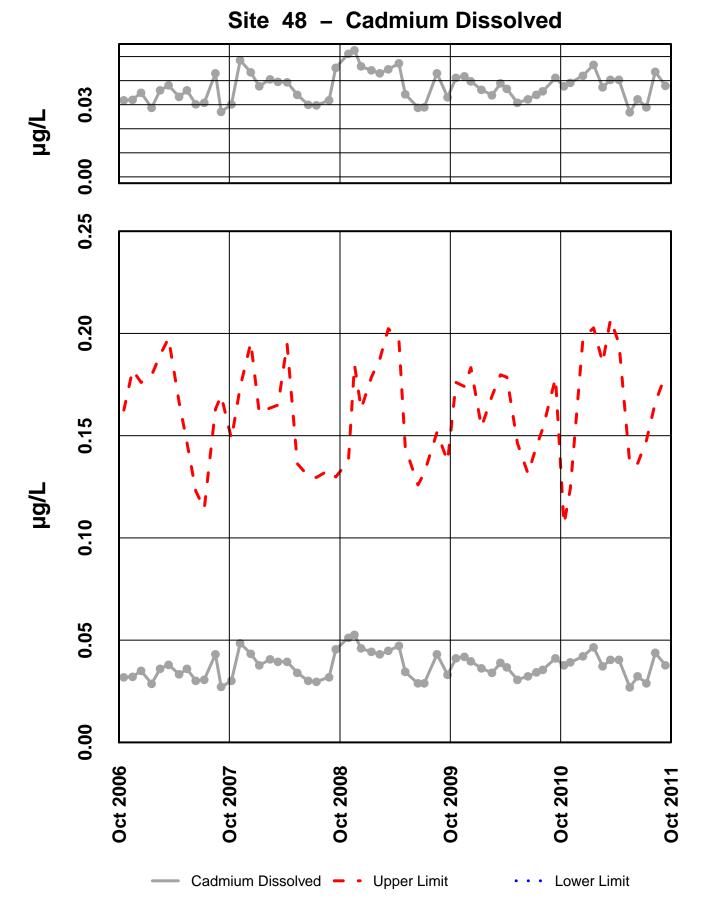


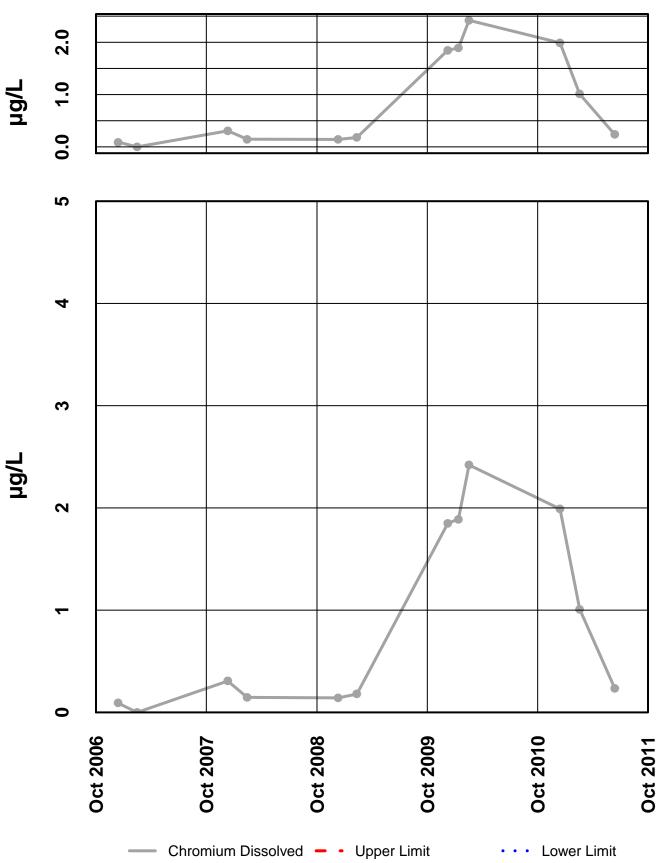
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

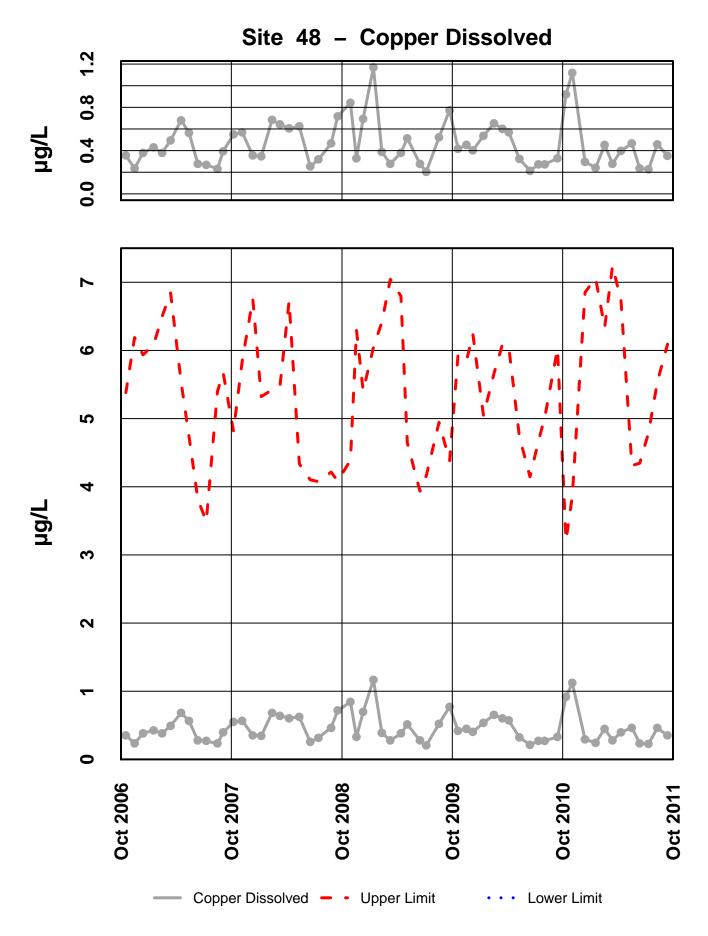

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

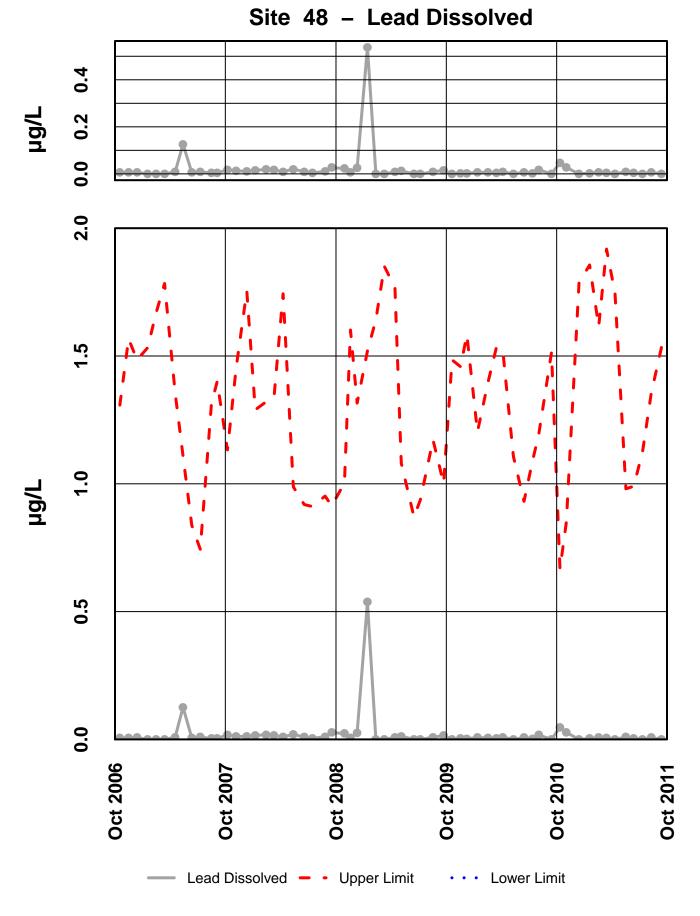

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

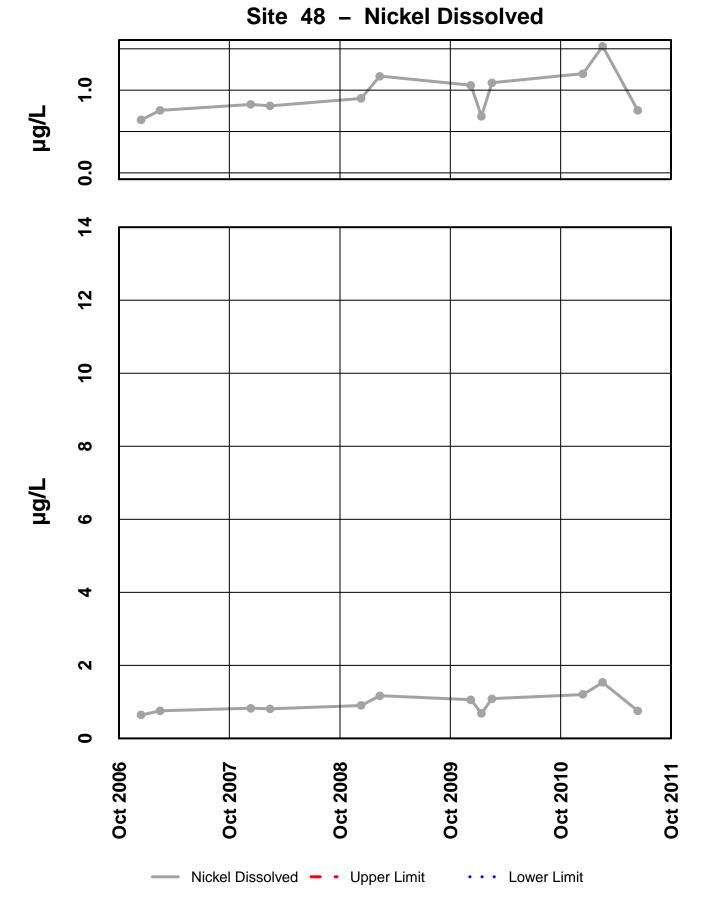
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

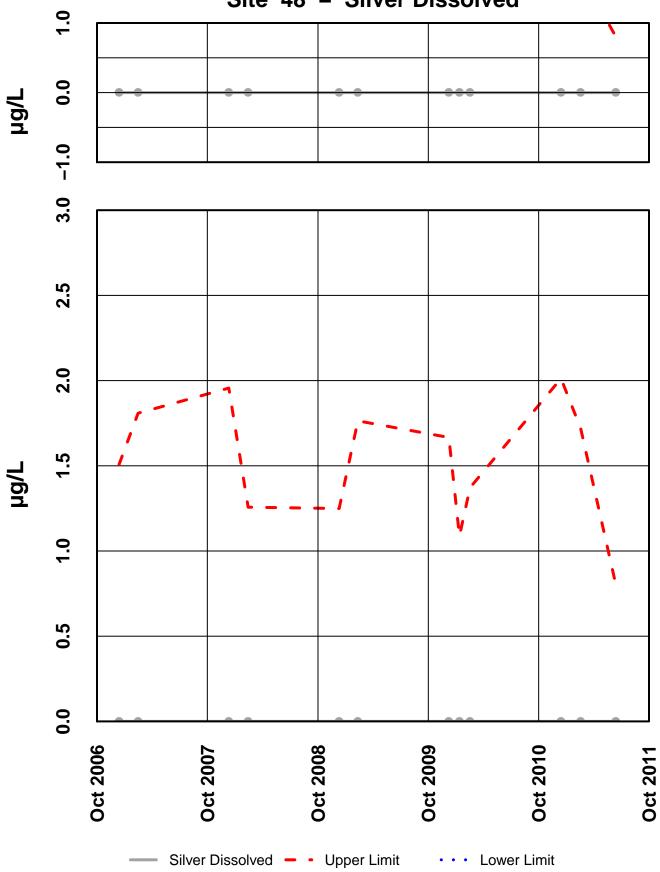


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

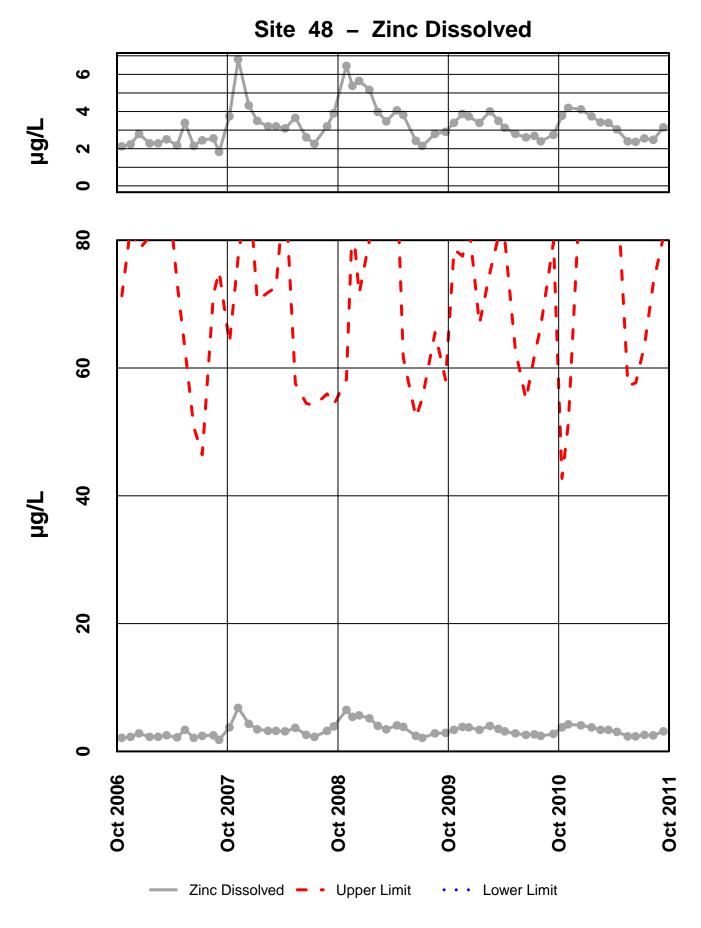


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

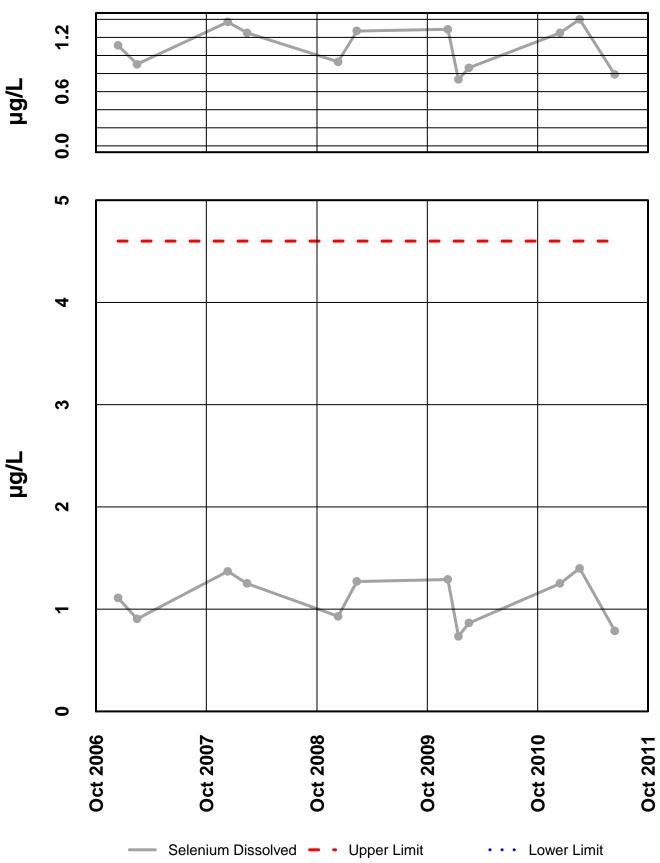


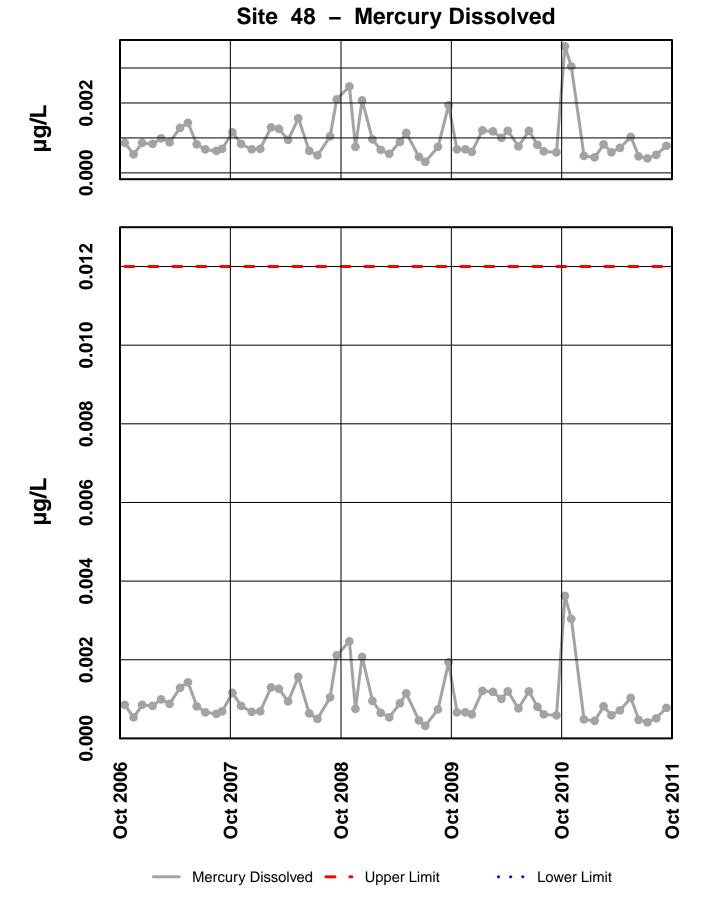


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

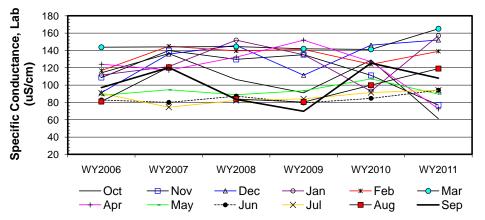


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 48 – Silver Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

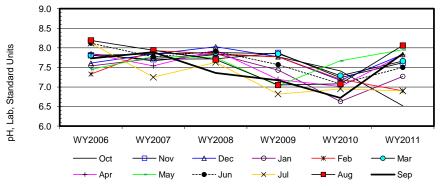

Site 48 – Selenium Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	114.1	108.7	91.2	111.5	116.8	143.7	124.1	88.2	82.8	90.6	81.1	97.1
b	WY2007	136.4	139.8	135.8	121.3	144.9		117.1	94.5	80	74.5	120.6	120.1
С	WY2008	106.4	129.6	145.7	151.9	139.5	144.5	132.2	88.8	87.2	82.2	83.9	83.5
d	WY2009	91.1	135.1	111.4	135.1	141.2	141.9	151.9	93.4	79.4	84.1	80.4	69.8
е	WY2010	128.7	111.2	146.1	93	124	141.2	126.9	107.2	84.7	91.5	99.9	125.4
f	WY2011	61.2	76.9	152	157	139	165	72.6	89.6	94	94	119	108
	n	6	6	6	6	6	5	6	6	6	6	6	6
•	t1	6	6	6	6	6	5	6	6	6	6	6	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1	1	1	1		-1	1	-1	-1	1	1
	c-a	-1	1	1	1	1	1	1	1	1	-1	1	-1
	d-a	-1	1	1	1	1	-1	1	1	-1	-1	-1	-1
	e-a	1	1	1	-1	1	-1	1	1	1	1	1	1
	f-a	-1	-1	1	1	1	1	-1	1	1	1	1	1
	c-b	-1	-1	1	1	-1		1	-1	1	1	-1	-1
	d-b	-1	-1	-1	1	-1		1	-1	-1	1	-1	-1
	e-b	-1	-1	1	-1	-1		1	1	1	1	-1	1
	f-b	-1	-1	1	1	-1		-1	-1	1	1	-1	-1
	d-c	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1
	e-c	1	-1	1	-1	-1	-1	-1	1	-1	1	1	1
	f-c	-1	-1	1	1	-1	1	-1	1	1	1	1	1
	e-d	1	-1	1	-1	-1	-1	-1	1	1	1	1	1
	f-d f-e	-1 -1	-1 -1	1	1 1	-1 1	1	-1 -1	-1 -1	1	1	1	1 -1
•	Sk	-1	-1	11	5	-1	0	-1	-1	5	9	3	-1
	-												
	² _s =	28.33	28.33	28.33	28.33	28.33	16.67	28.33	28.33	28.33	28.33	28.33	28.33
	S _k /\sigma _S	-1.32	-0.94	2.07	0.94	-0.19	0.00	-0.19	0.94	0.94	1.69	0.56	0.19
Z	<mark>7</mark> 2 - k	1.73	0.88	4.27	0.88	0.04	0.00	0.04	0.88	0.88	2.86	0.32	0.04
	$\Sigma Z_k =$	4.70	Γ	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	71
	$\Sigma Z_{k}^{2} =$	12.81		Count	71	0	0	0	0			ΣS_k	25

 $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ @ α =5% $\chi^2_{(K-1)}$ = 10.97 19.68 Test for station homogeneity $\chi^2_h < \chi^2_{(K-1)}$ 0.445 ACCEPT р H₀ (No trend) H_A (± trend) $\Sigma VAR(S_k)$ $\begin{array}{c} Z_{\text{calc}} \\ \textbf{p} \end{array}$ @ $\alpha/2=2.5\%$ Z= 1.96 ACCEPT 1.32 328.33 0.907 REJECT

Seasona	Seasonal-Kendall Slope Confidence Intervals										
α	Lower Limit	Sen's Slope	Upper Limit								
0.010	-1.12		4.36								
0.050	-0.34	1.70	3.56								
0.100	0.16	1.70	2.58								
0.200	0.30		2.18								


#48

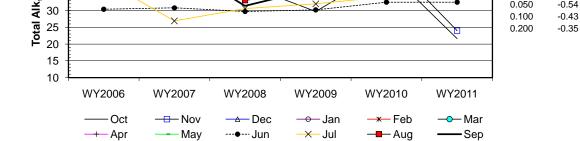
Seasonal Kendall analysis for pH, Lab, Standard Units

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	7.9	7.8	7.6	7.5	7.3	7.8	7.9	7.5	8.1	8.1	8.2	7.7
b	WY2007	7.7	7.7	7.8	7.7	7.9		7.5	7.8	7.8	7.3	7.9	7.9
С	WY2008	7.8	7.7	8.0	7.9	7.9	7.9	7.9	7.8	7.9	7.6	7.7	7.4
d	WY2009	7.8	7.9	7.8	7.4	7.8	7.9	7.2	7.0	7.6	6.8	7.1	7.2
е	WY2010	7.4	7.2	7.2	6.6	7.2	7.3	7.0	7.7	7.1	7.0	7.1	6.7
f	WY2011	6.5	7.6	7.8	7.3	6.9	7.7	7.8	8.0	7.5	6.9	8.1	7.9
	n	6	6	6	6	6	5	6	6	6	6	6	6
	t ₁	6	6	6	6	6	5	6	6	6	6	6	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	1	1	1		-1	1	-1	-1	-1	1
	c-a	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1
	d-a	-1	1	1	-1	1	1	-1	-1	-1	-1	-1	-1
	e-a	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1
	f-a	-1	-1	1	-1	-1	-1	-1	1	-1	-1	-1	1
	c-b	1	1	1	1	-1		1	-1	1	1	-1	-1
	d-b	1	1	-1	-1	-1		-1	-1	-1	-1	-1	-1
	e-b	-1	-1	-1	-1	-1		-1	-1	-1	-1	-1	-1
	f-b	-1	-1	-1	-1	-1		1	1	-1	-1	1	-1
	d-c	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	e-c	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	f-c	-1 -1	-1	-1	-1	-1	-1	-1	1	-1	-1 1	1	1
	e-d f-d	-1 -1	-1 -1	-1	-1 -1	-1 -1	-1 -1	-1	1	-1 -1	1	1	-1 1
	f-e	-1	-1	1	-1	-1	-1	1	1	-1	-1	1	1
	S _k	-11	-5	-1	-7	-9	-4	-5	3	-11	-9	-5	-5
σ	² s=	28.33	28.33	28.33	28.33	28.33	16.67	28.33	28.33	28.33	28.33	28.33	28.33
	s_ S _k /σ _s	-2.07	-0.94	-0.19	-1.32	-1.69	-0.98	-0.94	0.56	-2.07	-1.69	-0.94	-0.94
	-												
4	Z ² _k	4.27	0.88	0.04	1.73	2.86	0.96	0.88	0.32	4.27	2.86	0.88	0.88
	$\Sigma Z_k =$	-13.19	Ŀ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	71
	ΣZ_{k}^{2}	20.83		Count	71	0	0	0	0			ΣS_k	-69
7	-– κ -bar=Σ7μ/K=		F	00011	••	~	•	•	-				

Z-bar= $\Sigma Z_k/K$ = -1.10

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	6.33	@α=5% χ ² _(K-1) =	19.68	Test for station homogene		
	р	0.850			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT	
$\Sigma VAR(S_k)$	Z_{calc}	-3.75	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT	
328.33	р	0.000			H _A (± trend)	ACCEPT	

	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.19		-0.04
0.050	-0.18	-0.10	-0.05
0.100	-0.14	-0.10	-0.07
0.200	-0.13		-0.08


-1.3%

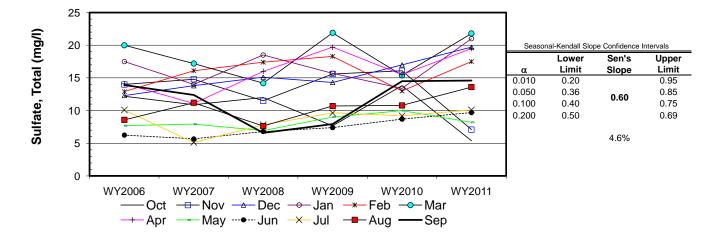
Site #48

Seasonal Kendall analysis for Total Alk, (mg/l)

ite	#48				Season	ai kenda	ali analys	sis for 1 c	tai Aik,	(mg/I)			
w label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	43.6	42.3		44.6	41.4	54.3	43.4	40.3	30.4	39.0	39.5	46.2
)	WY2007	41.6	46.9		44.8	49.0	50.4	40.7	35.3	30.8	26.9	42.2	44.
;	WY2008	37.7	44.2		54.5	48.1	46.8	52.4	35.3	29.7	30.6	33.1	31.
ł	WY2009	29.7	43.7			48.6	51.8	52.6	34.6	30.2	32.0	34.8	36.
) :	WY2010 WY2011	42.2	45.6		41.4 52.8	41.0	45.7	43.3	36.5	32.5	34.1	39.3	48.
	n	21.6 6	24.0		52.8 5	46.4 6	50.0 6	51.4 6	33.7 6	32.5 6	38.2 6	43.5 6	47.3
										4			
	t₁ +	6 0	6 0		5 0	6 0	6 0	6 0	4 1	4 1	6 0	6 0	(
	t ₂ t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0		0	0	0	0	0	0	0	0	
	t ₅	0	0		0	0	0	0	0	0	0	0	
	b-a	-1	1	1	1	1	-1	-1	-1	1	-1	1	-
	c-a	-1	. 1	1	1	1	-1	1	-1	-1	-1	-1	
	d-a	-1	1	-1	•	1	-1	1	-1	-1	-1	-1	-
	e-a	-1	1	1	-1	-1	-1	-1	-1	1	-1	-1	
	f-a	-1	-1	1	1	1	-1	1	-1	1	-1	1	
	c-b	-1	-1	1	1	-1	-1	1	0	-1	1	-1	-*
	d-b	-1	-1	-1		-1	1	1	-1	-1	1	-1	-*
	e-b	1	-1	1	-1	-1	-1	1	1	1	1	-1	
	f-b	-1	-1	1	1	-1	-1	1	-1	1	1	1	
	d-c	-1	-1	-1		1	1	1	-1	1	1	1	
	e-c	1	1	-1	-1	-1	-1	-1	1	1	1	1	1
	f-c	-1	-1	-1	-1	-1	1	-1	-1	1	1	1	
	e-d	1	1	1		-1	-1	-1	1	1	1	1	
	f-d	-1	-1	1		-1	-1	-1	-1	1	1	1	
	f-e	-1	-1	-1	1	1	1	1	-1	0	1	1	-*
	S _k	-9	-3	3	2	-3	-7	3	-8	6	5	3	3
σ	² _S =	28.33	28.33	28.33	16.67	28.33	28.33	28.33	27.33	27.33	28.33	28.33	28.33
	s- S _k /σ _s	-1.69	-0.56		0.49	-0.56	-1.32	0.56	-1.53	1.15	0.94	0.56	0.56
Z	<u>z</u> ² k	2.86	0.32	0.32	0.24	0.32	1.73	0.32	2.34	1.32	0.88	0.32	0.32
	$\Sigma Z_k =$	-0.83		Tie Extent	t1	t ₂	t ₃	t ₄	t₅			Σn	71
	$\Sigma Z_{k}^{2} =$	11.28		Count	67	2	0	0	0			ΣS_k	-5
Z	-bar=ΣZ _k /K=	-0.07					-	-	-			- K	
	$x^{2} \nabla 7^{2} u$	$(7 + -)^2$	44.00		o 5 0	× ×2	10.00						
	$\chi^2_h = \Sigma Z^2_k - k$	$r(z-bar) = \mathbf{p}$	11.22 0.425	L L	@α=5	% χ ² _(K-1) =	19.68		$\ell^2 k^2 \chi^2_{(K-1)}$	ion homoge م			
	$\Sigma VAR(S_k)$	Z _{calc}	-0.22		@a/2=	2.5% Z=	1.96	/	H ₀ (No 1		CCEPT		
	326.33	p	0.412	L					H _A (± t		REJECT		
		F							· · A (= *				
0 5				8									
			~~~				_		<u>}</u>				
5 -									<b>₽</b>	Seasonal-		Confidence I	
οŧ			×.	_					-		Lower	Sen's	Upper
								$\rightarrow$	<  -	α	Limit	Slope	Limit
5 🗄	:		-				X			0.010	-0.73		0.70
Σ₽	•		•			/		-++		0.050	-0.54	-0.05	0.50
5			X							0.100	-0.43 -0.35		0.42
∵n +										0.200	-0.35		0.23

0.23



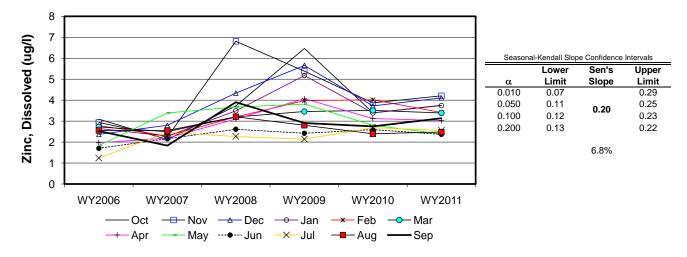

Site #48

Seasonal Kendall analysis for Sulfate, Total (mg/l)

one	<b>#40</b>			0	ouooniui	Ronadin	anaryoio			(iiig/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	12.2	14.0	12.3	17.5	12.9	20.0	14.1	7.7	6.3	10.1	8.6	13.9
b	WY2007	10.9	14.8	13.8	14.0	16.1	17.2	11.1	7.9	5.7	5.1	11.2	12.4
С	WY2008	12.0	11.5	15.1	18.5	17.4	14.2	16.0	6.9	6.8	7.8	7.6	6.6
d	WY2009	7.7	15.6	14.3	15.7	18.3	21.9	19.7	9.0	7.4	9.6	10.7	8.0
е	WY2010	13.8	16.1	17.0	13.4	13.0	15.4	15.5	10.0	8.7	9.2	10.8	14.5
f	WY2011	5.4	7.1	19.7	21.0	17.5	21.8	19.5	8.2	9.7	10.1	13.6	14.6
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	6	6	6	6	6	6	6	6	6	4	6	6
	t ₂	0	0	0	0	0	0	0	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	c-a	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	d-a	-1	1	1	-1	1	1	1	1	1	-1	1	-1
	e-a	1	1	1	-1	1	-1	1	1	1	-1	1	1
	f-a	-1	-1	1	1	1	1	1	1	1	0	1	1
	c-b	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	d-b	-1	1	1	1	1	1	1	1	1	1	-1	-1
	e-b	1	1	1	-1	-1	-1	1	1	1	1	-1	1
	f-b	-1	-1	1	1	1	1	1	1	1	1	1	1
	d-c	-1	1	-1	-1	1	1	1	1	1	1	1	1
	e-c	1	1	1	-1	-1	1	-1	1	1	1	1	1
	f-c	-1	-1	1	1	1	1	1	1	1	1	1	1
	e-d	1	1	1	-1	-1	-1	-1	1	1	-1	1	1
	f-d f-e	-1 -1	-1 -1	1	1	-1 1	-1 1	-1 1	-1 -1	1	1	1	1
	S _k	-5	1	13	1	7	1	7	7	13	4	7	5
0	² _s =	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33
	s– S _k /σ _s	-0.94	0.19	2.44	0.19	1.32	0.19	1.32	1.32	20.00	0.77	1.32	0.94
	Z ² _k	0.88	0.04	5.96	0.04	1.73	0.04	1.73	1.73	5.96	0.59	1.73	0.88
	$\Sigma Z_k =$	11.47	]	Tie Extent	t,	t ₂	t ₃	t ₄	t _s			Σn	72
	$\Sigma Z_k^2 =$	21.30		Count	70	1	0	0	0			$\Sigma S_k$	61
7	 2-har-∑7./K	0.96	L			•	-	-	-			ĸ	•

Z-bar= $\Sigma Z_k/K$ = 0.96

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 10.33$		@α=5% χ ² _(K-1) = 19.68		Test for station homo	geneity
	р	0.501			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	3.26	@α=5% Z=	1.64	H ₀ (No trend)	REJECT
339.00	р	0.999			H _A (± trend)	ACCEPT




Site #48

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

One	<i>π</i> <b>-0</b>			•					DISSOIV				
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	3.1	2.9	2.4	2.7	2.8	2.7	2.0	1.8	1.7	1.2	2.6	2
b	WY2007	2.1	2.2	2.8	2.3	2.3	2.5	2.2	3.4	2.2	2.5	2.6	1
С	WY2008	3.7	6.8	4.3	3.5	3.2	3.2	3.1	3.7	2.6	2.3	3.2	3
d	WY2009	6.5	5.4	5.7	5.2	4.0	3.5	4.1	3.8	2.4	2.1	2.8	2
е	WY2010	3.4	3.9	3.7	3.4	4.0	3.5	3.1	2.8	2.6	2.7	2.4	2
f	WY2011	3.8	4.2	4.1	3.7	3.4	3.4	3.0	2.4	2.4	2.6	2.5	3
	n	6	6	6	6	6	6	6	6	6	6	6	
•	t,	6	6	6	6	6	6	6	6	6	6	6	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1	1	-1	-1	-1	1	1	1	1	-1	
	c-a	1	1	1	1	1	1	1	1	1	1	1	
	d-a	1	1	1	1	1	1	1	1	1	1	1	
	e-a	1	1	1	1	1	1	1	1	1	1	-1	
	f-a	1	1	1	1	1	1	1	1	1	1	-1	
	c-b	1	1	1	1	1	1	1	1	1	-1	1	
	d-b	1	1	1	1	1	1	1	1	1	-1	1	
	e-b	1	1	1	1	1	1	1	-1	1	1	-1	
	f-b	1	1	1	1	1	1	1	-1	1	1	-1	
	d-c	1	-1	1	1	1	1	1	1	-1	-1	-1	
	e-c	-1	-1	-1	-1	1	1	1	-1	-1	1	-1	
	f-c e-d	1 -1	-1 -1	-1 -1	1 -1	1	1	-1 -1	-1 -1	-1 1	1	-1 -1	
	e-d f-d	-1 -1	-1 -1	-1	-1 -1	-1	-1	-1 -1	-1 -1	-1	1	-1 -1	
	f-e	-1	-1	-1	-1	-1	-1	-1	-1	-1 -1	-1	-1	
:	S _k	7	3	7	7	9	9	7	1	5	7	-5	
	² s=	28.33	28.33	28.33	28.33	28.33	20.22	20.22	28.33	20.22	20.22	20.22	20
							28.33	28.33		28.33	28.33	28.33	28.
	S _k /σ _S	1.32	0.56	1.32	1.32	1.69	1.69	1.32	0.19	0.94	1.32	-0.94	0.
Z	<b>7</b> 2 - k	1.73	0.32	1.73	1.73	2.86	2.86	1.73	0.04	0.88	1.73	0.88	0.
	$\Sigma Z_k =$	11.65	Ŀ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	72
	$\Sigma Z_{k}^{2}$ =	17.36		Count	72	0	0	0	0			$\Sigma S_k$	62
	—— к			200	·	-	•	-	~			n	

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	6.06	@α=5% χ ² _(K-1) =	19.68	Test for station homog	geneity
	р	0.869			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	3.31	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
340.00	р	1.000			H _A (± trend)	ACCEPT



### **INTERPRETIVE REPORT** SITE 6 "MIDDLE GREENS CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers after review by HGCMC.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri-	od of Octobe	r 2006 through September 2011.	

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified.

### Table of Exceedance for Water Year 2011

Site 006FMS - 'Greens Creek Middle'							
	Lim						
Sample Date	Parameter	Value	Lower	Upper	Hardness		

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Dissolved chromium increased an order of magnitude during water year 2010, however during water year 2011 dissolved chromium decreased from a high of 2.07  $\mu$ g/L (December 2010) to a low of 0.615  $\mu$ g/L (February 2011). This lower value is more in accordance with previous year's values. A similar decrease was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area. Another trend that has occurred over the past few years is a decrease in the concentration of dissolved manganese.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results of the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Kei	ndall test sta	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.18			
pH Field	6	0.02	-	-0.05	-0.6
Alkalinity, Total	6	0.50			
Sulfate, Total	6	0.01	+	0.46	3.0
Zinc, Dissolved	6	< 0.01	+	0.39	6.1

### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

Field pH had a statistically significant negative slope with an estimate of -0.045 su/yr Given this low magnitude, HGCMC does not feel that this decreasing trend is a significant indication of changes in water chemistry at Site 6. Dissolved zinc had a statistically significant positive slope of 0.39  $\mu$ g/L/yr, which is similar to last year's slope of 0.37  $\mu$ g/L/yr. Though these values are increasing they are still approximately 1/8th of the AWQS for dissolved zinc. Total sulfate was also increasing statistically significantly, with a Sen's slope estimate of 0.46  $\mu$ g/L/yr. Currently, HGCMC does not feel that these increasing trends are a significant indication of changes in water chemistry.

A comparison of median values for alkalinity, laboratory pH, lab conductivity, sulfate, and dissolved zinc between Site 6 and Site 48 has been conducted as specified in the Statistical Information Goals for Site 6. Additionally, X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 6 and Site 48, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the water year 2011 dataset.

Site 6 vs Site 48									
	Signed Ranks	Site 48	Site 6	Median					
Parameter	p-value	median	median	Differences					
Conductivity Field	< 0.01	126	131.5	-7.5					
pH Field	0.259	7.64	7.66	-0.03					
Alkalinity, Total	0.01	45	46.9	-1.4					
Sulfate, Total	< 0.01	14.1	15.70	-2.20					
Zinc, Dissolved	< 0.01	3.27	7.4	-3.76					

### **Table of Summary Statistics for Median Analysis**

Field pH and total alkalinity do not have a statistically significant difference between measured median values at a significance level of  $\alpha$ =0.05 for a one-tailed test. The median values for total

alkalinity for Site 48 and Site 6 are 45 mg/L and 46.9 mg/L respectively and the median of differences, Site 48 minus Site 6, is -1.4  $\mu$ S/cm.

The median values for field conductivity for Site 48 and Site 6 are 126  $\mu$ s/cm and 131.5  $\mu$ s/cm respectively. The median values for total sulfate for Site 48 and Site 6 are 14.1 mg/L and 15.7 mg/L respectively. Dissolved zinc results follow along in a similar manner where the median values for Site 48 and Site 6 are 3.27  $\mu$ g/L and 7.40  $\mu$ g/L respectively. Signed-rank test results for prior datasets for Water Years 2000 – 2010 show similar statistically significant differences with a median difference ranging from -1.7  $\mu$ g/L to -4.17  $\mu$ g/L dissolved zinc. The magnitudes of these differences appear to have been relatively consistent over the past several years and do not appear to be increasing. Also, the magnitude of the relative differences is small with respect to field conductivity and well below the applicable AWQS in the case of sulfate and dissolved zinc. HGCMC believes that no additional monitoring is warranted at this time due to the consistent differences in the measured analytes between the two sites. Taking into consideration the small magnitude of the differences that are measurable between the two sites, the current FWMP program is sufficient to monitor any future increases at Site 6. Thus, if an upward trend in total sulfate, or dissolved zinc at Site 6 is occurring, the current program is sufficient for identifying the change before any water quality values are impaired.

Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)	4.6	3.9	0.0	0.1	7.3	0.4	1.3	2.5	4.8	6.7	8.9	8	4.3
Conductivity-Field(µmho)	78.8	81.9	163	166	151	176	84.9	91.6	98	98	155	112	105.0
Conductivity-Lab (µmho)	85	78	155	164	150	183	174	96	83	102	129	134	132
pH Lab (standard units)	6.46	6.25	6.38	7.7	7.64	7.93	7.8	7.57	7.68	7.21	7.68	7.79	7.66
pH Field (standard units)	6.71	7.66	7.92	7.49	7.27	7.67	7.74	7.63	7.4	7.66	7.88	7.79	7.66
Total Alkalinity (mg/L)	27.6	24.1	48.4	52.5	48.4	55.4	52.9	34.7	34.7	37.7	47.7	46.1	46.9
Total Sulfate (mg/L)	8	8.8	23.6	24.6	21.7	26.1	25	8.7	10.5	11.1	15.1	16.3	15.7
Hardness (mg/L)	39.3	35.9	75.5	79	73	82.8	77.8	44.2	44.4	50.6	59.2	64	61.6
Dissolved As (ug/L)	0.235	0.21	0.162	0.199	0.183	0.193	0.185	0.184	0.179	0.203	0.228	0.232	0.196
Dissolved Ba (ug/L)			31.6		30								30.8
Dissolved Cd (ug/L)	0.0526	0.0835	0.0542	0.0527	0.0618	0.0473	0.0619	0.039	0.0341	0.0352	0.0394	0.0683	0.0527
Dissolved Cr (ug/L)			2.07		0.615								1.343
Dissolved Cu (ug/L)	0.704	1.14	0.337	0.298	0.493	0.29	0.442	0.479	0.255	0.271	0.433	0.474	0.438
Dissolved Pb (ug/L)	0.154	0.113	0.0119	0.0159	0.0366	0.0119	0.0354	0.0226	0.0065	0.0187	0.0112	0.0466	0.0207
Dissolved Ni (ug/L)			1.51		1.54								1.525
Dissolved Ag (ug/L)			0.004		0.002								0.003
Dissolved Zn (ug/L)	7.33	13	7.91	7.46	10.8	7.29	10.2	3.95	3.16	3.61	4.35	7.74	7.40
Dissolved Se (ug/L)			1.35		1.14								1.245
Dissolved Hg (ug/L)	0.00229	0.00338	0.000751	0.000369	0.000758	0.000495	0.000822	0.000977	0.000643	0.000501	0.000644	0.00101	0.000755

### Site 006FMS - 'Greens Creek Middle'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

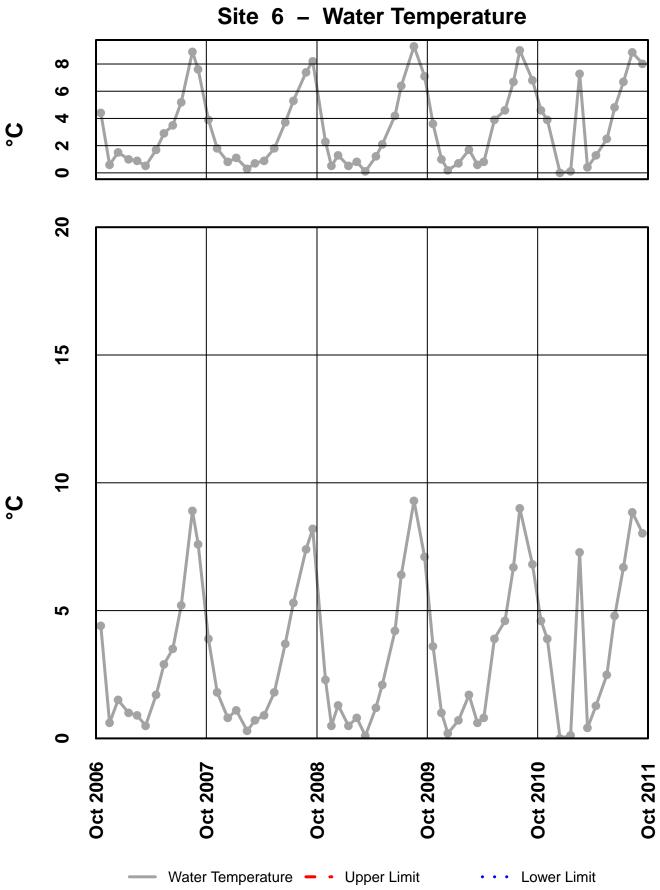
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

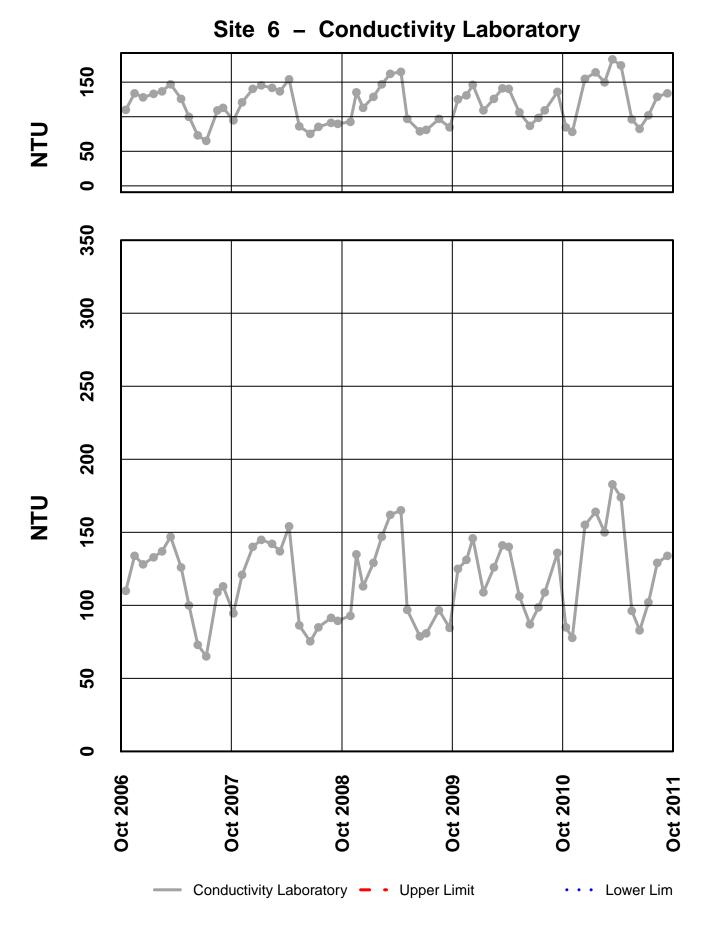
## **Qualified Data by QA Reviewer**

### Date Range: 10/01/2010 to 09/30/2011

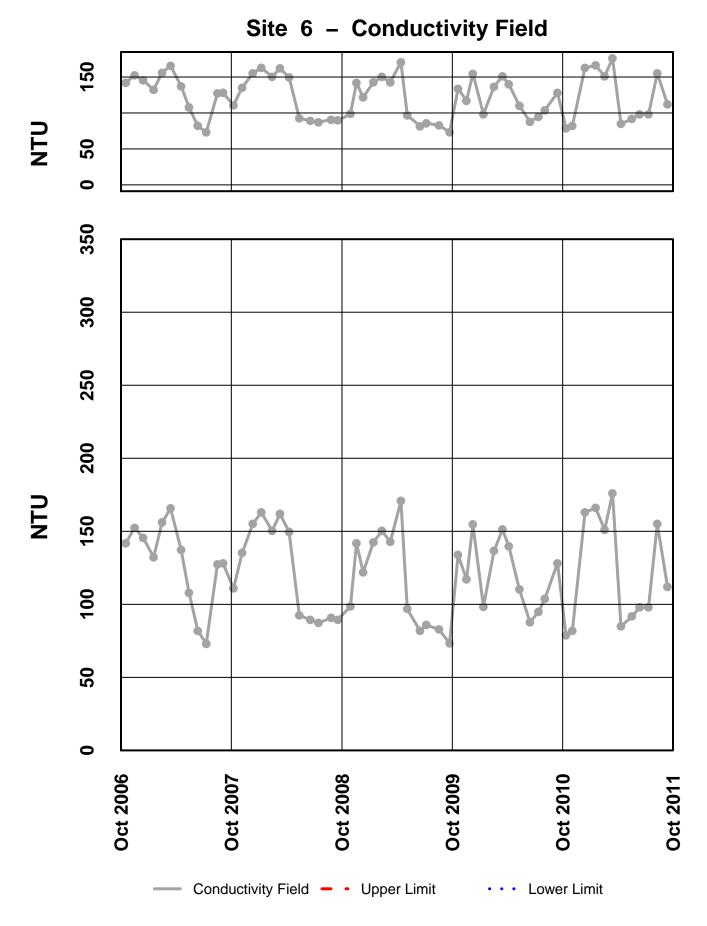
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
6	10/12/2010	12:00 AM				
			pH Lab, su	6.46	R	Hold Time Violation
			SO4 Tot, mg/l	8	J	Sample Receipt Temperature
i	12/14/2010	12:00 AM				
			Pb diss, µg/l	0.0119	U	Field Blank Contamination
			Hg diss, µg/l	0.000751	U	Field Blank Contamination
	1/18/2011	12:00 AM				
			pH Lab, su	7.7	J	Hold Time Violation
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Hg diss, µg/l	0.000369	U	Field Blank Contamination
			SO4 Tot, mg/l	24.6	J	Sample Reciept Temperature
;	2/17/2011	12:00 AM				
			Pb diss, µg/l	0.03	U	Field Blank Contamination
i	3/14/2011	12:00 AM				
			pH Lab, su	7.93	J	Hold Time Violation
			SO4 Tot, mg/l	26.1	J	Sample Reciept Temperature
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Hg diss, µg/l	0.000495	U	Field Blank Contamination
5	4/12/2011	12:00 AM				
			pH Lab, su	7.8	J	Hold Time Violation
			Hg diss, µg/l	0.000822	U	Field Blank Contamination
i	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	8.7	J	Sample Reciept Temperature
			pH Lab, su	7.57	J	Hold Time Violation
			Cd diss, µg/l	0.039	U	Trip Blank Contamination
			Pb diss, µg/l	0.0226	U	Field Blank Contamination
	6/13/2011	12:00 AM				
			SO4 Tot, mg/l	10.5	J	Sample Reciept Temperature
			Pb diss, µg/l	0.00654	J	Below Quantitative Range
			Hg diss, µg/l	0.000643	J	LCS Recovery
3	7/12/2011	12:00 AM				
			SO4 Tot, mg/l	11.1	J	Sample Reciept Temperature
			Cu diss, µg/l	0.27	U	Field Blank Contamination

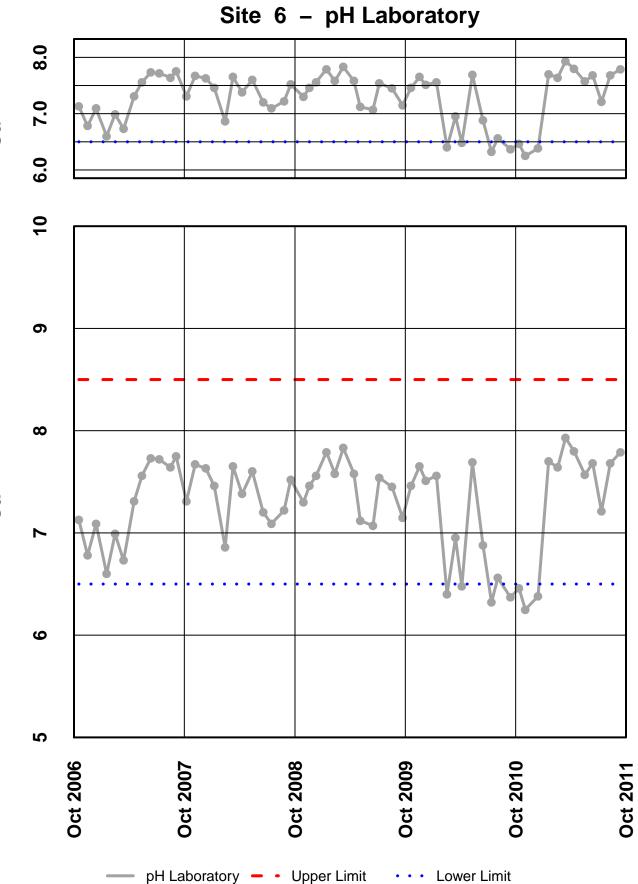

#### Qualifier

- Description Positively Identified - Approximate concentration
- J
- Ν Presumptive Evidence For Tentative Identification NJ Tentatively Identified - Approximate Concentration
- Rejected Cannot be Verified R
- U Not Detected Above Quantitation Limit
- UJ Not Detected Above Approximate Quantitation Limit


# Qualified Data by QA Reviewer

### Date Range: 10/01/2010 to 09/30/2011

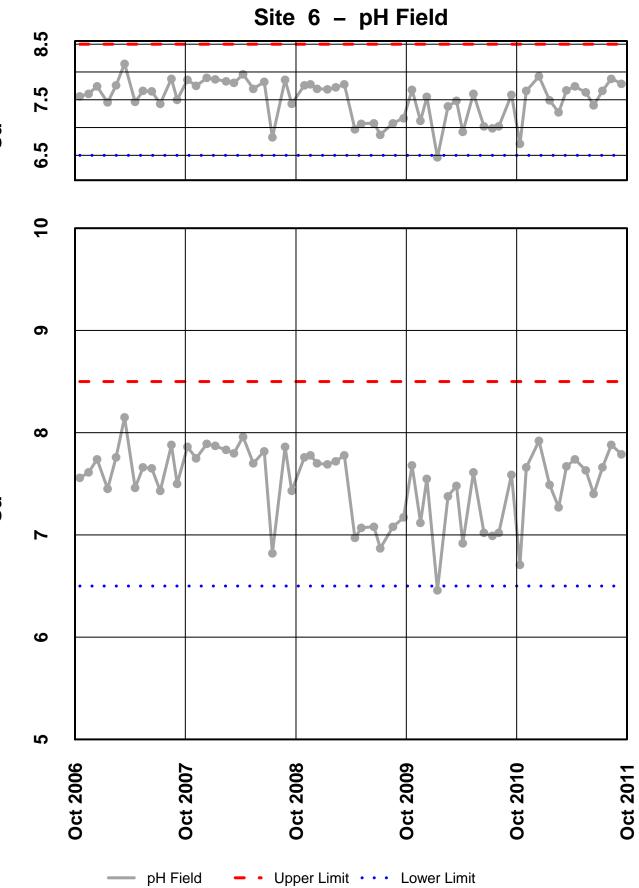

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
6	7/12/2011	12:00 AM			_	
			Hg diss, µg/l	0.000501	U	Field Blank Contamination
6	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	15.1	J	Sample Receipt Temperature
			pH Lab, su	7.68	J	Hold Time Violation
			Hg diss, µg/l	0.000644	U	Field Blank Contamination
6	9/13/2011	12:00 AM				
			Hg diss, µg/l	0.00101	U	Field Blank Contamination




ပိ



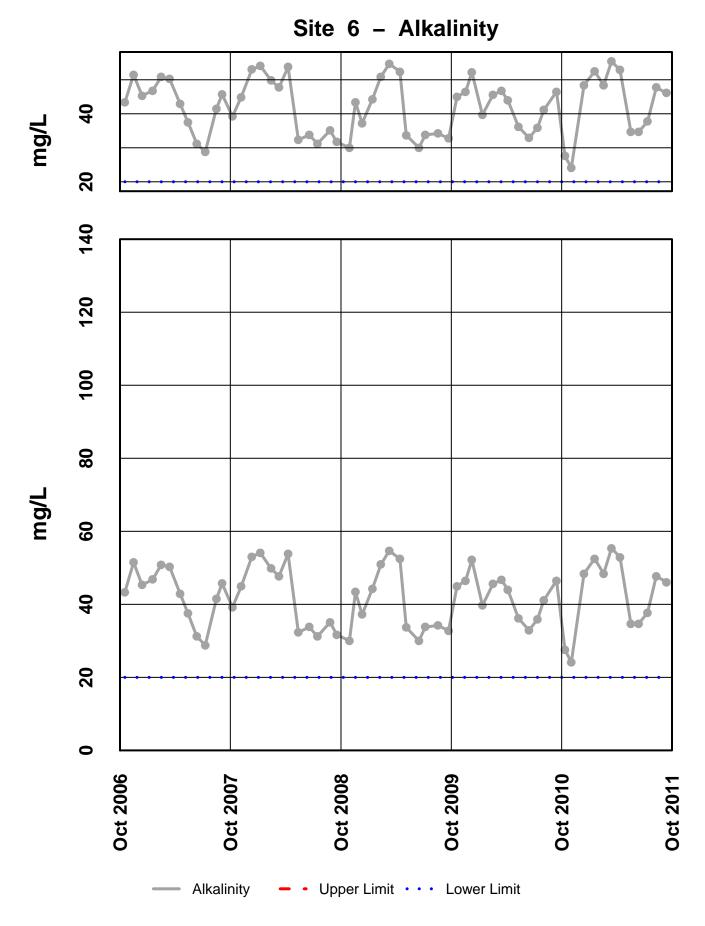
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



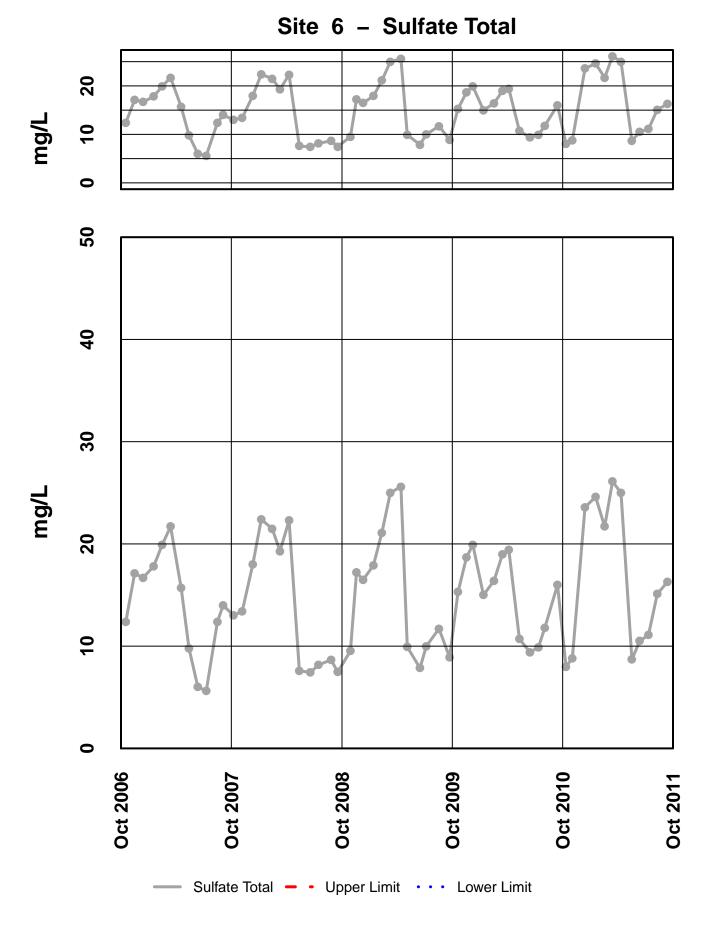



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

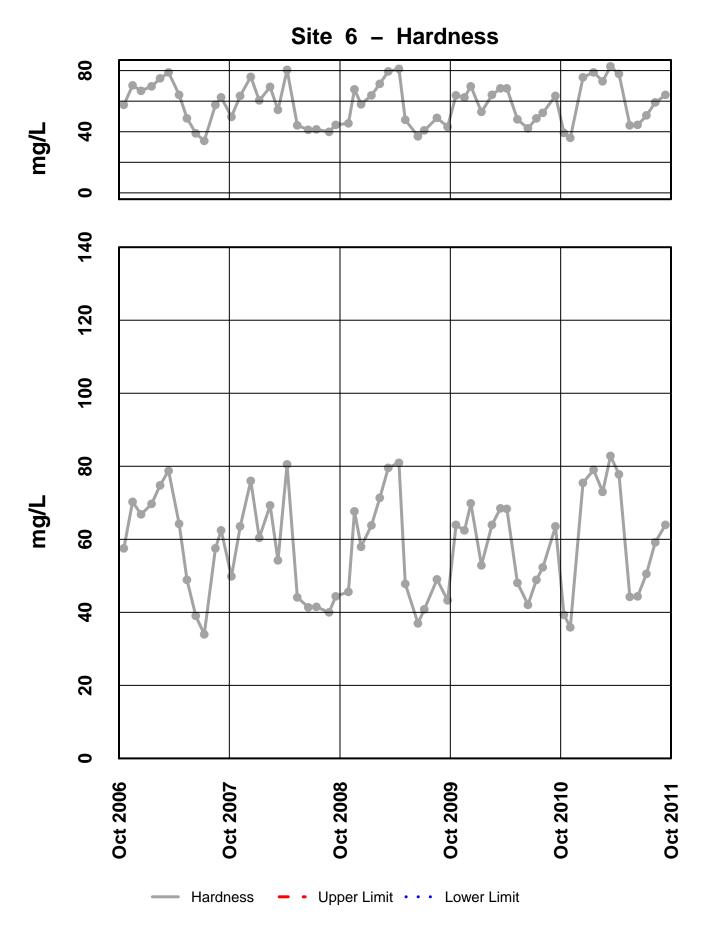
SU

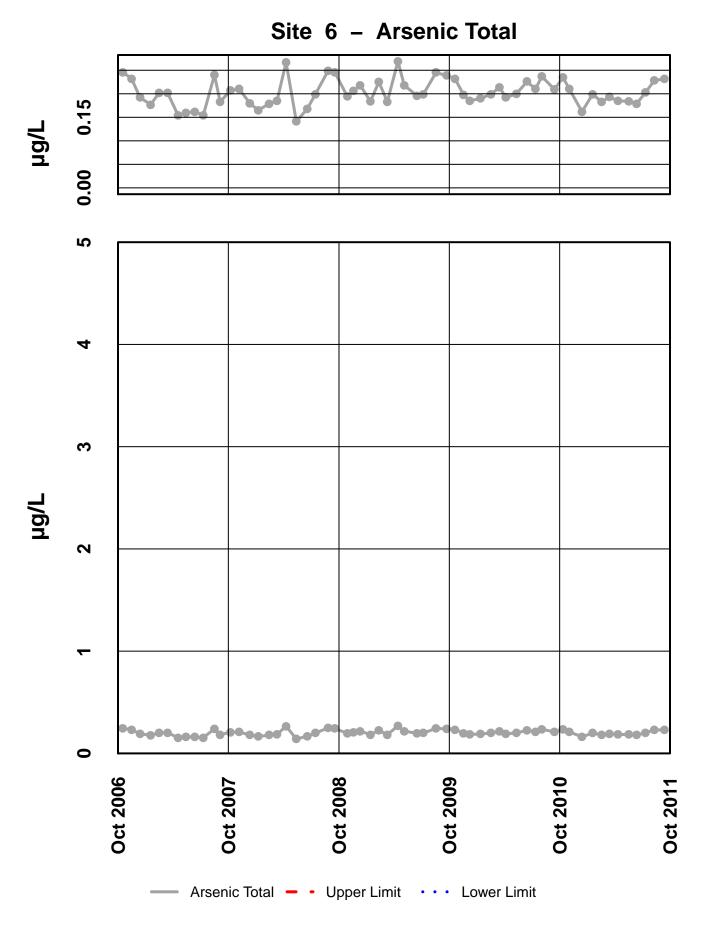

su



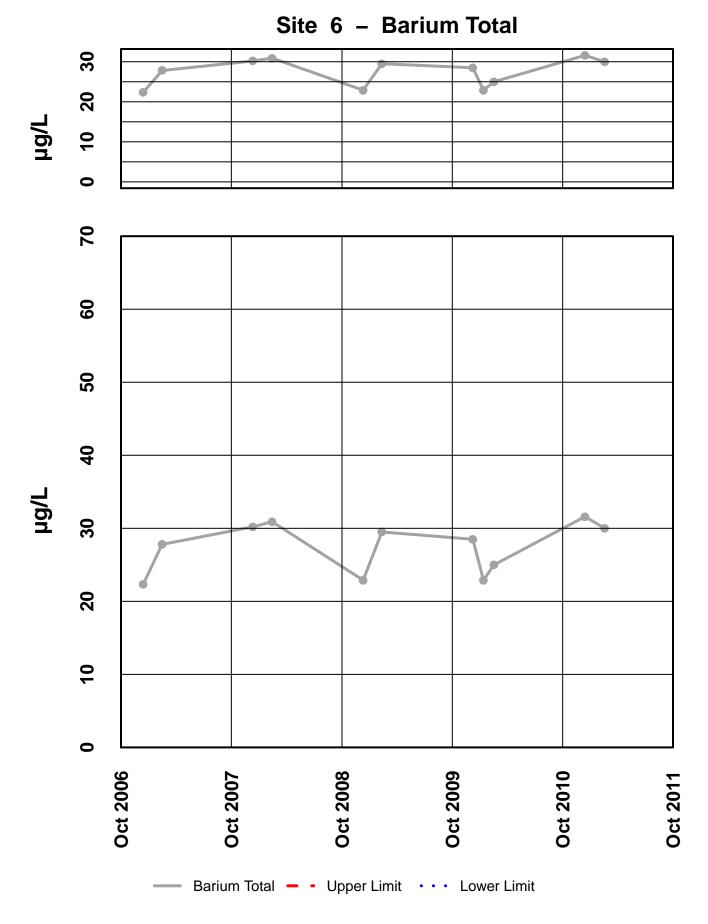

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

SU

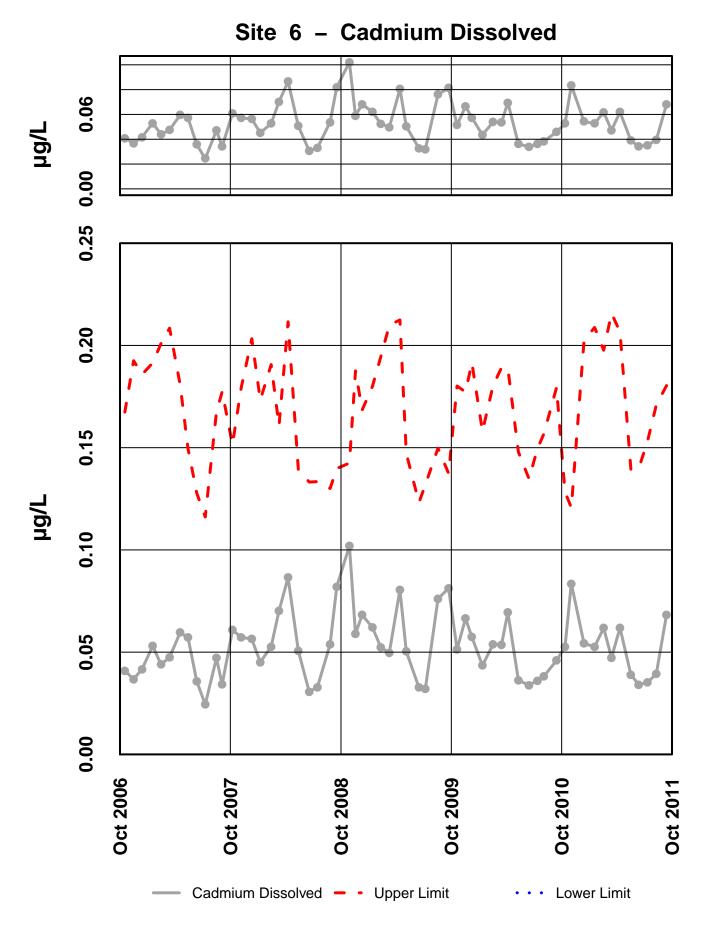

su



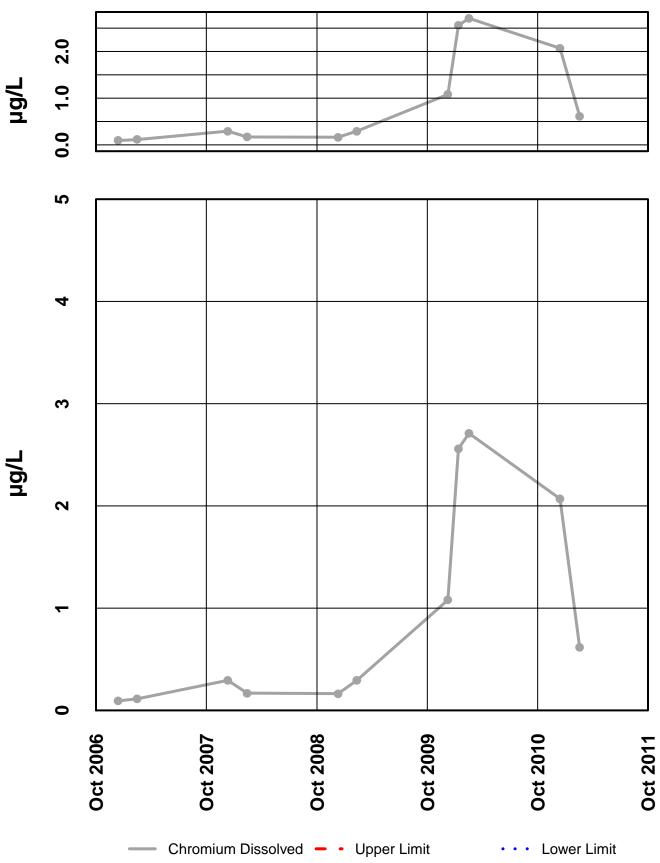

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



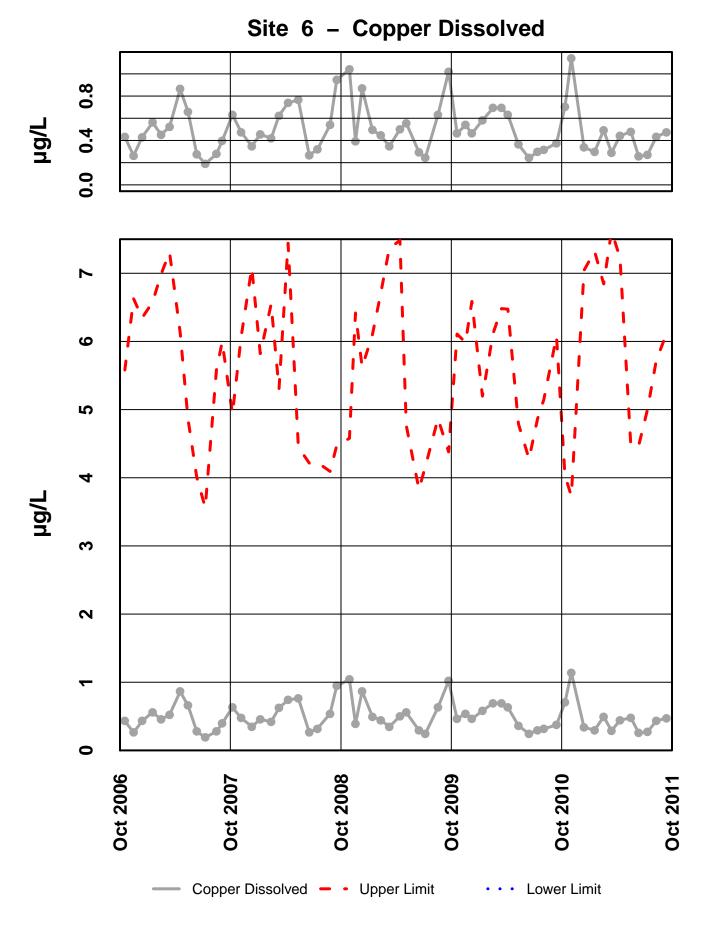

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



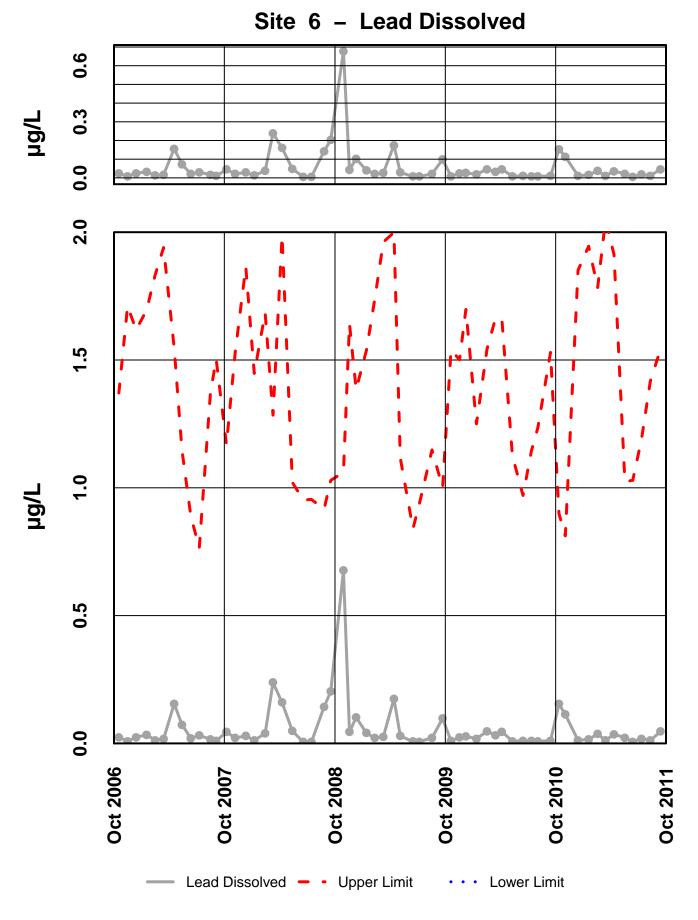




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

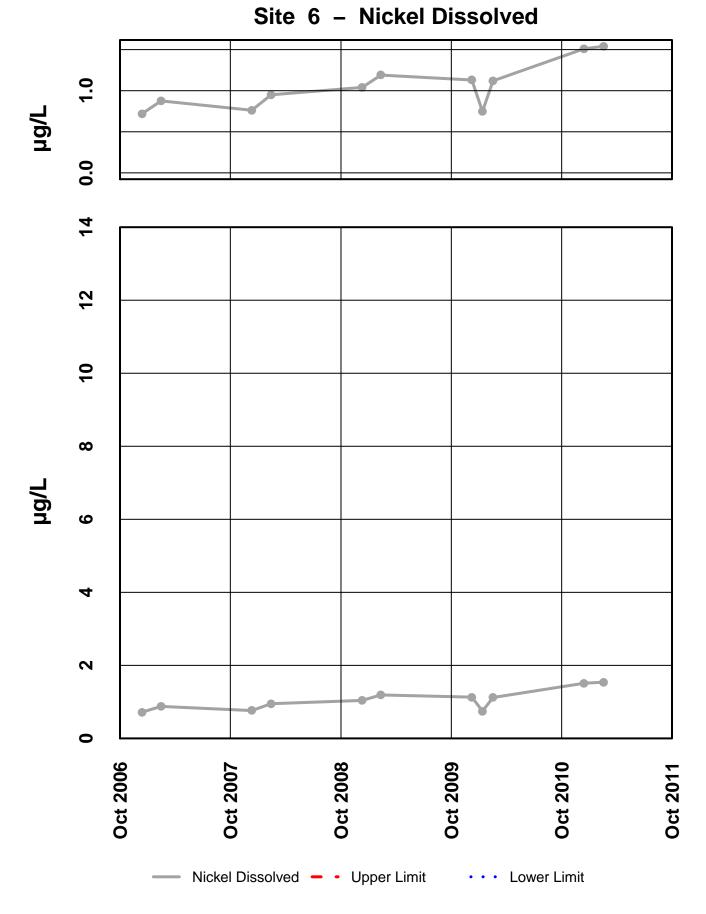



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

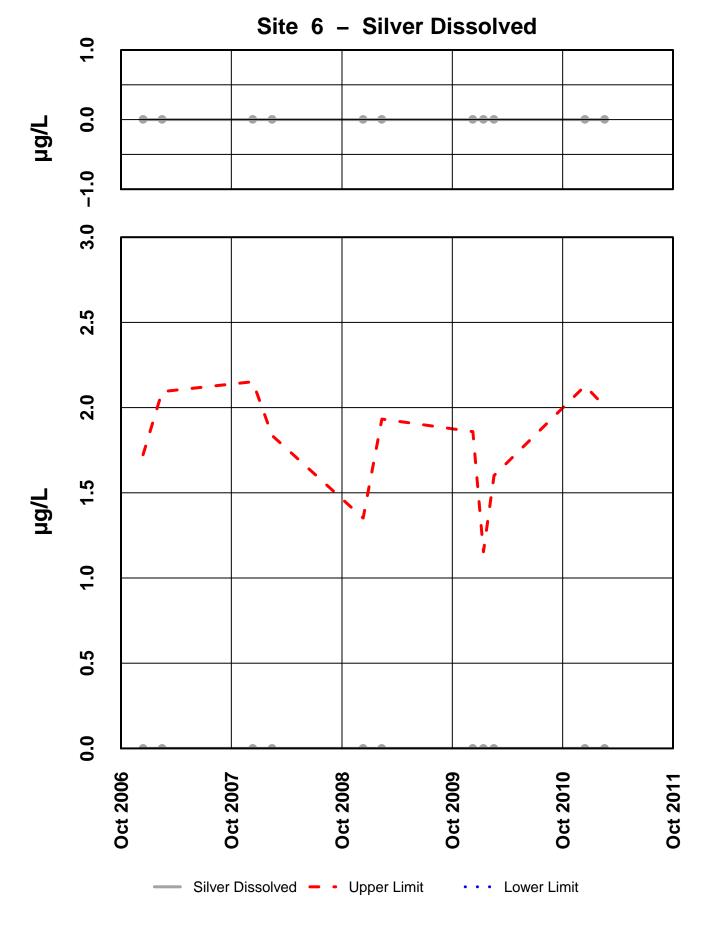



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

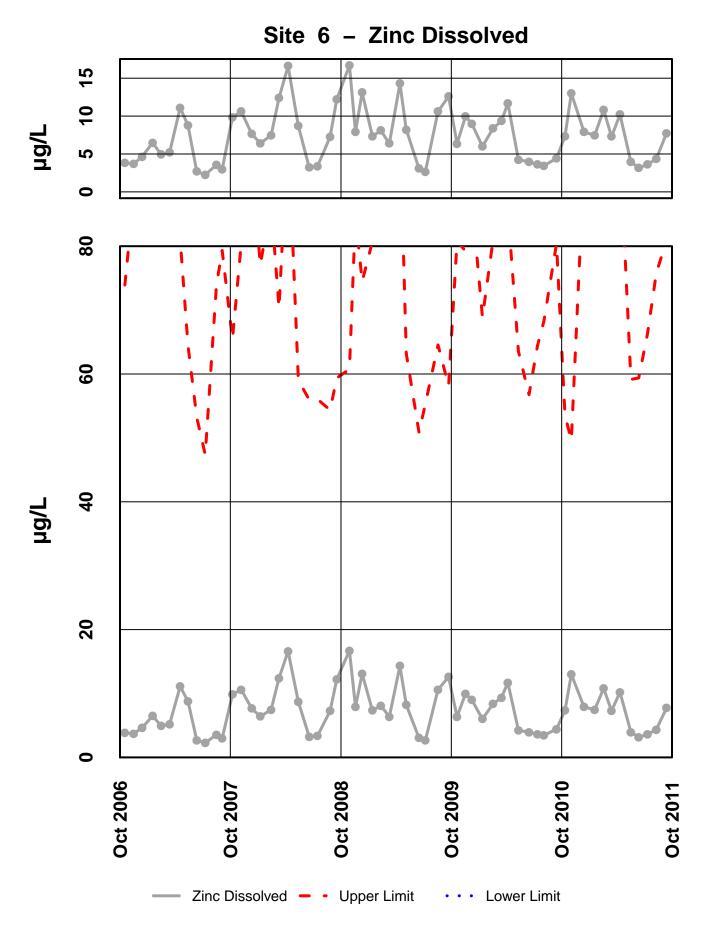



# Site 6 – Chromium Dissolved

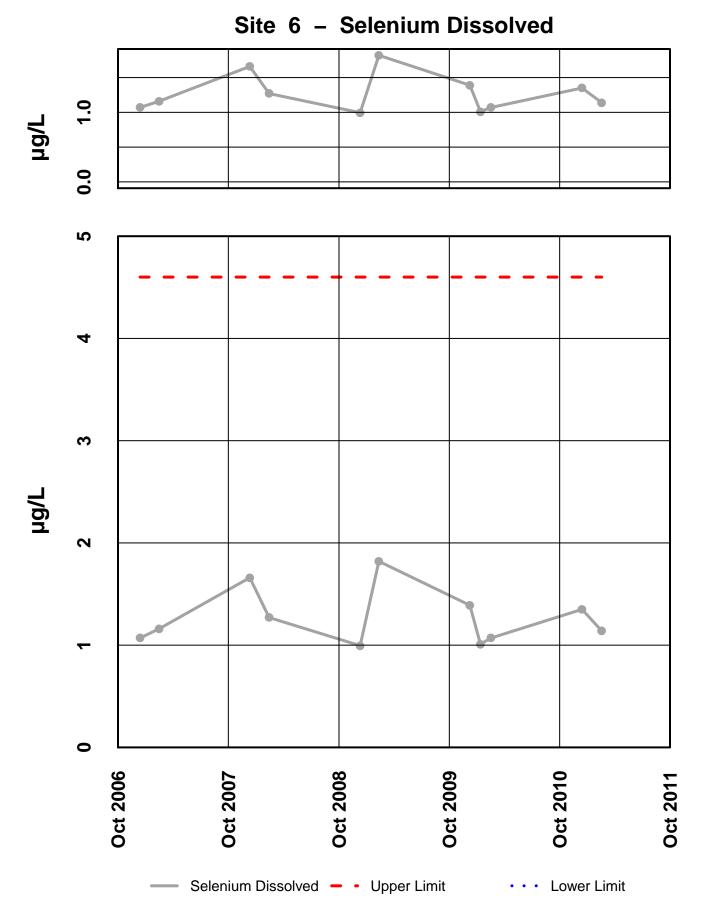


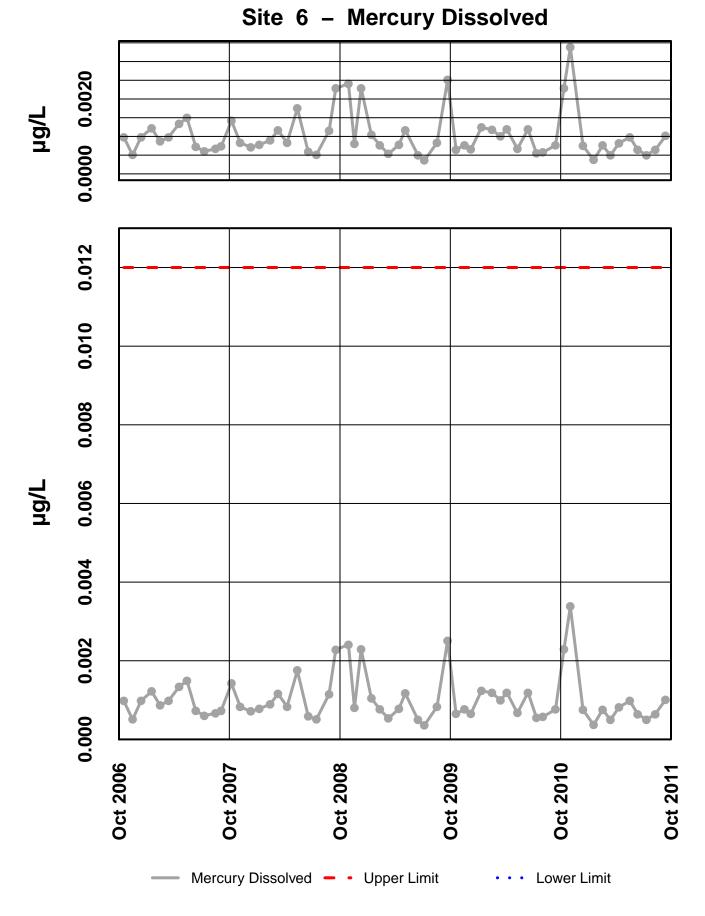

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



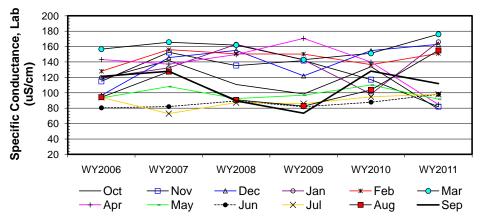

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





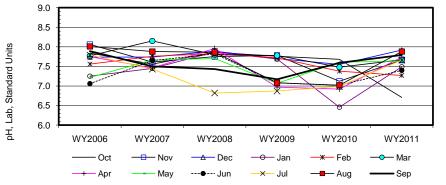

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	118.1	114.9	96.7	119.5	128	156.6	143.1	93.4	80.5	93.9	94.2	121.3
b	WY2007	141.9	152.5	145.6	132.3	156	165.7	137.2	108	82	73	127.4	127.9
С	WY2008	110.8	135.3	155.1	162.9	150.4	161.9	149.6	92.5	89.4	87.2	90.8	89.5
d	WY2009	98.5	141.8	122	142.5	150.2	142.9	170.7	96.8	81.8	85.8	82.8	73.4
е	WY2010	133.8	117.1	154.8	98.4	136.6	151.2	139.8	110.1	87.8	94.8	103.8	128.2
f	WY2011	78.8	81.9	163	166	151	176	84.9	91.6	98	98	155	112
	n	6	6	6	6	6	6	6	6	6	6	6	6
•	t1	6	6	6	6	6	6	6	6	6	6	6	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1	1	1	1	1	-1	1	1	-1	1	1
	c-a	-1	1	1	1	1	1	1	-1	1	-1	-1	-1
	d-a	-1	1	1	1	1	-1	1	1	1	-1	-1	-1
	e-a	1	1	1	-1	1	-1	-1	1	1	1	1	1
	f-a	-1	-1	1	1	1	1	-1	-1	1	1	1	-1
	c-b	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1
	d-b	-1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1
	e-b	-1	-1	1	-1	-1	-1	1	1	1	1	-1	1
	f-b	-1	-1	1	1	-1	1	-1	-1	1	1	1	-1
	d-c	-1	1	-1	-1	-1	-1	1	1	-1	-1	-1	-1
	e-c	1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
	f-c	-1	-1	1	1	1	1	-1	-1	1	1	1	1
	e-d	1	-1	1	-1	-1	1	-1	1	1	1	1	1
	f-d f-e	-1 -1	-1 -1	1	1 1	1	1	-1 -1	-1 -1	1	1	1	1 -1
:	S _k	-7	-5	9	5	1	1	-3	-1	9	7	3	-1
σ	²s=	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
	s– S _k /σ _S	-1.32	-0.94	1.69	0.94	0.19	0.19	-0.56	-0.19	1.69	1.32	0.56	-0.19
4	<b>7</b> 2 - k	1.73	0.88	2.86	0.88	0.04	0.04	0.32	0.04	2.86	1.73	0.32	0.04
	$\Sigma Z_k =$	3.38	]	Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	72
	$\Sigma Z_{k}^{2}$	11.72		Count	72	0	0	0	0			$\Sigma S_k$	18

 $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ @ $\alpha$ =5%  $\chi^2_{(K-1)}$ = 19.68 Test for station homogeneity 10.76  $\chi^2_h < \chi^2_{(K-1)}$ 0.463 ACCEPT р ΣVAR(S_k) 340.00 H₀ (No trend) H_A (± trend)  $\begin{array}{c} Z_{\text{calc}} \\ \textbf{p} \end{array}$ @ $\alpha/2=2.5\%$  Z= 1.96 ACCEPT 0.92 0.822 REJECT



<ul> <li>Kendall Slop</li> </ul>	e Confidence	Intervals
Lower	Sen's	Upper
Limit	Slope	Limit
-2.19		4.08
-0.80	0.05	3.29
-0.28	0.95	2.83
0.12		2.34
	Lower Limit -2.19 -0.80 -0.28	Lower         Sen's           Limit         Slope           -2.19         -0.80           -0.28         0.95


Site	#6
------	----

Seasonal Kendall analysis for pH, Lab, Standard Units

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	7.8	8.1	7.7	7.3	7.6	7.8	7.8	7.2	7.1	7.8	8.0	7.9
b	WY2007	7.6	7.6	7.7	7.5	7.8	8.2	7.5	7.7	7.7	7.4	7.9	7.5
С	WY2008	7.9	7.8	7.9	7.9	7.8	7.8	8.0	7.7	7.8	6.8	7.9	7.4
d	WY2009	7.8	7.8	7.7	7.7	7.7	7.8	7.0	7.1	7.1	6.9	7.1	7.2
е	WY2010	7.7	7.1	7.6	6.5	7.4	7.5	6.9	7.6	7.0	7.0	7.0	7.6
f	WY2011	6.7	7.7	7.9	7.5	7.3	7.7	7.7	7.6	7.4	7.7	7.9	7.8
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t₁	6	6	4	6	6	6	6	6	6	6	4	6
	t ₂	0	0	1	0	0	0	0	0	0	0	1	0
	t ₃	0	0	0 0	0	0	0 0	0	0	0	0 0	0 0	0
	t ₄	0 0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0 0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	0	1	1	1	-1	1	1	-1	-1	-1
	c-a	1	-1	1	1	1	1	1	1	1	-1	-1	-1
	d-a	-1	-1	-1	1	1	1	-1	-1	1	-1	-1	-1
	e-a	-1	-1	-1	-1	-1	-1	-1	1	-1	-1	-1	-1
	f-a	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	-1
	c-b	1	1	1	1	1	-1	1	1	1	-1	-1	-1
	d-b	1	1	-1	1	-1	-1	-1	-1	-1	-1	-1	-1
	e-b	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
	f-b	-1	1	1	1	-1	-1	1	-1	-1	1	0	1
	d-c	-1	1	-1	-1	-1	-1	-1	-1	-1	1	-1	-1
	e-c f-c	-1	-1	-1	-1 -1	-1	-1	-1 -1	-1 -1	-1	1	-1	1
	e-d	-1 -1	-1 -1	-1	-1	-1 -1	-1 -1	-1 -1	-1	-1 -1	1	-1	1
	e-u f-d	-1	-1 -1	-1	-1	-1	-1	-1	1	-1	1	-1	1
	f-e	-1	-1	1	-1	-1	-1	1	1	1	1	1	1
	S _k	-7	-5	0	1	-7	-7	-5	1	-1	-1	-8	-1
o	² s=	28.33	28.33	27.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33
	S _k /σ _s	-1.32	-0.94	0.00	0.19	-1.32	-1.32	-0.94	0.19	-0.19	-0.19	-1.53	-0.19
	Z ² _k	1.73	0.88	0.00	0.04	1.73	1.73	0.88	0.04	0.04	0.04	2.34	0.04
	$\Sigma Z_k =$	-7.54	Г	Tie Extent	t,	t ₂	t ₃	t₄	t ₅			Σn	72
	$\Sigma Z_k^2 =$	9.47		Count	68	2	0	0	0			$\Sigma S_k$	-40
7	⊾ 7-har=Σ7./K=	-0.63	L			_	-	-	-			- N	

Z-bar= $\Sigma Z_k/K$ = -0.63

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	4.73	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.943			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-2.12	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
338.00	р	0.017			H _A (± trend)	ACCEPT



	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.10		0.00
0.050	-0.08	-0.04	-0.02
0.100	-0.07	-0.04	-0.02
0.200	-0.06		-0.02

-0.6%

Site #6

15 10

WY2006

----Oct

-+- Apr

WY2007

—– May

WY2008

---- Dec

---• Jun

WY2009

— → Jan

 $\rightarrow$  Jul

WY2010

<del>— * –</del> Feb

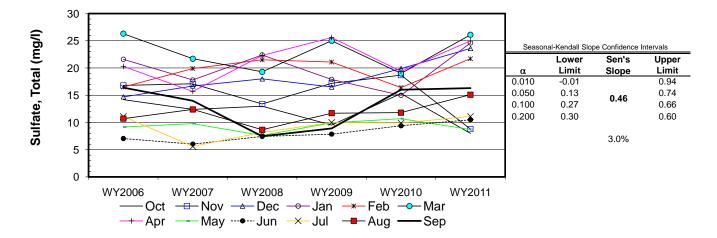
WY2011

— Mar

----Sep

Seasonal Kendall analysis for Total Alk, (mg/l)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \text{WY2006} \\ & \text{WY2007} \\ & \text{WY2008} \\ & \text{WY2009} \\ & \text{WY2010} \\ & \text{WY2010} \\ & \text{WY2011} \\ & n \\ & \\ & & \\ t_1 \\ & t_2 \\ & t_3 \\ & \\ t_4 \\ & t_5 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	43.2 43.3 39.2 30.0 45.0 27.6 6 6 0 0 0 0	43.9 51.5 44.9 43.4 46.4 24.1 6 6 6 0 0 0 0 0	38.6 45.3 53.0 37.2 52.2 48.4 6 6	47.2 46.8 54.1 44.3 39.7 52.5 6	42.3 50.8 49.8 50.9 45.6 48.4	53.4 50.3 47.7 54.7 46.7 55.4	44.6 42.9 53.8 52.4 44.0	37.7 37.5 32.3 33.7 36.2	30.9 31.2 33.8 30.0 32.9	40.7 28.8 31.2 33.8 35.9	41.6 41.5 35.1 34.2	Sep 46.8 45.7 31.7 32.8 46.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WY2007           WY2008           WY2010           WY2011           n           t, t, t, t, t, t, t, t, c-a	43.3 39.2 30.0 45.0 27.6 6 6 0 0 0 0	51.5 44.9 43.4 46.4 24.1 6 6 0 0 0 0 0	45.3 53.0 37.2 52.2 48.4 6 6 0	46.8 54.1 44.3 39.7 52.5 6 6	50.8 49.8 50.9 45.6 48.4	50.3 47.7 54.7 46.7 55.4	42.9 53.8 52.4 44.0	37.5 32.3 33.7 36.2	31.2 33.8 30.0 32.9	28.8 31.2 33.8 35.9	41.5 35.1 34.2	45. 31. 32.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WY2008 WY2009 WY2010 WY2011 n t ₁ t ₂ t ₃ t ₄ t ₅ t ₅ t ₆ t ₇ t ₇ t ₇ t ₇ t ₇ t ₇ t ₇ t ₇	39.2 30.0 45.0 27.6 6 0 0 0 0	44.9 43.4 46.4 24.1 6 6 0 0 0 0 0	53.0 37.2 52.2 48.4 6 6 0	54.1 44.3 39.7 52.5 6 6	49.8 50.9 45.6 48.4	47.7 54.7 46.7 55.4	53.8 52.4 44.0	32.3 33.7 36.2	33.8 30.0 32.9	31.2 33.8 35.9	35.1 34.2	31.3 32.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WY2009           WY2010           WY2011           n           t ₁ t ₂ t ₃ t ₄ t ₅ b-a           c-a	30.0 45.0 27.6 6 6 0 0 0 0	43.4 46.4 24.1 6 6 0 0 0 0	37.2 52.2 48.4 6 6 0	44.3 39.7 52.5 6 6	50.9 45.6 48.4	54.7 46.7 55.4	52.4 44.0	33.7 36.2	30.0 32.9	33.8 35.9	34.2	32.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WY2010           WY2011           n           t, t, t, t, t, t, t, t, t, c-a	45.0 27.6 6 0 0 0	46.4 24.1 6 0 0 0 0	52.2 48.4 6 6 0	39.7 52.5 6	45.6 48.4	46.7 55.4	44.0	36.2	32.9	35.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WY2011           n           t₁           t₂           t₃           t₄           t₀           b-a           c-a	27.6 6 0 0 0	24.1 6 0 0 0	48.4 6 6 0	52.5 6 6	48.4	55.4					41.1	46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n t₁ t₂ t₃ t₄ t₅ b-a c-a	6 0 0 0	6 0 0 0	6 6 0	6 6			52.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t₁ t₂ t₃ t₄ t₅ b-a c-a	6 0 0	6 0 0 0	6 0	6	0	0						46.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t ₂ t ₃ t ₄ t ₅ b-a c-a	0 0 0	0 0 0	0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t ₃ t ₄ t₅ b-a c-a	0 0	0 0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t₄ t₅ b-a c-a	0	0										
ti         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	t₅ b-a c-a												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c-a		0										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c-a	1	1	1	-1	1	-1	-1	-1	1	-1		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	uu												-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0-2												-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	k	-5	-5	3	-3	1	1	3	-5	7	5	-1	-*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.88	0.88	0.32	0.32	0.04	0.04	0.32	0.88	1.73	0.88	0.04	0.04
$\frac{\chi^{2}_{h}=\Sigma Z_{k}^{2} - K(Z-bar)^{2}= 6.35}{p 0.849} \xrightarrow{@\alpha=5\% \chi^{2}_{(K-1)}= 19.68} Test for station homogeneity \\ \chi^{2}_{h} < \chi^{2}_{(K-1)} ACCEPT \\ \Sigma VAR(S_{k}) Z_{calc} 0.00 \xrightarrow{@\alpha/2=2.5\% Z= 1.96} H_{0} (No trend) ACCEPT$	$\Sigma Z_k =$	0.00	Γ	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	72
$\frac{\chi^{2}_{h}=\Sigma Z_{k}^{2} - K(Z-bar)^{2}= 6.35}{p 0.849} \xrightarrow{@\alpha=5\% \chi^{2}_{(K-1)}= 19.68} Test for station homogeneity \\ \chi^{2}_{h} < \chi^{2}_{(K-1)} ACCEPT \\ \Sigma VAR(S_{k}) Z_{calc} 0.00 \xrightarrow{@\alpha/2=2.5\% Z= 1.96} H_{0} (No trend) ACCEPT$	$\Sigma Z^2_{k} =$	6.35		Count	72	0	0	0	0			ΣSk	0
$\frac{\chi^2_{h}=\Sigma Z_{k}^2 \cdot K(Z-bar)^2 = 6.35}{p \ 0.849} \qquad \qquad$			L	ooun		Ű	Ū	Ű	v			K	Ũ
p         0.849         χ²h<χ²(K-1)         ACCEPT           ΣVAR(S _k )         Z _{calc} 0.00         @α/2=2.5% Z=         1.96         H ₀ (No trend)         ACCEPT		0.00											
p         0.849         χ²h<χ²(K-1)         ACCEPT           ΣVAR(S _k )         Z _{calc} 0.00         @α/2=2.5% Z=         1.96         H ₀ (No trend)         ACCEPT	w ² 57 ² K	$(7 + - 1)^2$	0.05		<b>-</b>	( w ²	40.00						
$\Sigma VAR(S_k)$ $Z_{calc}$ 0.00 @ $\alpha/2=2.5\%$ $Z=$ 1.96 $H_0$ (No trend) ACCEPT	λ h=Δ <b>Ζ</b> k <b>-</b> Ν			L	@ <b>U=</b> 57	′ο λ (K-1)=	19.00						
$ \begin{array}{c c} \Sigma VAR(S_k) & Z_{calc} & 0.00 \\ \hline 340.00 & \textbf{p} & \textbf{0.500} \end{array} \end{array} \begin{array}{c c} @ \alpha/2 = 2.5\% \ Z = & 1.96 \\ \hline H_0 \ (No \ trend) & ACCEPT \\ \hline H_A \ (\pm \ trend) & REJECT \end{array} $			0.849					)			CCEPT		
340.00 p 0.500 H _A (± trend) REJECT	EVAR(S _k )	$Z_{calc}$	0.00		@α/2=	2.5% Z=	1.96		H₀ (No t	rend) A	CCEPT		
	340.00		0.500	L					H _∧ (± tr	end) R	REJECT		
		$Z_{calc}$	0.00		@α/2=	2.5% Z=	1.96	)	H ₀ (No t	rend) A	CCEPT		
	-				<				×	<b>6</b>	Kaa dall Ol	0	
			X						·	Seasonal-			
Seasonal-Kendall Slope Confidence Intervals			Z		$\rightarrow$	/ 7		<u> </u>		α			
Seasonal-Kendall Slope Confidence Intervals  Lower Sen's Uppe	-				×	K	X	1	<u> </u>			2.000	
Seasonal-Kendall Slope Confidence Intervals Lower Sen's Uppe α Limit Slope Limit	•					/							
Seasonal-Kendall Slope Confidence Intervals Confidence Intervals	•		4	X				$-\!\!/\!/$				-0.01	0.45
Seasonal-Kendall Slope Confidence Intervals           Control         Confidence Intervals           Contretervals         Control			•						· 1				
Seasonal-Kendall Slope Confidence Intervals Confidence Intervals								<u> </u>					0 0 4
	k	$\frac{d-c}{e-c}$ $f-c$ $e-d$ $f-d$ $f-d$ $f-g$ $x$ $\sum Z_{k}=$ $\sum Z_{k}^{2}$ $\sum Z_{k}=$ $\sum Z_{k}^{2}$ $\sum Z_{k}=$ $\sum Z_{k}^{2}$ $\sum Z_{k}=$ $\sum Z_{k}^{2}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

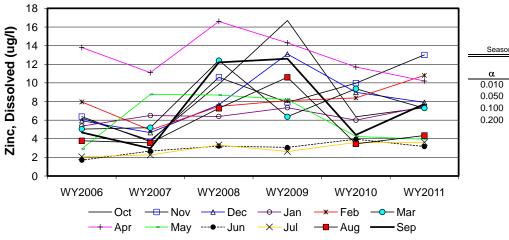

Site #6

Seasonal Kendall analysis for Sulfate, Total (mg/l)

One	<b>#U</b>			0	ouconai	rtoniaan	analyoid	iei ean		(iiig/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	14.2	16.8	14.7	21.6	16.5	26.3	20.3	9.2	7.1	11.1	10.7	16.4
b	WY2007	12.4	17.1	16.7	17.8	19.9	21.7	15.7	9.8	6.0	5.6	12.4	14.0
С	WY2008	13.0	13.4	18.0	22.4	21.5	19.3	22.3	7.6	7.4	8.2	8.7	7.5
d	WY2009	9.5	17.2	16.5	17.9	21.1	25.0	25.6	9.9	7.9	10.0	11.7	8.9
е	WY2010	15.3	18.7	19.9	15.0	16.4	19.0	19.4	10.7	9.4	9.9	11.8	16.0
f	WY2011	8.0	8.8	23.6	24.6	21.7	26.1	25.0	8.7	10.5	11.1	15.1	16.3
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	6	6	6	6	6	6	6	6	6	4	6	6
	t ₂	0	0	0	0	0	0	0	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	c-a	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	d-a	-1	1	1	-1	1	-1	1	1	1	-1	1	-1
	e-a	1	1	1	-1	-1	-1	-1	1	1	-1	1	-1
	f-a	-1	-1	1	1	1	-1	1	-1	1	0	1	-1
	c-b	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	d-b	-1	1	-1	1	1	1	1	1	1	1	-1	-1
	e-b	1	1	1	-1	-1	-1	1	1	1	1	-1	1
	f-b	-1	-1	1	1	1	1	1	-1	1	1	1	1
	d-c	-1	1	-1	-1	-1	1	1	1	1	1	1	1
	e-c	1	1	1	-1	-1	-1	-1	1	1	1	1	1
	f-c	-1	-1	1	1	1	1	1	1	1	1	1	1
	e-d	1	1	1	-1	-1	-1	-1	1	1	-1	1	1
	f-d f-e	-1 -1	-1 -1	1	1	1	1	-1 1	-1 -1	1	1	1	1
	S _k	-5	1	11	1	5	-3	5	3	13	4	7	1
σ	5 ² s=	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33
	S _k /σ _s	-0.94	0.19	2.07	0.19	0.94	-0.56	0.94	0.56	2.44	0.77	1.32	0.19
	$Z_{k}^{2}$	0.88	0.13	4.27	0.04	0.88	0.32	0.88	0.32	5.96	0.59	1.73	0.13
4	∠ k	0.08	0.04	4.27	0.04	0.08	0.32	0.08	0.32	0.90	0.59	1.73	0.04
	$\Sigma Z_k =$	8.09	Γ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	72
	$\Sigma Z_k^2 =$	15.94		Count	70	1	0	0	0			$\Sigma S_k$	43
7	 -har=Σ7./K=	0.67	L			-	•	÷	-			ĸ	

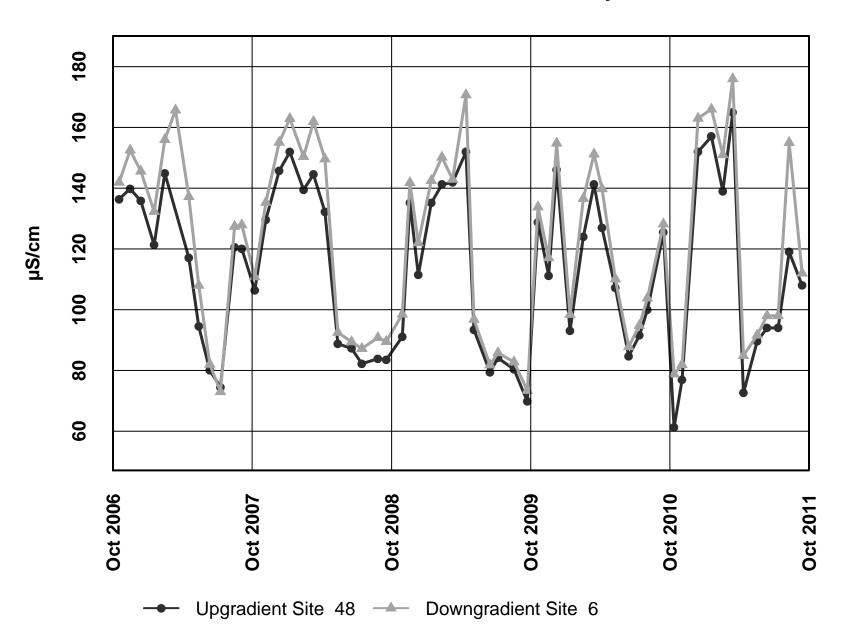
Z-bar= $\Sigma Z_k/K$ = 0.67

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	10.48	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.488			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	2.28	@α=5% Z=	1.64	H ₀ (No trend)	REJECT
339.00	р	0.989			H _A (± trend)	ACCEPT



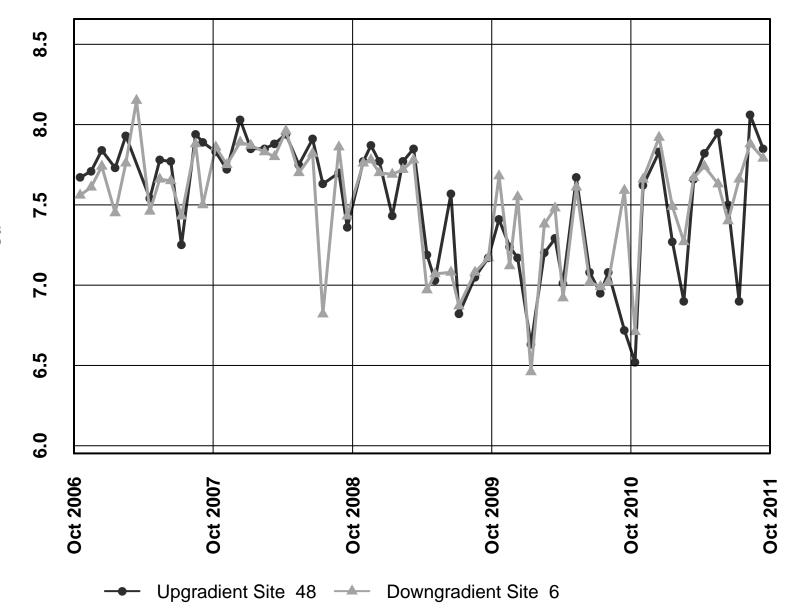

Site	#6
------	----

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)


а	14/1/0000		Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
	WY2006	6.2	6.4	5.9	5.4	8.0	5.0	13.8	2.9	1.7	2.1	3.8	4.
b	WY2007	3.8	3.7	4.7	6.5	4.9	5.2	11.1	8.8	2.7	2.3	3.6	3.
С	WY2008	9.9	10.6	7.6	6.4	7.5	12.4	16.6	8.7	3.2	3.3	7.3	12.
d	WY2009	16.7	7.9	13.1	7.3	8.1	6.4	14.3	8.2	3.1	2.6	10.6	12.
е	WY2010	6.4	10.0	9.0	6.0	8.4	9.4	11.7	4.3	4.0	3.6	3.5	4.
f	WY2011	7.3	13.0	7.9	7.5	10.8	7.3	10.2	4.0	3.2	3.6	4.4	7.
	n	6	6	6	6	6	6	6	6	6	6	6	
-	t ₁	6	6	6	6	6	6	6	6	6	4	6	
	t ₂	0	0	0	0	0	0	0	0	0	1	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t ₄	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
-	b-a	-1	-1	-1	1	-1	1	-1	1	1	1	-1	-
	c-a d-a	1 1	1 1	1 1	1 1	-1 1	1 1	1 1	1 1	1 1	1 1	1 1	
	e-a	1	1	1	1	1	1	-1	1	1	1	-1	-
	f-a	1	1	1	1	1	1	-1	1	1	1	1	
	c-b	1	1	1	-1	1	1	1	-1	1	1	1	
	d-b	1	1	1	1	1	1	1	-1	1	1	1	
	e-b	1	1	1	-1	1	1	1	-1	1	1	-1	
	f-b	1	1	1	1	1	1	-1	-1	1	1	1	
	d-c	1	-1	1	1	1	-1	-1	-1	-1	-1	1	
	e-c	-1	-1	1	-1	1	-1	-1	-1	1	1	-1	-
	f-c	-1	1	1	1	1	-1	-1	-1	-1	1	-1	-
	e-d	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-
	f-d	-1	1	-1	1	1	1	-1	-1	1	1	-1	-
=	f-e	1	1	-1	1	1	-1	-1	-1	-1	0	1	
-	S _k	5	9	7	7	11	7	-5	-5	9	12	1	
$\sigma^2$	s=	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.3
<b>Z</b> _k = S	S _k /σ _S	0.94	1.69	1.32	1.32	2.07	1.32	-0.94	-0.94	1.69	2.30	0.19	0.5
Zź	2 k	0.88	2.86	1.73	1.73	4.27	1.73	0.88	0.88	2.86	5.27	0.04	0.3
	$\Sigma Z_k =$	11.50	I	Tie Extent	t,	t ₂	t ₃	t4	t _s			Σn	72
	$\Sigma Z_{k}^{2}$	23.44		Count	70	1	0	0	0			$\Sigma S_k$	61
7			ļ	oount	10	1	U	U	0			20 _K	01
Z-1	bar=ΣZ _k /K=	0.96											

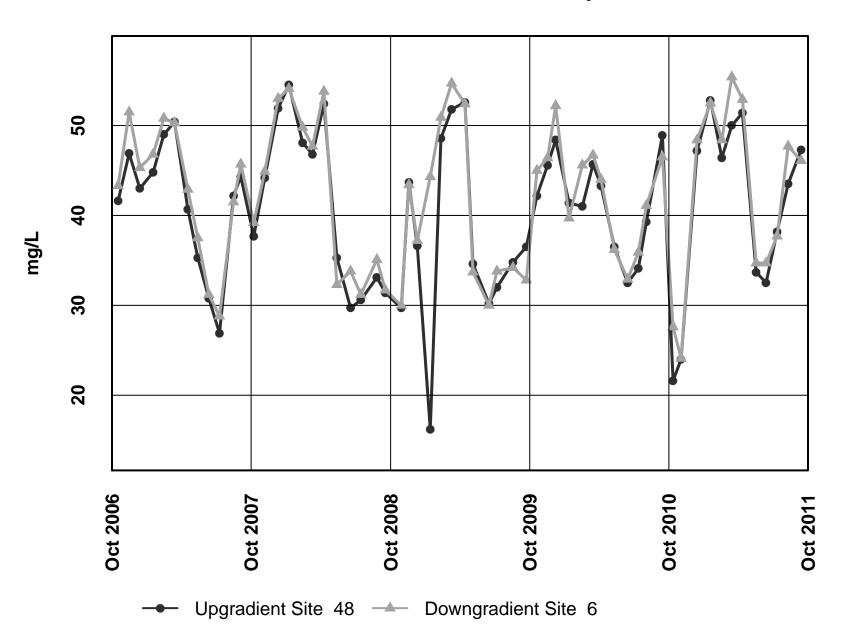
$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	12.42	@α=5% χ ² _(K-1) =	19.68	Test for station homog	geneity
	р	0.333			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	3.26	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
339.00	р	0.999			H _A (± trend)	ACCEPT



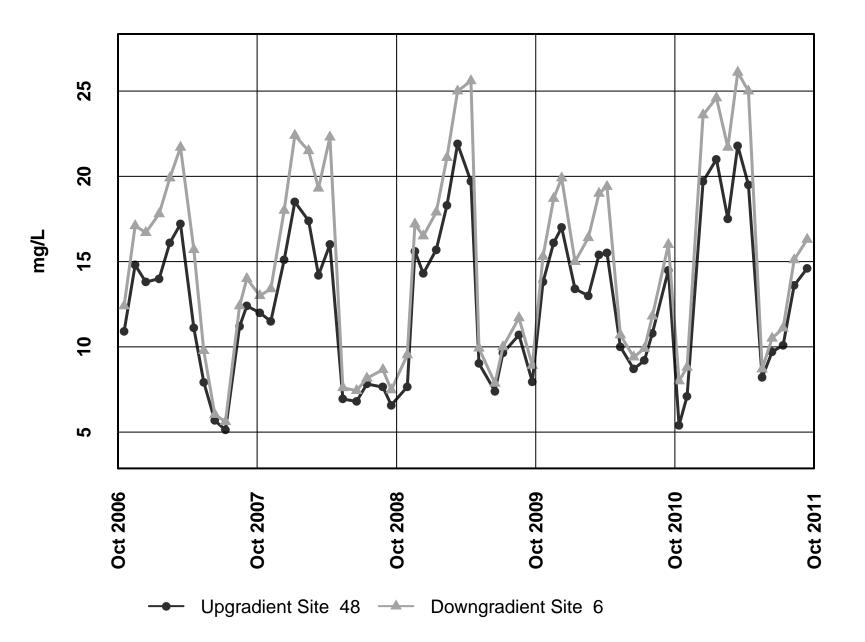

Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	0.12		0.61
0.050	0.19	0.39	0.52
0.100	0.20	0.35	0.48
0.200	0.25		0.45

6.1%




Site 48 vs. Site 6 – Conductivity Field

Site 48 vs. Site 6 – pH Field




ns

Site 48 vs. Site 6 – Alkalinity Total



Site 48 vs. Site 6 – Sulfate Total



15 10 hg/L ŝ Oct 2006 Oct 2007 Oct 2010 Oct 2008 Oct 2009 Oct 2011 Upgradient Site 48 — Downgradient Site 6

Site 48 vs. Site 6 – Zinc Dissolved

Wile	-		test	Wilcoxon-signed-ranks test Exact Form							
Variable: Specific Conductance, Lab (uS/cm)											
	X	Υ	•								
Site	#48	#6	Differe	ences							
Year	WY2011	WY2011	D	D	Rank						
Oct	61.2	78.8	-17.6	17.6	-11						
Nov	76.9	81.9	-5.0	5.0	-5						
Dec	152.0	163.0	-11.0	11.0	-7.5						
Jan	157.0	166.0	-9.0	9.0	-6						
Feb	139.0	151.0	-12.0	12.0	-9						
Mar	165.0	176.0	-11.0	11.0	-7.5						
Apr	72.6	84.9	-12.3	12.3	-10						
May	89.6	91.6	-2.0	2.0	-1						
Jun	94.0	98.0	-4.0	4.0	-3						
Jul	94.0	98.0	-4.0	4.0	-3						
Aug	119.0	155.0	-36.0	36.0	-12						
Sep	108.0	112.0	-4.0	4.0	-3						
Median	101.0	105.0	-10.0	10.0							
	n	m		N=	12						
•	12	12		$\Sigma R=$	-78						
	α			W+=							
	5.0%			0							
	<b>W'</b> α,n			p-test							
	17			0.000							
	madian [D]		REJECT		1						
	median [D]										
H ₁	median [D]	<0	ACCEPT		I						

Wile		Wilcoxon-signed-ranks test Exact Form							
Variable: pH, Lab, Standard Units									
	X	Υ							
Site	#48	#6	Differ	ences					
Year	WY2011	WY2011	D	D	Rank				
Oct	6.52	6.71	-0.19	0.19	-8				
Nov	7.62	7.66	-0.04	0.04	-2				
Dec	7.83	7.92	-0.09	0.09	-5				
Jan	7.27	7.49	-0.22	0.22	-9				
Feb	6.90	7.27	-0.37	0.37	-11				
Mar	7.66	7.67	-0.01	0.01	-1				
Apr	7.82	7.74	0.08	0.08	4				
May	7.95	7.63	0.32	0.32	10				
Jun	7.50	7.40	0.10	0.10	6				
Jul	6.90	7.66	-0.76	0.76	-12				
Aug	8.06	7.88	0.18	0.18	7				
Sep	7.85	7.79	0.06	0.06	3				
Median	7.64	7.66	-0.03	0.14					
	n	m		N=	12				
-	12	12		$\Sigma R=$	-18				
]	α	1		W+=	1				
	95.0%			30					
	<b>W'</b> α,n			p-test					
	59			-					
L	53	J		0.259	J				
H ₀	median [D]	=0	ACCEPT						
H ₁	median [D]	<b>&gt;</b> 0							

Wilcoxon-signed-ranks test Exact Form								
Variable:	Total All							
	Χ	Υ						
Site	#48	#6	Differ	ences				
Year	WY2011	WY2011	D	D	Rank			
Oct	21.6	27.6	-6.0	6.0	-12			
Nov	24.0	24.1	-0.1	0.1	-1			
Dec	47.2	48.4	-1.2	1.2	-5.5			
Jan	52.8	52.5	0.3	0.3	2			
Feb	46.4	48.4	-2.0	2.0	-8			
Mar	50.0	55.4	-5.4	5.4	-11			
Apr	51.4	52.9	-1.5	1.5	-7			
May	33.7	34.7	-1.0	1.0	-4			
Jun	32.5	34.7	-2.2	2.2	-9			
Jul	38.2	37.7	0.5	0.5	3			
Aug	43.5	47.7	-4.2	4.2	-10			
Sep	47.3	46.1	1.2	1.2	5.5			
Median	45.0	46.9	-1.4	1.4				
	n	m		N=	12			
	12	12		$\Sigma R=$	-57			
	α			W+=				
	95.0%			10.5				
	<b>W'</b> α,n			p-test				
	59			0.010				
H _o	median [D]=	=0	ACCEPT		1			
-	median [D]>							

Wilcoxon-signed-ranks test									
Exact Form									
Variable: Sulfate, Total (mg/l)									
Cite	<b>X</b>	<b>Y</b>	Difform						
Site	#48	#6	Differe D		Donla				
Year	WY2011	WY2011		D  2.6	Rank				
Oct	5.4	8.0	-2.6	2.6	-7 5 5				
Nov	7.1	8.8	-1.7	1.7	-5.5				
Dec	19.7	23.6	-3.9 -3.6	3.9	-9 -8				
Jan Feb	21.0 17.5	24.6 21.7	-3.6 -4.2	3.6 4.2	-o -10				
Mar	21.8	21.7 26.1	-4.2 -4.3	4.2 4.3	-10				
Apr	21.8 19.5	20.1 25.0	-4.3 -5.5	4.3 5.5	-11				
May	8.2	23.0 8.7	-0.5	0.5	-12				
Jun	9.7	10.5	-0.3 -0.8	0.8	-2				
Jul	10.1	10.5	-0.0	1.0	-3				
Aug	13.6	15.1	-1.5	1.5	-4				
Sep	14.6	16.3	-1.7	1.7	-5.5				
Median	14.1	15.7	-2.2	2.2					
	n	m		N=	12				
-	12	12		$\Sigma R =$					
	12	12		213	10				
Г	α	1	ſ	W+=					
	5.0%			0					
	<b>W'</b> α,n			p-test					
	17			0.000					
H _o	median [D]	=0	REJECT						
	median [D]		ACCEPT						

Wi			test	Wilcoxon-signed-ranks test Exact Form							
Variable: Zinc, Dissolved (ug/l)											
X Y											
Site	#48 #6 Differences										
Year	WY2011	WY2011	D	D	Rank						
Oct	3.76	7.33	-3.57	3.57	-5						
Nov	4.21	13.00	-8.79	8.79	-12						
Dec	4.11	7.91	-3.80	3.80	-7						
Jan	3.74	7.46	-3.72	3.72	-6						
Feb	3.41	10.80	-7.39	7.39	-11						
Mar	3.39	7.29	-3.90	3.90	-8						
Apr	3.03	10.20	-7.17	7.17	-10						
May	2.39	3.95	-1.56	1.56	-3						
Jun	2.37	3.16	-0.79	0.79	-1						
Jul	2.56	3.61	-1.05	1.05	-2						
Aug	2.48	4.35	-1.87	1.87	-4						
Sep	3.14	7.74	-4.60	4.60	-9						
Median	3.27	7.40	-3.76	3.76							
	n	m		N=	12						
	12	12		$\Sigma R =$	-78						
	α 5.0% <b>W'</b> α,n 17			W ⁺ = <b>0</b> p-test 0.000							
H _o	median [D]=	=0	REJECT								
H ₁	median [D]<	-0	ACCEPT								

### **INTERPRETIVE REPORT** SITE 54 "LOWER GREENS CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers after review by HGCMC.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri	od of Octobe	r 2006 through September 2011.	

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified.

### **Table of Exceedance for Water Year 2011**

		Limits						
Sample Date	Parameter	Value	Lower	Upper	Hardness			
No exceedan	ces have been identified by	y HGCMC for the per	riod of October	2010 through S	September 2011.			

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There are identifiable trends in dissolved chromium and field pH. Dissolved chromium increased an order of magnitude during the 2010 water year; however during the 2011 water year dissolved chromium decreased to a value more in accordance with previous year's values. A similar decrease was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A visual trend commented on last year was the decrease in field pH that began in the winter/spring of 2009. During the 2011 water year pH values generally increased to historic values and were no longer approaching the lower pH limit of 6.5 su.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The table below summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Kei	ndall test sta	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.16			
pH Field	6	< 0.01	-	-0.07	-0.9
Alkalinity, Total	6	0.46			
Sulfate, Total	6	0.01	+	0.40	2.6
Zinc, Dissolved	6	< 0.01	+	0.33	5.2

### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

A statistically significant decreasing trend was calculated for field pH, with a slope estimate of - 0.07 su/yr or a 0.9% decrease. Dissolved zinc had a statistically significant (p < 0.01) trend with a slope estimate of 0.32 µg/L/yr or a 5.2% increase. Furthermore, total sulfate had a statistically significant (p=0.01) trend with a slope estimate of 0.40 µg/L/yr or 2.6% increase. However given the low magnitude and similar trend noted at Site 6, HGCMC does not feel that these trends are a significant indication of changes in water chemistry at Site 54.

A comparison of median values for total alkalinity, field pH, field conductivity, total sulfate, and dissolved zinc between Site 54 and Site 6 has been conducted as specified in the Statistical Information Goals for Site 54. Additionally, X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 54 and Site 6, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the water year 2011 dataset.

Site 54 vs Site 6						
	Signed Ranks	Site 6	Site 54	Median		
Parameter	p-value	median	median	Differences		
Conductivity Field	0.017	105	107	-2.9		
pH Field	0.897	7.66	7.52	0.11		
Alkalinity, Total	0.055	46.9	47.2	-0.9		
Sulfate, Total	< 0.01	15.7	15.90	-0.30		
Zinc, Dissolved	0.968	7.4	6.66	0.46		

#### **Table of Summary Statistics for Median Analysis**

The median values for pH for Site 6 and Site 54 are 7.66 su and 7.52 su respectively and the median of differences, Site 6 minus Site 54, is 0.11 su. Site 54 has intermittently (6 out of 9) had statistically significantly lower pH readings for the prior nine water years (WY2002 and WY2010). This difference may in part be due to inflow of Bruin Creek which typically has a slightly lower pH than Greens Creek. The median values for total sulfate for Site 6 and Site 54 are 15.7 mg/L and 15.9 mg/L respectively. The median of the differences, Site 6 minus Site 54,

is -0.30 mg/L total sulfate. Again similar results are obtained using the signed-rank test on the WY2004 - WY2010 total sulfate datasets.

Along with the significant difference in total sulfate there was significant difference in field conductivity. Upgradient the median conductivity value was 105  $\mu$ s/cm and the downgradient median value was 107  $\mu$ s/cm, resulting in a -2.9  $\mu$ s/cm median difference. Datasets from WY2002 – WY2010 yield similar significant results with similar magnitudes. In general, the trend in conductivity is similar to differences measured between Site 48 and Site 6, although of a smaller magnitude. HGCMC feels the current FWMP program is adequate to measure and quantify any future changes that may occur between Site 6 and Site 54, given the small magnitude of the differences and the consistency of the variations over the past several years.

			Site	J54FMS	- Gree	ns Cree	k Below	D-Pond	1				
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)	4.6	3.9	0.0	0.1	0.0	0.3	1.1	2.5	4.7	6.9	8.2	8	3.2
Conductivity-Field(µmho)	86.7	84.7	167	169	157	180	98.9	93.9	99	100	127	114	107.0
Conductivity-Lab (μmho)	92	81	157	167	156	185	180	98	88	104	127	137	132
pH Lab (standard units)	6.7	5.98	5.88	7.6	8	7.71	7.76	7.59	7.62	7.26	7.64	7.78	7.61
pH Field (standard units)	6.76	7.62	7.74	7.49	7.65	7.42	7.4	7.27	6.9	7.86	7.54	7.82	7.52
Total Alkalinity (mg/L)	30.4	25.4	53.3	53.5	48.9	56.9	53.1	35.5	34	35.8	46.7	47.6	47.2
Total Sulfate (mg/L)	8.9	8.9	24.1	25	22.4	26.8	25.8	8.7	10.6	11.2	15.3	16.5	15.9
Hardness (mg/L)	42.8	38.9	77.7	76.4	75.6	84.4	80.9	45.4	45.3	51.3	61.4	67.1	64.3
Dissolved As (ug/L)	0.241	0.212	0.154	0.187	0.164	0.183	0.173	0.172	0.224	0.197	0.2	0.202	0.192
Dissolved Ba (ug/L)			31.3		30.2								30.8
Dissolved Cd (ug/L)	0.0538	0.0698	0.0563	0.0505	0.0624	0.0475	0.0635	0.0367	0.0428	0.0349	0.0453	0.0573	0.0522
Dissolved Cr (ug/L)			1.62		1.29								1.455
Dissolved Cu (ug/L)	0.663	1.1	0.318	0.344	0.49	0.28	0.475	0.471	0.386	0.284	0.424	0.405	0.415
Dissolved Pb (ug/L)	0.168	0.135	0.0126	0.0172	0.039	0.013	0.0411	0.0296	0.0824	0.0048	0.0177	0.0033	0.0237
Dissolved Ni (ug/L)			1.31		1.59								1.450
Dissolved Ag (ug/L)			0.004		0.002								0.003
Dissolved Zn (ug/L)	7.53	11.8	6.86	6.46	9.33	6.45	10.5	3.76	3.69	3.65	4.24	7.02	6.66
Dissolved Se (ug/L)			1.41		1.5								1.455
Dissolved Hg (ug/L)	0.00179	0.00324	0.000584	0.00027	0.000784	0.000503	0.000744	0.000957	0.00106	0.000475	0.000517	0.00084	0.000764

Site 054FMS - 'Greens Creek Below D-Pond'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

## **Qualified Data by QA Reviewer**

### Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
4	10/12/2010	10:50 AM				
			pH Lab, su	6.7	R	Hold Time Violation
			SO4 Tot, mg/l	8.9	J	Sample Receipt Temperature
	12/14/2010	12:00 AM				
			Pb diss, µg/l	0.0126	U	Field Blank Contamination
			Hg diss, µg/l	0.000584	U	Field Blank Contamination
			Pb diss, µg/l	0.0126	U	Field Blank Contamination
			Hg diss, µg/l	0.000584	U	Field Blank Contamination
	1/18/2011	8:24 AM			-	-
			pH Lab, su	7.6	J	Hold Time Violation
			Zn diss, µg/l	6.46	U	Field Blank Contamination
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Hg diss, µg/l	0.00027	U	Field Blank Contamination
			SO4 Tot, mg/l	25	J	Sample Reciept Temperature
Ļ	2/17/2011	12:00 AM				
			Pb diss, µg/l	0.03	U	Field Blank Contamination
Ļ	3/14/2011	12:00 AM				
			pH Lab, su	7.71	J	Hold Time Violation
			SO4 Tot, mg/l	26.8	J	Sample Reciept Temperature
			Pb diss, µg/l	0.01	U	Field Blank Contamination
			Hg diss, µg/l	0.000503	U	Field Blank Contamination
	4/12/2011	12:00 AM				
			pH Lab, su	7.76	J	Hold Time Violation
			Hg diss, µg/l	0.000744	U	Field Blank Contamination
ļ	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	8.7	J	Sample Reciept Temperature
			pH Lab, su	7.59	J	Hold Time Violation
			Cd diss, µg/l	0.0367	U	Trip Blank Contamination
			Pb diss, µg/l	0.0296	U	Field Blank Contamination
	6/13/2011	12:00 AM				
			SO4 Tot, mg/l	10.6	J	Sample Reciept Temperature
			Hg diss, µg/l	0.00106	J	LCS Recovery

J	Positively	Ide	ntifi	ed - A	ppro	oximat	e co	oncer	ntratio	on

N Presumptive Evidence For Tentative Identification

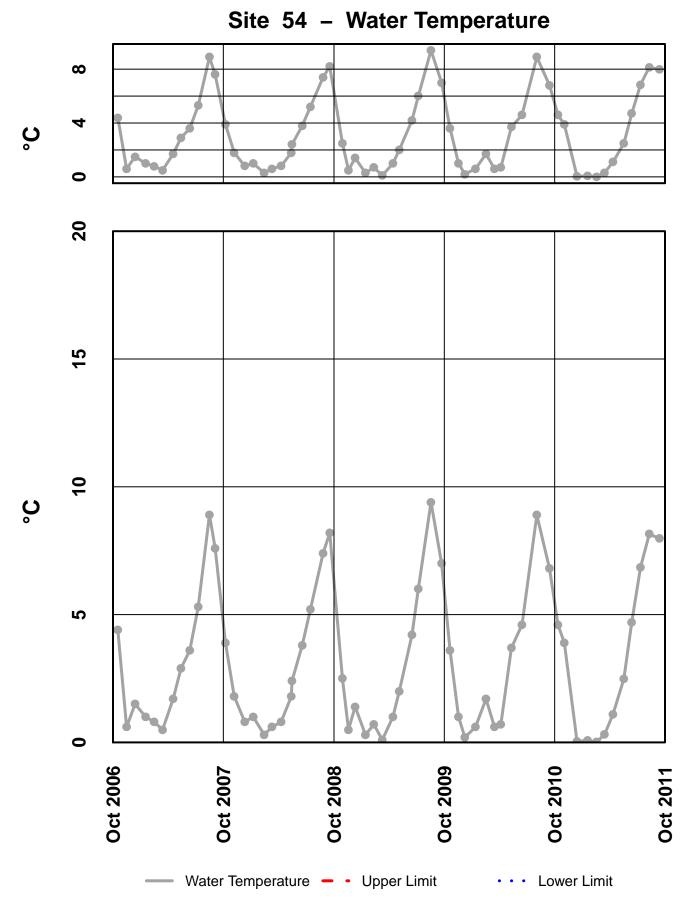
NJ Tentatively Identified - Approximate Concentration

R Rejected - Cannot be Verified

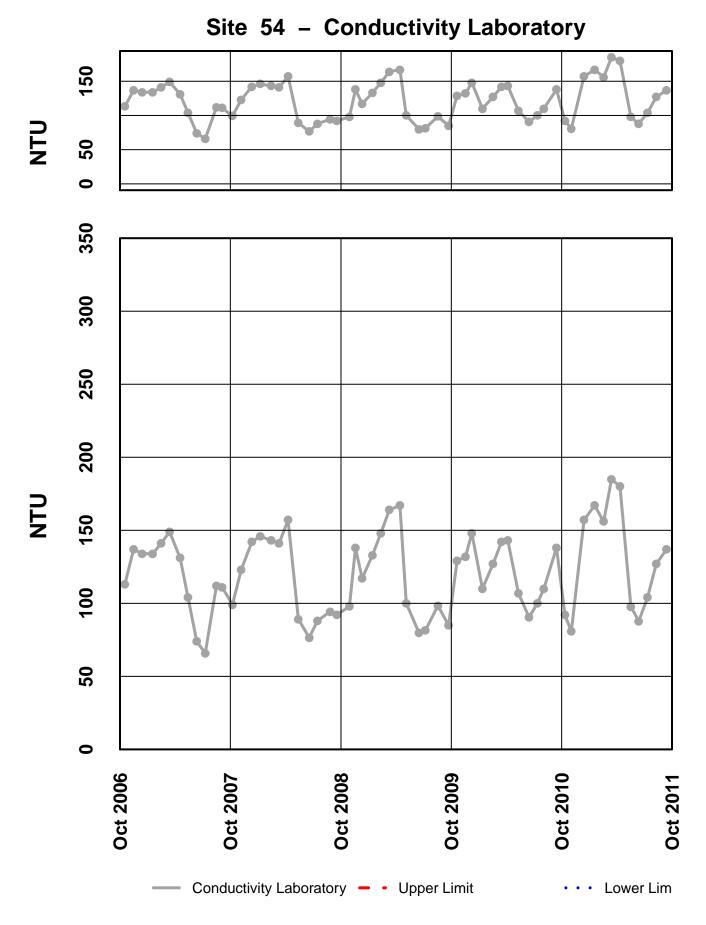
Description

Qualifier

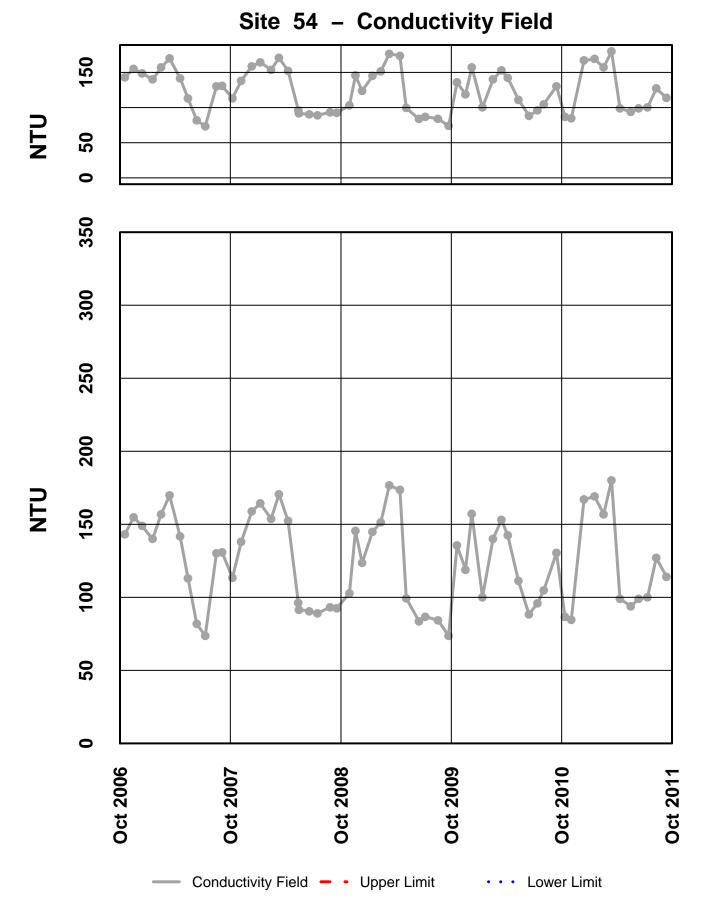
U Not Detected Above Quantitation Limit


UJ Not Detected Above Approximate Quantitation Limit

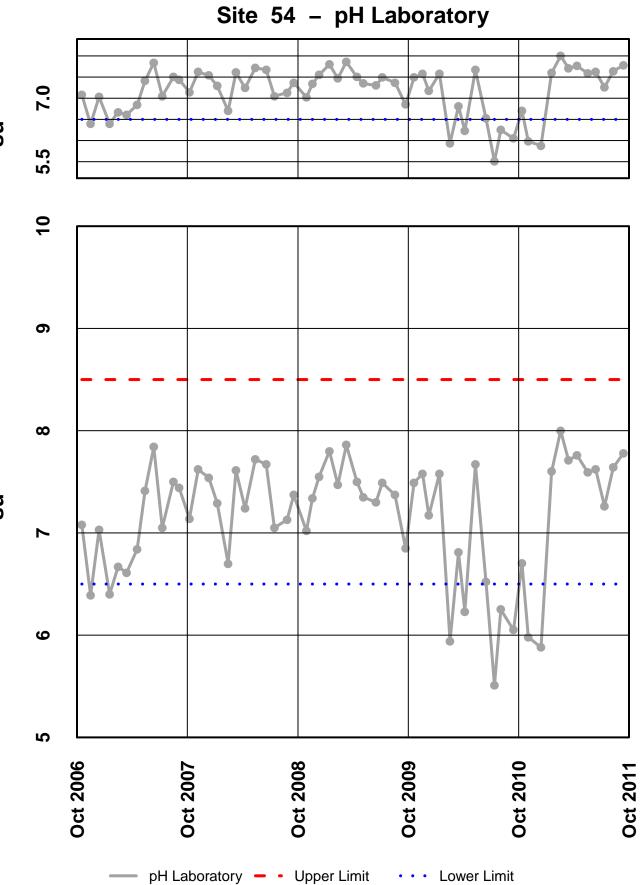
# Qualified Data by QA Reviewer


## Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
54	7/12/2011	12:00 AM				
			Pb diss, µg/l	0.0048	J	Below Quantitative Range
			SO4 Tot, mg/l	11.2	J	Sample Reciept Temperature
			Hg diss, µg/l	0.000475	U	Field Blank Contamination
54	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	15.3	J	Sample Receipt Temperature
			pH Lab, su	7.64	J	Hold Time Violation
			Hg diss, µg/l	0.000517	U	Field Blank Contamination
54	9/13/2011	12:00 AM				
			Pb diss, µg/l	0.00326	U	Trip Blank Contamination
			Hg diss, µg/l	0.00084	U	Field Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

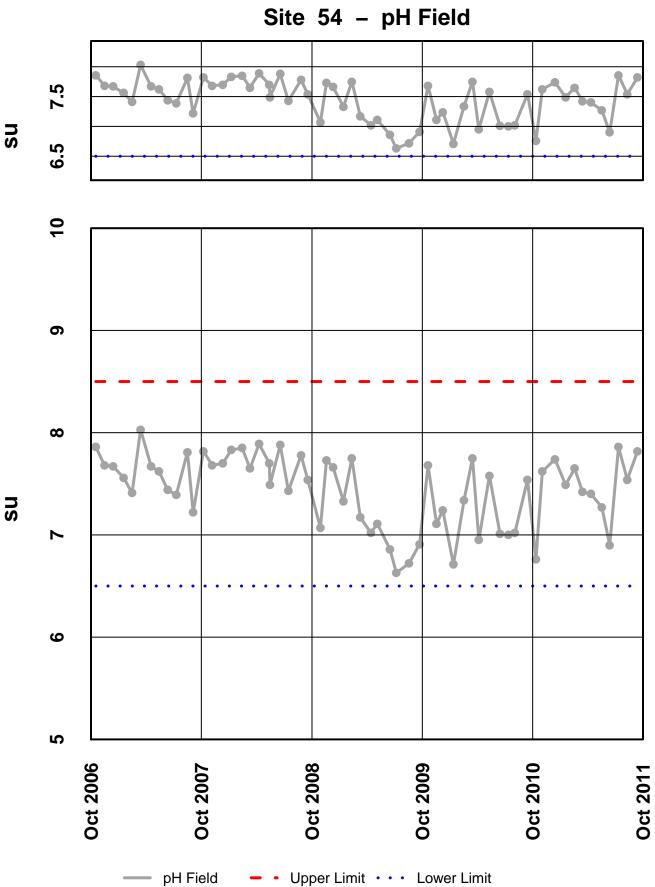



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



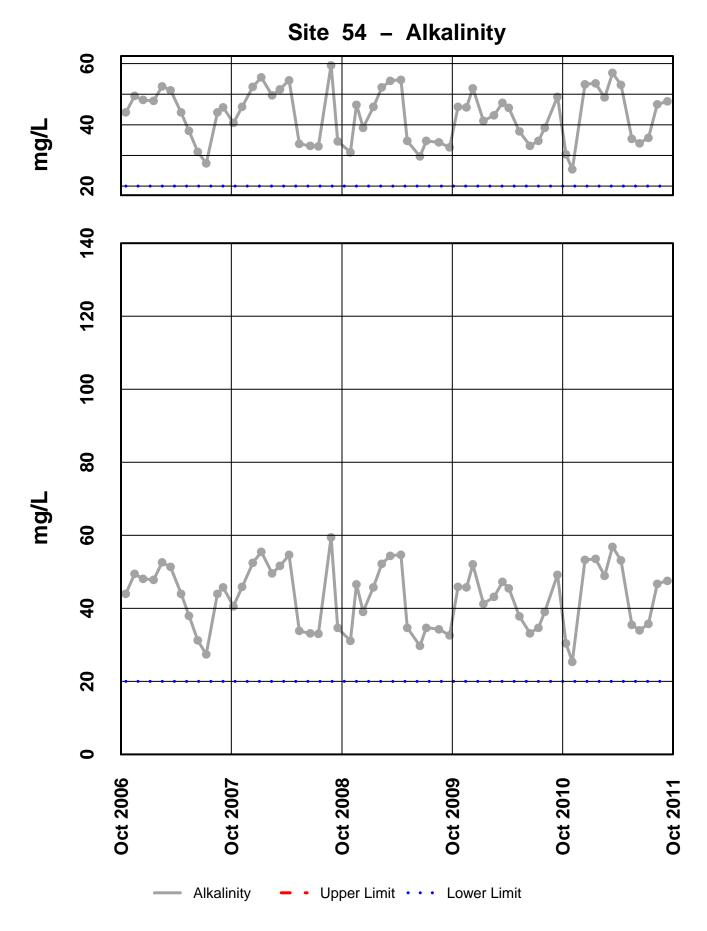
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



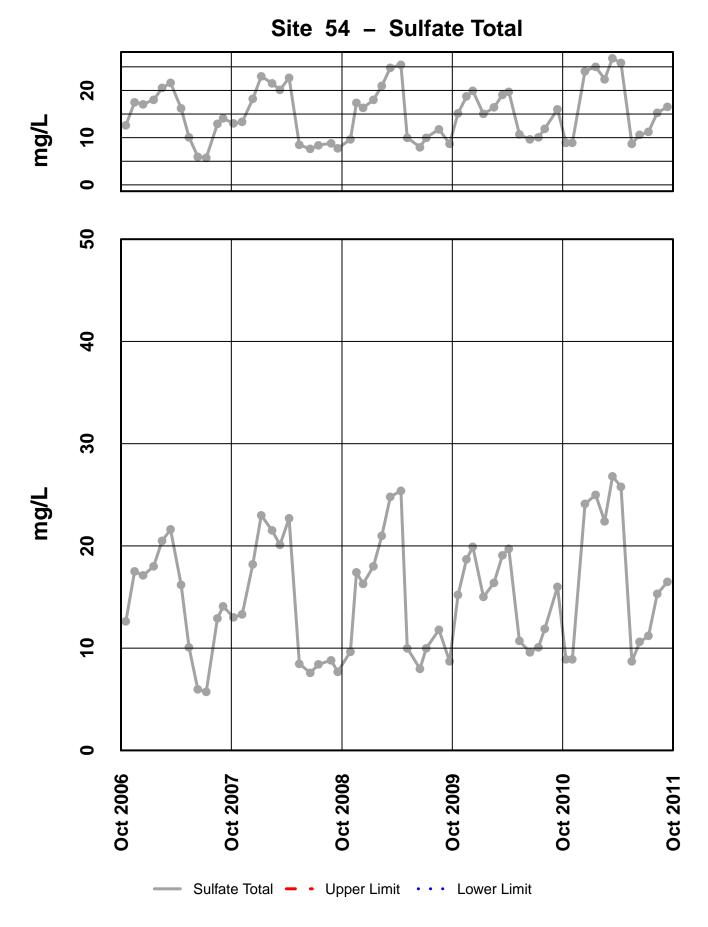

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



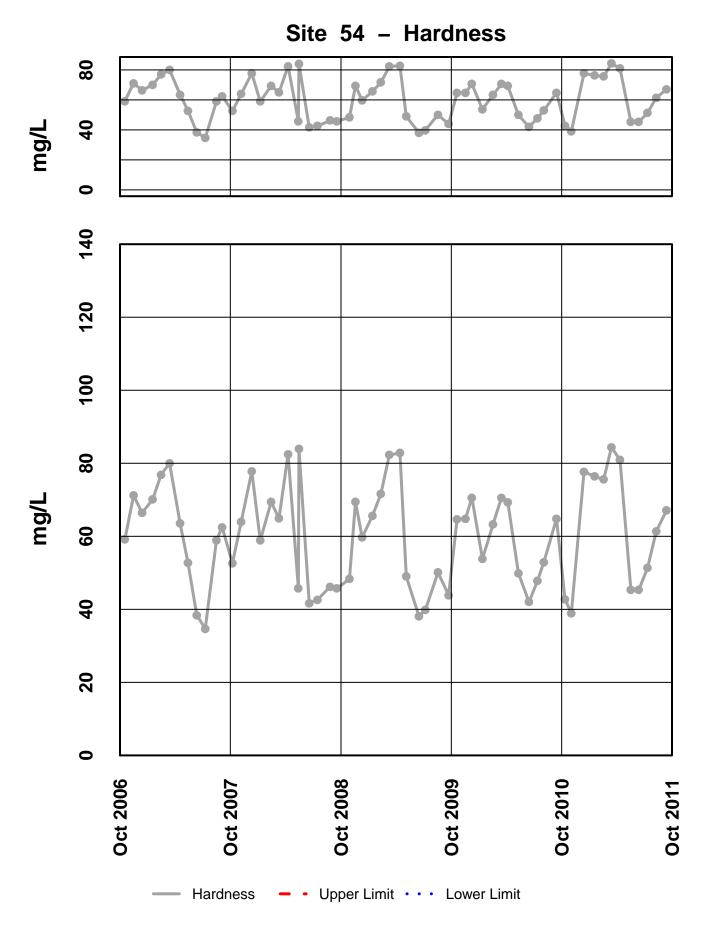
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


su

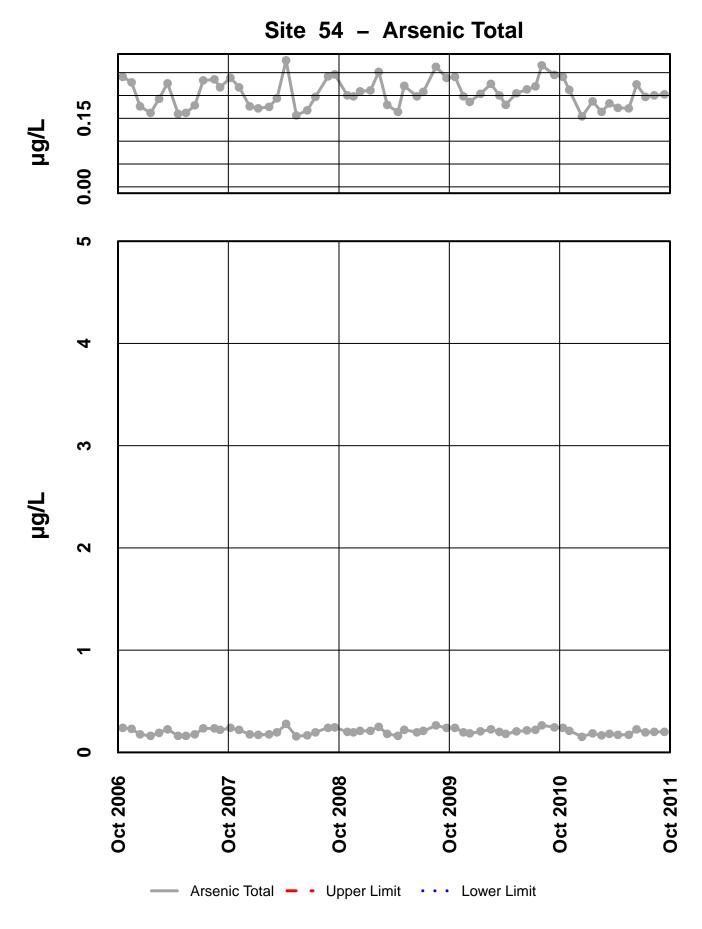
su



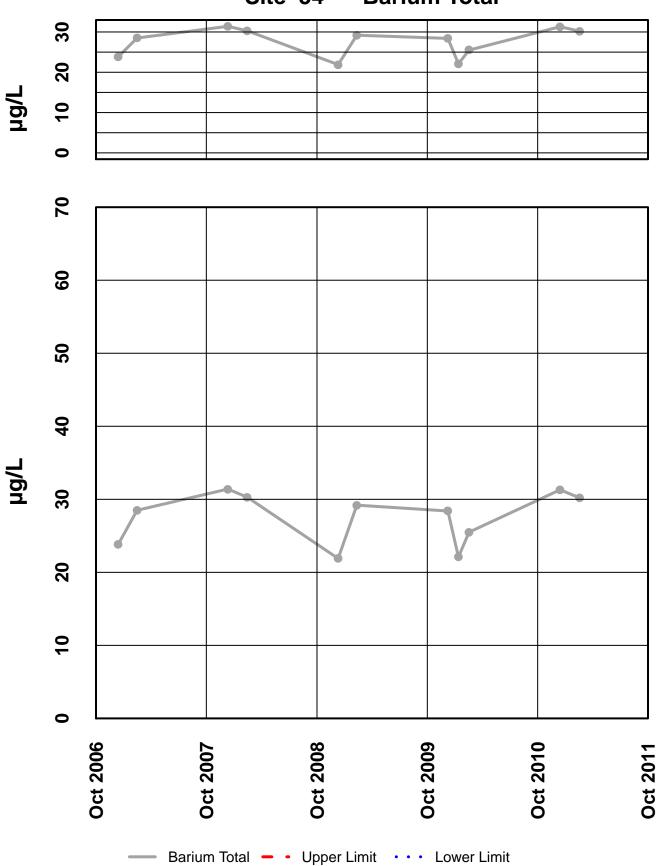

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


su



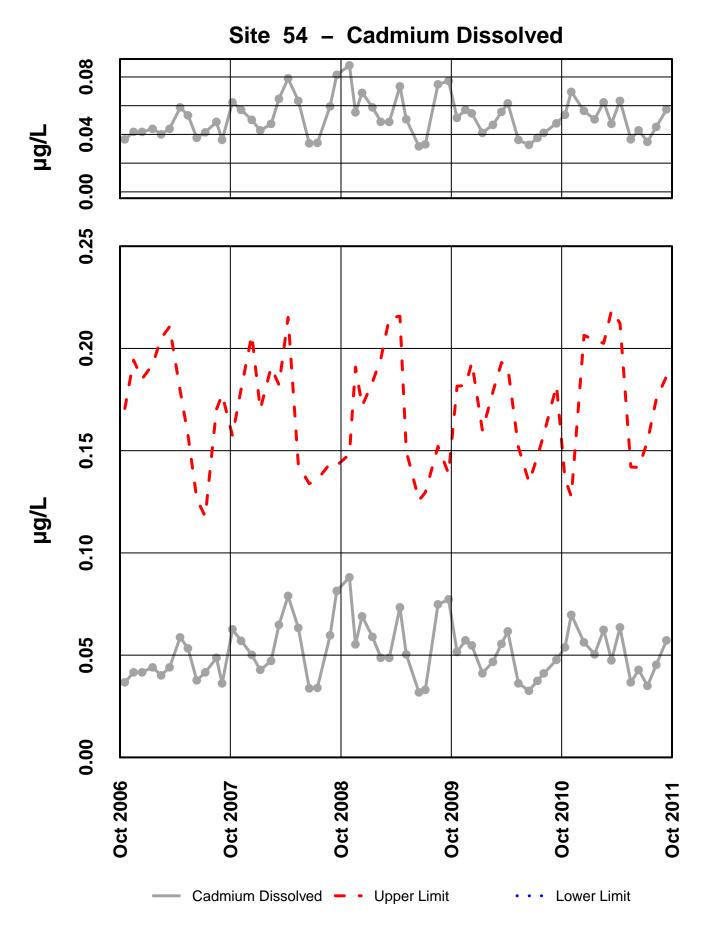

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



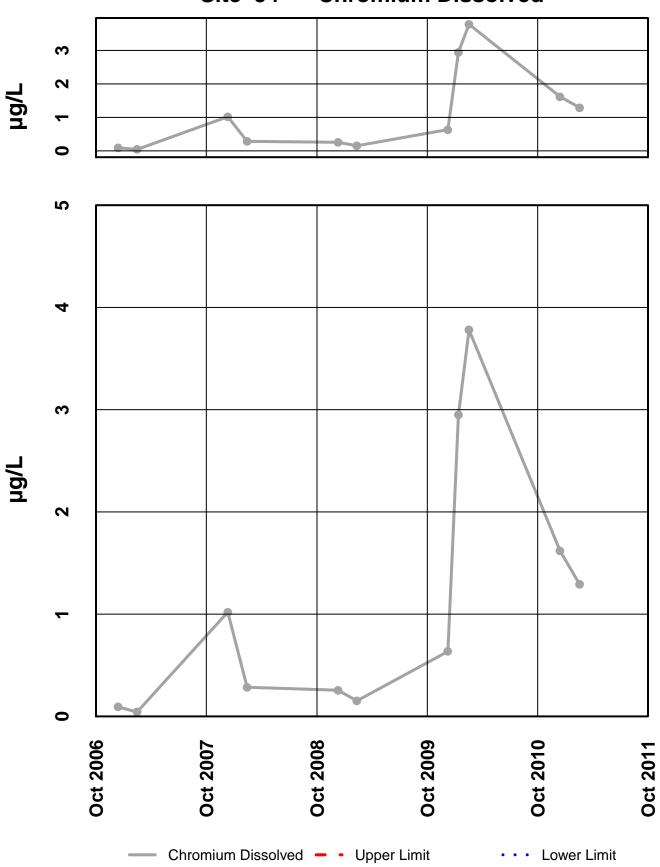

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

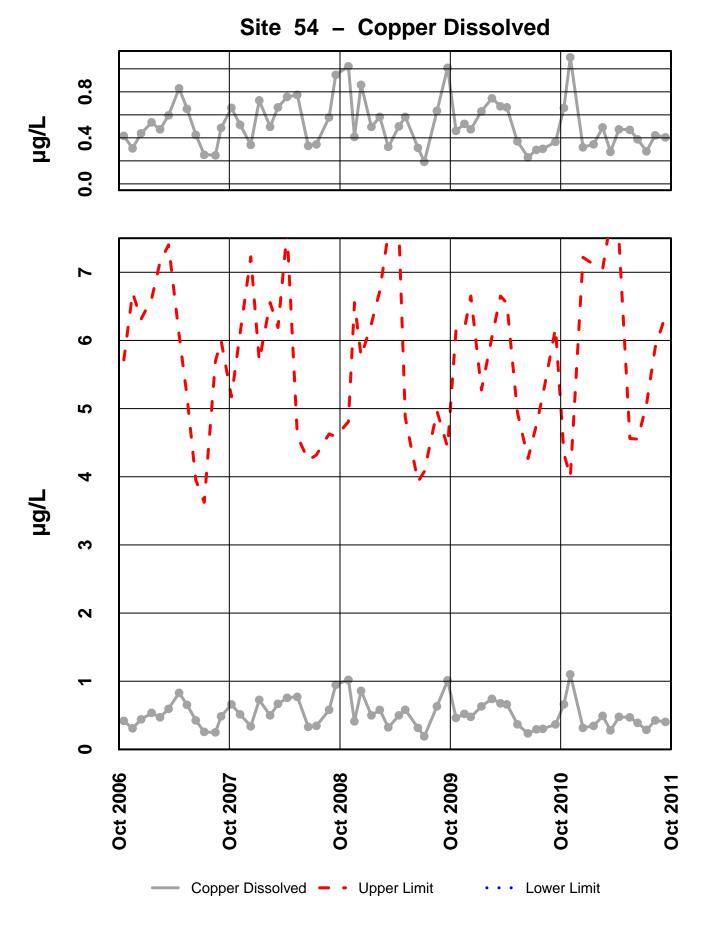



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

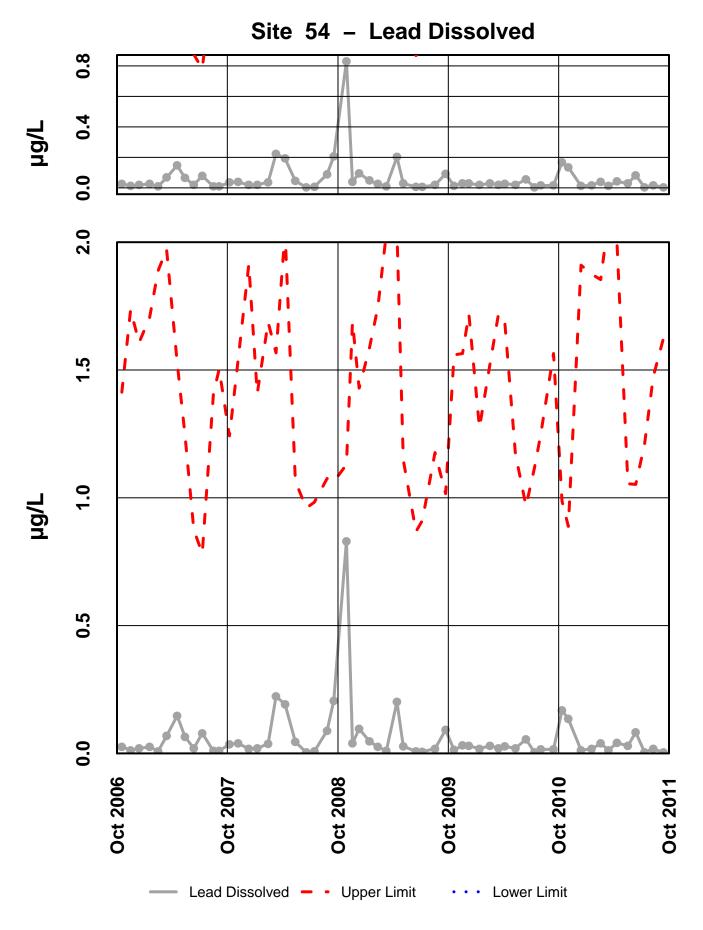



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

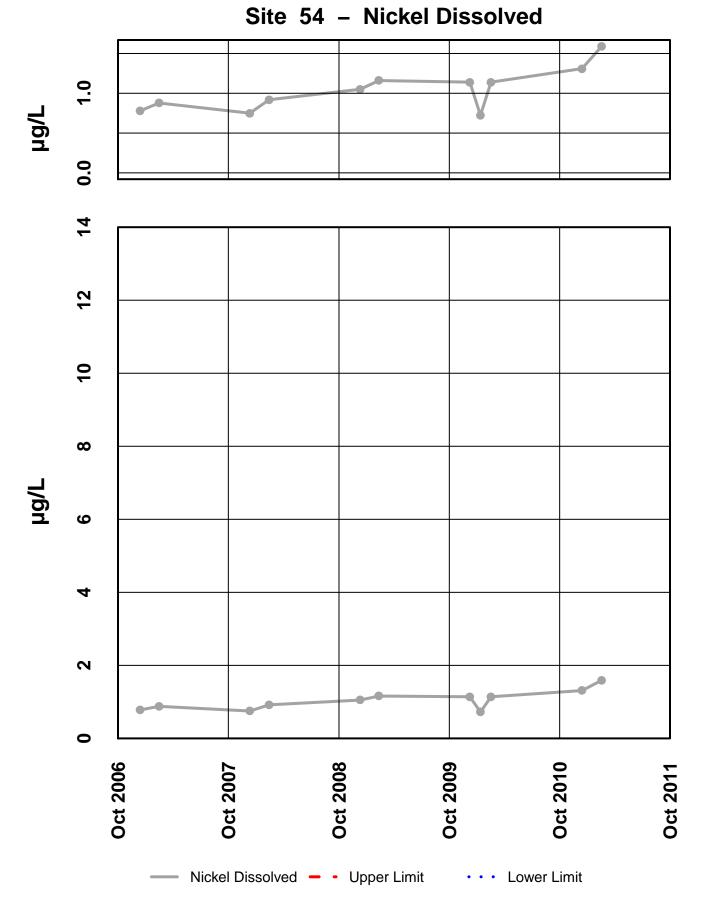
# Site 54 – Barium Total

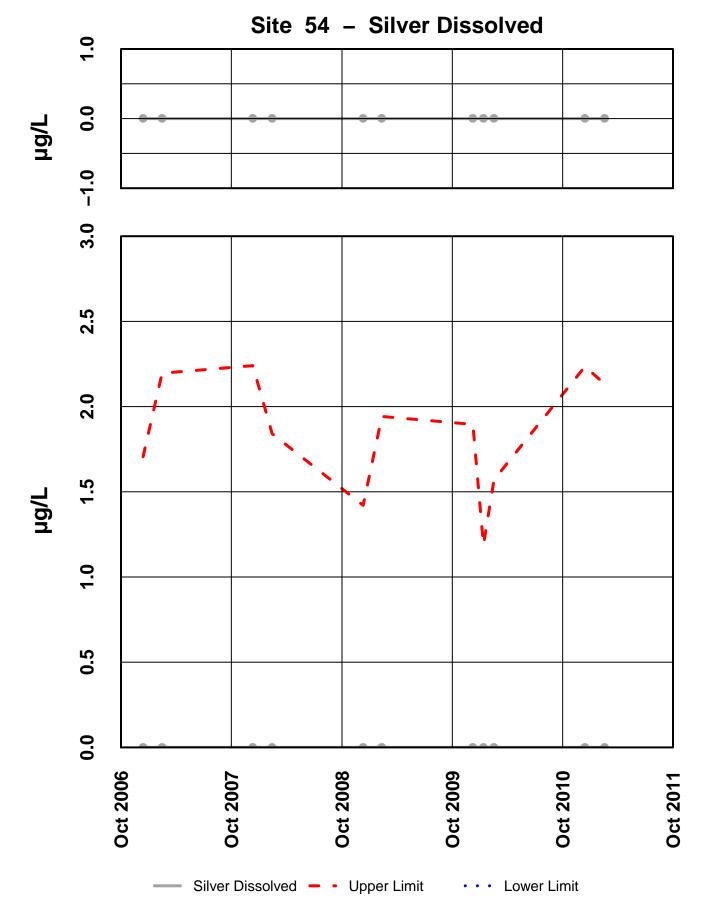



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

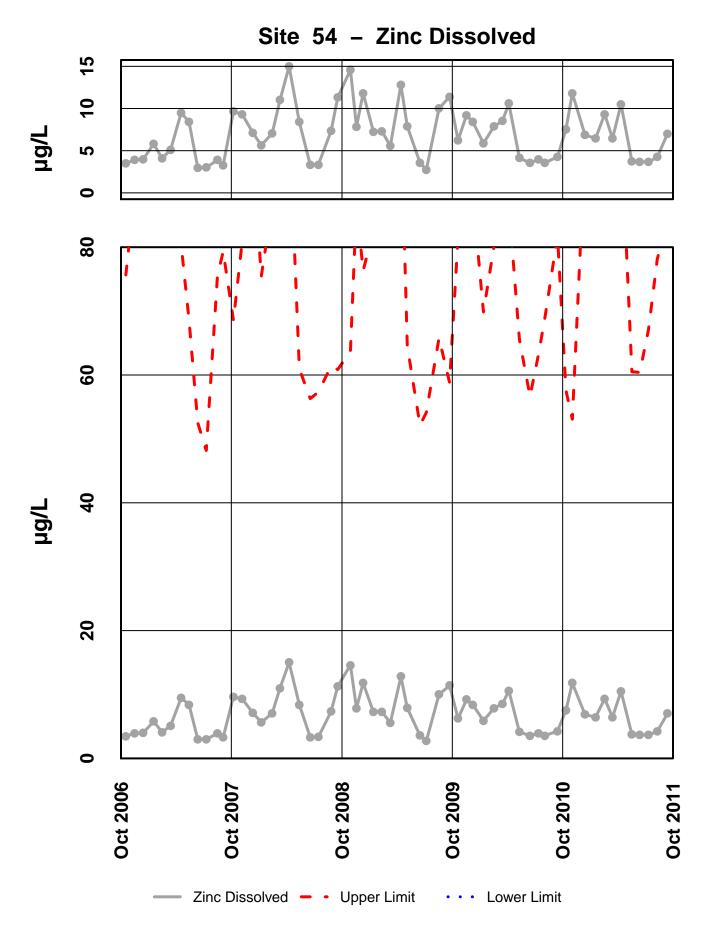



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

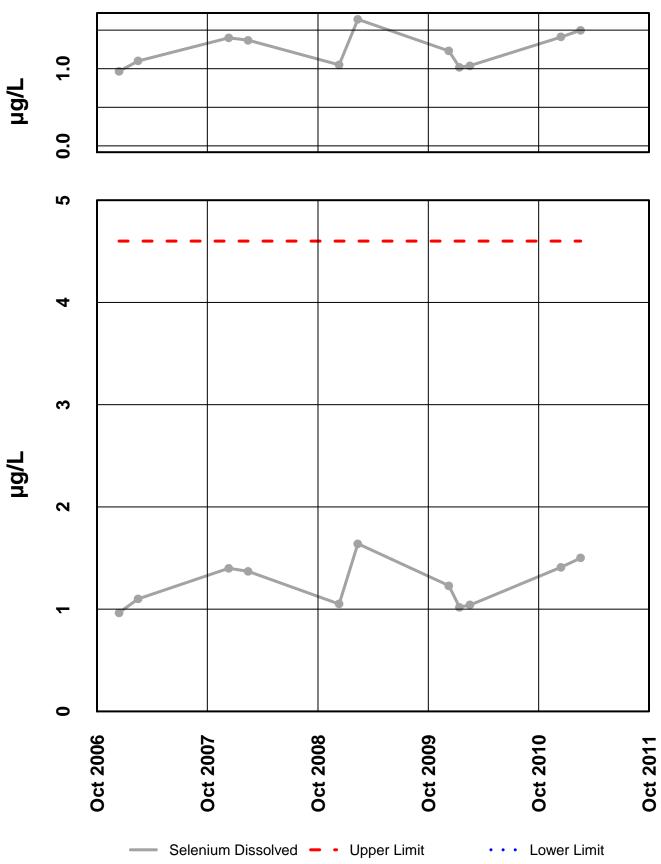

Site 54 – Chromium Dissolved




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



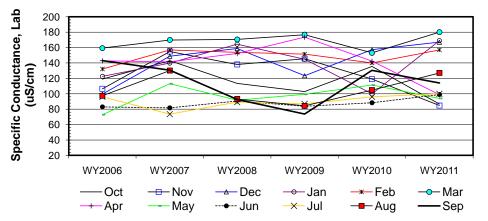



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 54 – Selenium Dissolved



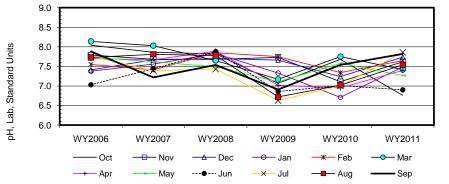
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	119.1	106.5	99.6	122.6	132.2	159.3	142.8	72.8	83	96	97.4	143
b	WY2007	143	154.9	148.8	139.9	156.9	169.8	141.6	113.1	81.7	73.6	130.2	130.7
С	WY2008	113.4	138	158.8	164.3	153.7	170.6	152.3	91.6	90.6	89.1	93.2	92.5
d	WY2009	102.9	145.5	123.5	144.8	151.5	176.7	173.5	99.3	83.7	86.8	84.3	73.7
е	WY2010	135.5	119	157.3	100	140	153.1	142.3	111.3	88.3	96	104.8	130.5
f	WY2011	86.7	84.7	167	169	157	180	98.9	93.9	99	100	127	114
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t1	6	6	6	6	6	6	6	6	6	4	6	6
	t ₂	0	0	0	0	0	0	0	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄ t ₅	0	0	0	0	0 0	0	0	0	0	0 0	0	0 0
	ι ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1	1	1	1	1	-1	1	-1	-1	1	-1
	c-a	-1	1	1	1	1	1	1	1	1	-1	-1	-1
	d-a	-1	1	1	1	1	1	1	1	1	-1	-1	-1
	e-a	1	1	1	-1	1	-1	-1	1	1	0	1	-1
	f-a	-1	-1	1	1	1	1	-1	1	1	1	1	-1
	c-b	-1	-1	1	1	-1	1	1	-1	1	1	-1	-1
	d-b	-1	-1	-1	1	-1	1	1	-1	1	1	-1	-1
	e-b	-1	-1	1	-1	-1	-1	1	-1	1	1	-1	-1
	f-b	-1 -1	-1	1 -1	1 -1	1 -1	1	-1 1	-1	-1	1 -1	-1 -1	-1 -1
	d-c e-c	-1 1	-1	-1	-1	-1 -1	-1	-1	1	-1	-1	-1	-1
	f-c	-1	-1	-1	-1	-1	-1	-1	1	-1	1	1	1
	e-d	1	-1	1	-1	-1	-1	-1	1	1	1	1	1
	f-d	-1	-1	1	1	1	1	-1	-1	1	1	1	1
	f-e	-1	-1	1	1	1	1	-1	-1	1	1	1	-1
	S _k	-7	-5	9	5	3	7	-3	3	9	6	1	-7
σ	² s=	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33
	S _k /\sigma _s	-1.32	-0.94	1.69	0.94	0.56	1.32	-0.56	0.56	1.69	1.15	0.19	-1.32
	$Z^2_k$	1.73	0.88	2.86	0.88	0.32	1.73	0.32	0.32	2.86	1.32	0.04	1.73
			Г						. 1			Σn	
	$\Sigma Z_k =$	3.97		Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	72
	$\Sigma Z_{k}^{2}$ =	14.98		Count	70	1	0	0	0			$\Sigma S_k$	21

 $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ @ $\alpha$ =5%  $\chi^2_{(K-1)}$ = 13.67 19.68 Test for station homogeneity  $\chi^2_h < \chi^2_{(K-1)}$ 0.252 ACCEPT р H₀ (No trend) H_A (± trend) ΣVAR(S_k) 339.00  $\begin{array}{c} Z_{\text{calc}} \\ \textbf{p} \end{array}$ @ $\alpha/2=2.5\%$  Z= 1.96 ACCEPT 1.09 0.861 REJECT



Seasona	al-Kendall Slop	e Confidence	Intervals			
	10 -2.24 50 -0.85 <b>1.61</b>					
α	Limit	Slope	Limit			
0.010	-2.24		4.26			
0.050	-0.85	4 64	3.48			
0.100	-0.11	1.01	3.13			
0.200	0.23		2.75			


Site	#54
------	-----

Seasonal Kendall analysis for pH, Lab, Standard Units

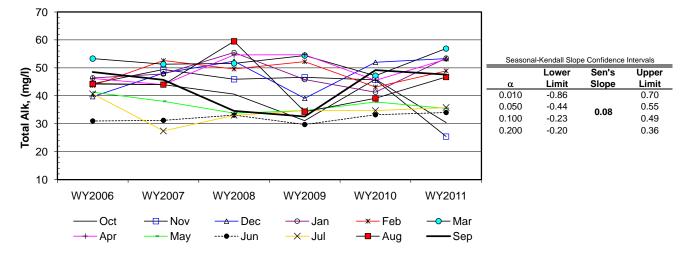
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	8.0	7.8	7.4	7.4	7.6	8.1	7.7	7.7	7.0	7.8	7.7	7.9
b	WY2007	7.9	7.7	7.7	7.6	7.4	8.0	7.7	7.6	7.4	7.4	7.8	7.2
С	WY2008	7.8	7.7	7.7	7.8	7.9	7.7	7.9	7.5	7.9	7.4	7.8	7.5
d	WY2009	7.1	7.7	7.7	7.3	7.8	7.2	7.0	7.1	6.9	6.6	6.7	6.9
е	WY2010	7.7	7.1	7.2	6.7	7.3	7.8	7.0	7.6	7.0	7.0	7.0	7.5
f	WY2011	6.8	7.6	7.7	7.5	7.7	7.4	7.4	7.3	6.9	7.9	7.5	7.8
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t,	6	4	6	6	6	6	6	6	6	6	6	4
	t ₂	0	1	0	0	0	0	0	0	0	0	0	1
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	1	1	-1	-1	-1	-1	1	-1	1	-1
	c-a	-1	-1	1	1	1	-1	1	-1	1	-1	1	-1
	d-a	-1	-1	1	-1	1	-1	-1	-1	-1	-1	-1	-1
	e-a	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	f-a	-1	-1	1	1	1	-1	-1	-1	-1	1	-1	-1
	c-b	-1	0	1	1	1	-1	1	-1	1	1	-1	1
	d-b	-1	1	-1	-1	1	-1	-1	-1	-1	-1	-1	-1
	e-b	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
	f-b	-1	-1	1	-1	1	-1	-1	-1	-1	1	-1	1
	d-c	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
	e-c	-1	-1	-1 1	-1	-1	1	-1 -1	1	-1	-1	-1	0
	f-c e-d	-1 1	-1 -1	1 -1	-1 -1	-1 -1	-1 1	-1 -1	-1	-1 1	1	-1	1
	e-d f-d	-1	-1 -1	-1	-1	-1 -1	1	-1	1	1	1	1	1
	f-e	-1	-1	1	1	-1 1	-1	1	-1	-1	1	1	1
	S _k	-13	-8	3	-3	-1	-9	-7	-9	-5	-1	-5	0
	² s=	28.33	27.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33
	S _k /\sigma _S	-2.44	-1.53	0.56	-0.56	-0.19	-1.69	-1.32	-1.69	-0.94	-0.19	-0.94	0.00
	$Z_k^2$												
	∠ _k	5.96	2.34	0.32	0.32	0.04	2.86	1.73	2.86	0.88	0.04	0.88	0.00
	$\Sigma Z_k =$	-10.92	Γ	Tie Extent	t1	t ₂	t ₃	t₄	t ₅			Σn	72
	$\Sigma Z_k^2 =$	18.22		Count	68	2	0	0	0			$\Sigma S_k$	-58
7	-bar-Σ7./K-	-0.91	F				-	-	-			ĸ	

Z-bar= $\Sigma Z_k/K$ = -0.91

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	8.28		@α=5% χ ² _(K-1) =	19.68	Test for station homogeneity			
	p		_			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT		
$\Sigma VAR(S_k)$	$Z_{calc}$	-3.10		@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT		
338.00	р	0.001				H _A (± trend)	ACCEPT		



	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.13		-0.02
0.050	-0.11	-0.07	-0.03
0.100	-0.10	-0.07	-0.04
0.200	-0.09		-0.05


-0.9%

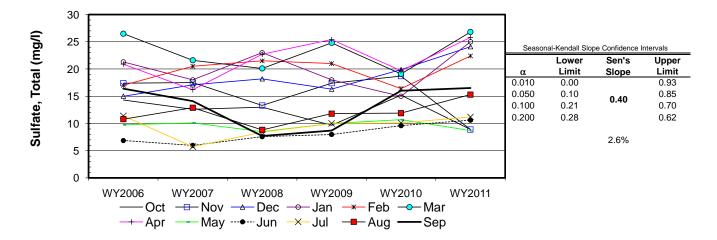
Site #54

Seasonal Kendall analysis for Total Alk, (mg/l)

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	44.4	44.3	39.7	46.4	43.7	53.3	46.2	41.3	31.0	40.7	44.2	48.5
b	WY2007	44.0	49.4	48.1	47.8	52.6	51.3	44.0	38.0	31.2	27.4	44.0	45.7
С	WY2008	40.6	45.9	52.4	55.5	49.6	51.6	54.6	33.8	33.1	33.0	59.5	34.6
d	WY2009	31.1	46.6	39.1	45.8	52.2	54.4	54.7	34.7	29.7	34.7	34.3	32.6
e	WY2010	45.9	45.7	52.0	41.3	43.1	47.2	45.5	37.8	33.2	34.7	39.1	49.2
f	WY2011	30.4	25.4	53.3	53.5	48.9	56.9	53.1	35.5	34.0	35.8	46.7	47.6
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t ₁	6	6	6	6	6	6	6	6	6	4	6	6
	t ₂	0	0	0	0	0	0	0	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	1	1	-1	-1	-1	1	-1	-1	-1
	c-a	-1	1	1	1	1	-1	-1	-1	1	-1	-1	-1
	d-a	-1	1	-1	-1	1	1	1	-1	-1	-1	-1	-1
	e-a	1	. 1	1	-1	-1	-1	-1	-1	1	-1	-1	1
	f-a	-1	-1	1	1	1	1	1	-1	1	-1	1	-1
	c-b	-1	-1	1	1	-1	1	1	-1	1	1	1	-1
	d-b	-1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1
	e-b	1	-1	1	-1	-1	-1	1	-1	1	1	-1	1
	f-b	-1	-1	1	1	-1	1	1	-1	1	1	1	1
	d-c	-1	1	-1	-1	1	1	1	1	-1	1	-1	-1
	e-c	1	-1	-1	-1	-1	-1	-1	1	1	1	-1	1
	f-c	-1	-1	1	-1	-1	1	-1	1	1	1	-1	1
	e-d	1	-1	1	-1	-1	-1	-1	1	1	0	1	1
	f-d	-1	-1	1	1	-1	1	-1	1	1	1	1	1
-	f-e	-1	-1	1	1	1	1	1	-1	1	1	1	-1
	S _k	-7	-5	7	-1	-3	3	3	-5	9	4	-1	-1
σ	2 _s =	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33	28.33	28.33
	S _k /σ _s	-1.32	-0.94	1.32	-0.19	-0.56	0.56	0.56	-0.94	1.69	0.77	-0.19	-0.19
Z	2 - k	1.73	0.88	1.73	0.04	0.32	0.32	0.32	0.88	2.86	0.59	0.04	0.04
	$\Sigma Z_k =$	0.58	]	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	72
	$\Sigma Z_{k}^{2}$	9.73		Count	70	1	0	0	0			$\Sigma S_k$	3
	<i>–</i> – k=	3.15		Count	10	1	U	U	U			20k	5

$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	9.70		@α=5% χ ² _(K-1) =	19.68	Test for station homog	geneity
	р	0.558				$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\Sigma VAR(S_k)$ $Z_{calc}$ 0.12			@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
339.00	0010					H _A (± trend)	REJECT



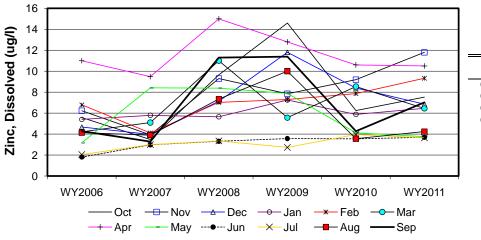

Site #54

Seasonal Kendall analysis for Sulfate, Total (mg/l)

One	<b>#0</b> 4			0	ouconiai	rtorraan	anaryoro		4.0, 10.0	(iiig/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	14.3	17.4	15.0	21.3	17.0	26.5	20.9	9.8	6.9	11.4	10.8	16.4
b	WY2007	12.6	17.5	17.1	18.0	20.5	21.6	16.2	10.1	6.0	5.7	12.9	14.1
С	WY2008	13.0	13.3	18.2	23.0	21.5	20.1	22.7	8.5	7.6	8.4	8.8	7.7
d	WY2009	9.7	17.4	16.3	18.0	21.0	24.8	25.4	10.0	8.0	10.0	11.8	8.7
е	WY2010	15.2	18.7	19.9	15.0	16.4	19.1	19.7	10.7	9.6	10.1	11.9	16.0
f	WY2011	8.9	8.9	24.1	25.0	22.4	26.8	25.8	8.7	10.6	11.2	15.3	16.5
	n	6	6	6	6	6	6	6	6	6	6	6	6
	t ₁	6	4	6	4	6	6	6	6	6	6	6	6
	t ₂	0	1	0	1	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	-1	1	-1	-1	1	-1	-1	1	-1
	c-a	-1	-1	1	1	1	-1	1	-1	1	-1	-1	-1
	d-a	-1	0	1	-1	1	-1	1	1	1	-1	1	-1
	e-a	1	1	1	-1	-1	-1	-1	1	1	-1	1	-1
	f-a	-1	-1	1	1	1	1	1	-1	1	-1	1	1
	c-b	1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	d-b	-1	-1	-1	0	1	1	1	-1	1	1	-1	-1
	e-b	1	1	1	-1	-1	-1	1	1	1	1	-1	1
	f-b	-1	-1	1	1	1	1	1	-1	1	1	1	1
	d-c	-1	1	-1	-1	-1	1	1	1	1	1	1	1
	e-c	1	1	1	-1	-1	-1	-1	1	1	1	1	1
	f-c	-1	-1	1	1	1	1	1	1	1	1	1	1
	e-d	1	1	1	-1	-1	-1	-1	1	1	1	1	1
	f-d	-1	-1	1	1	1	1	1	-1	1	1	1	1
	f-e S _k	-1 -5	-1 -2	11	<u>1</u> 0	<u>1</u> 5	-1	7	-1 1	13	5	1	1
	O _k	-5	-2	11	0	5	-1	1	I	15	5	1	
	5 ² s=	28.33	27.33	28.33	27.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33
Z _k =	S _k /σ _S	-0.94	-0.38	2.07	0.00	0.94	-0.19	1.32	0.19	2.44	0.94	1.32	0.56
	Z ² _k	0.88	0.15	4.27	0.00	0.88	0.04	1.73	0.04	5.96	0.88	1.73	0.32
	$\Sigma Z_{k}=$	8.26	Г	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	72
	$\Sigma Z_{k}^{2}$	16.88										$\Sigma S_k$	44
-	=2 کے 2_/K_	16.88	L	Count	68	2	0	0	0			20 _k	44

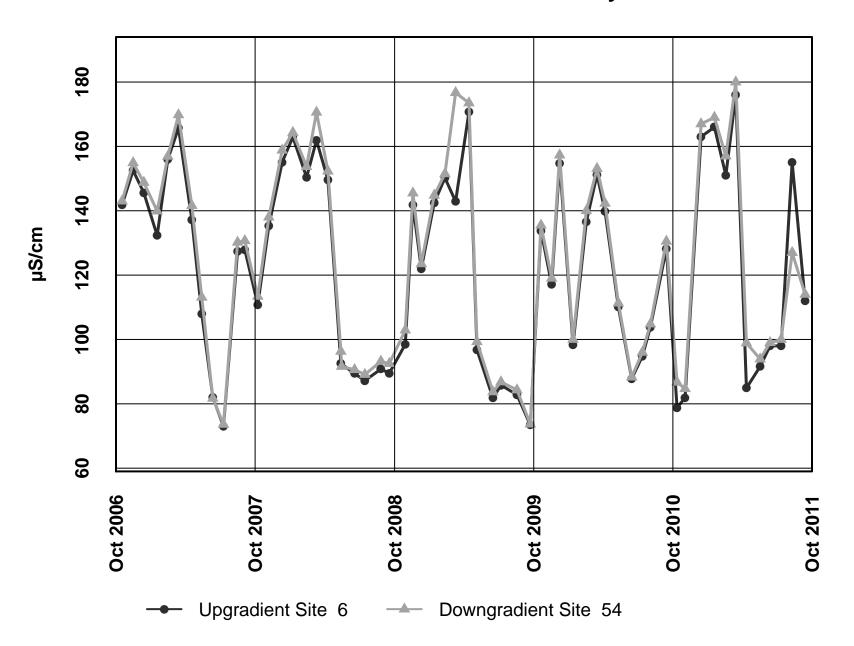
Z-bar= $\Sigma Z_k/K$ = 0.69

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	11.19	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.427			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$VAR(S_k)$ $Z_{calc}$ 2.34		@α=5% Z=	1.64	H ₀ (No trend)	REJECT
338.00	р	0.990			H _A (± trend)	ACCEPT



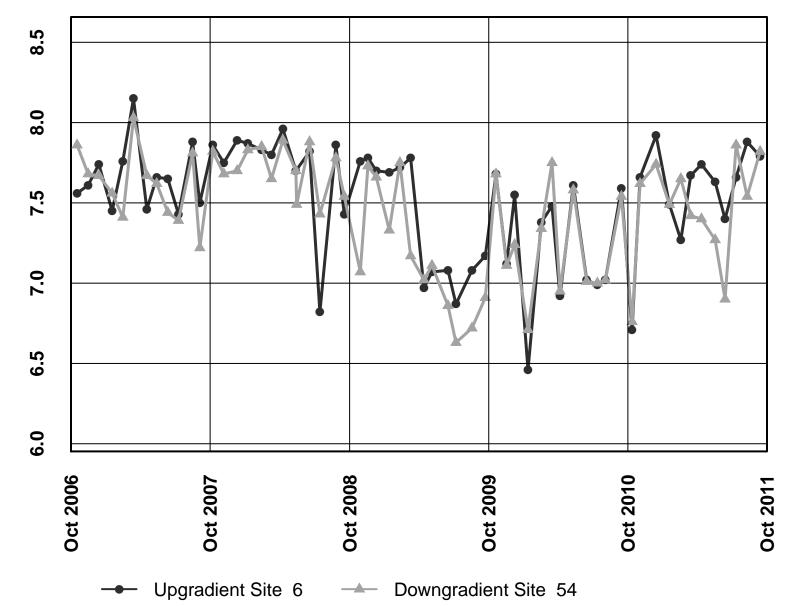

Site a	<b>#54</b>
--------	------------

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)


Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	5.6	6.2	4.7	5.4	6.8	4.2	11.0	3.2	1.8	2.1	4.1	4.3
b	WY2007	3.5	3.9	4.0	5.8	4.1	5.1	9.5	8.4	3.0	3.0	3.9	3.3
С	WY2008	9.7	9.3	7.1	5.7	7.0	11.0	15.0	8.4	3.3	3.4	7.3	11.3
d	WY2009	14.6	7.9	11.8	7.3	7.3	5.6	12.8	7.9	3.6	2.7	10.0	11.4
е	WY2010	6.2	9.2	8.4	5.9	7.9	8.5	10.6	4.1	3.6	4.0	3.6	4.3
f	WY2011	7.5	11.8	6.9	6.5	9.3	6.5	10.5	3.8	3.7	3.7	4.2	7.0
	n	6	6	6	6	6	6	6	6	6	6	6	6
-	t,	6	6	6	6	6	6	6	6	6	6	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	1
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	-1	1	-1	1	-1	1	1	1	-1	-1
	c-a	1	1	1	1	1	1	1	1	1	1	1	1
	d-a	1	1	1	1	1	1	1	1	1	1	1	1
	e-a	1	1	1	1	1	1	-1	1	1	1	-1	0
	f-a	1	1	1	1	1	1	-1	1	1	1	1	1
	c-b	1	1	1	-1	1	1	1	-1	1	1	1	1
	d-b	1	1	1	1	1	1	1	-1	1	-1	1	1
	e-b	1	1	1	1	1	1	1	-1	1	1	-1	1
	f-b	1	1	1	1	1	1	1	-1	1	1	1	1
	d-c	1	-1	1	1	1	-1	-1	-1	1	-1	1	1
	e-c	-1	-1	1	1	1	-1	-1	-1	1	1	-1	-1
	f-c	-1	1	-1	1	1	-1	-1	-1	1	1	-1	-1
	e-d	-1	1	-1	-1	1	1	-1	-1	-1	1	-1	-1
	f-d	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
;	f-e	1	1	-1	1	1	-1	-1	-1	1	-1	1	1
	S _k	5	9	5	9	13	7	-3	-5	13	9	1	4
σ	² _s =	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	28.33	27.33
Z⊧ =	S _k /\sigma _S	0.94	1.69	0.94	1.69	2.44	1.32	-0.56	-0.94	2.44	1.69	0.19	0.77
	$Z^2_k$	0.88	2.86	0.88	2.86	5.96	1.73	0.32	0.88	5.96	2.86	0.04	0.59
	- k	0.00	2.00	0.00	2.00	5.90	1.73	0.32	0.00	5.90	2.00	0.04	0.59
	$\Sigma Z_k =$	12.60	Ŀ	Tie Extent	t,	t ₂	t ₃	t₄	t ₅			Σn	72
	$\Sigma Z_{k}^{2} =$	25.82		Count	70	1	0	0	0			$\Sigma S_k$	67
_	$L-bar=\Sigma Z_k/K=$	1.05	L				÷	-	÷			- N	

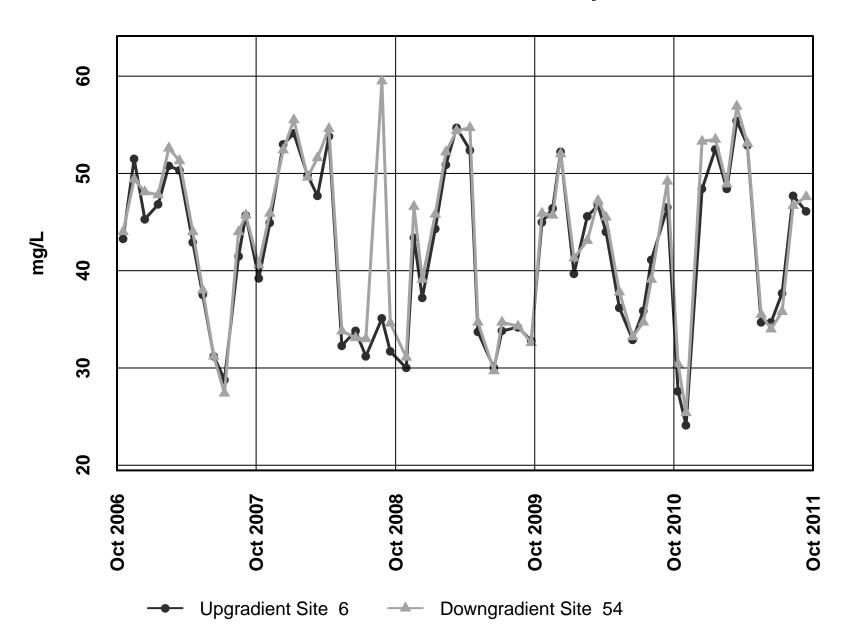
	$\chi^2_h = \Sigma Z^2_k - I$	K(Z-bar) ² =	12.59		@α=5% χ ² _(K-1) =	19.68	Test for station homoge	neity
		р	0.321	-			χ ² h<χ ² (K-1) Α	CCEPT
2	$\Sigma VAR(S_k)$	$Z_{calc}$	3.58		@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
	339.00	р	1.000				H _A (± trend)	CCEPT



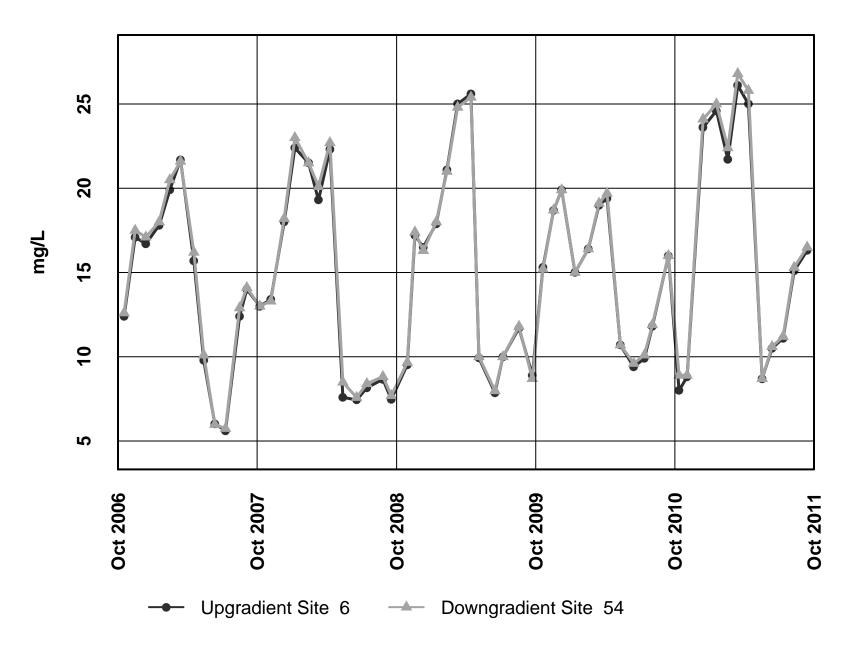

	Lower Sen's						
α	Limit	Slope	Limit				
0.010	0.12		0.58				
0.050	0.17	0.33	0.46				
0.100	0.21	0.33	0.44				
0.200	0.26		0.39				

5.2%




Site 6 vs. Site 54 – Conductivity Field

Site 6 vs. Site 54 - pH Field




ns

Site 6 vs. Site 54 – Alkalinity Total



Site 6 vs. Site 54 – Sulfate Total



15 10 hg/L S Oct 2007 Oct 2006 Oct 2008 Oct 2010 Oct 2009 Oct 2011 Upgradient Site 6 Downgradient Site 54 -

Site 6 vs. Site 54 – Zinc Dissolved

Wile	-	ned-ranks Form	test		
Variable:			ance, Lab (	uS/cm)	
	X	Υ	, , ,		
Site	#6	#54	Differe	ences	
Year	WY2011	WY2011	D	D	Rank
Oct	78.8	86.7	-7.9	7.9	-10
Nov	81.9	84.7	-2.8	2.8	-5
Dec	163.0	167.0	-4.0	4.0	-7.5
Jan	166.0	169.0	-3.0	3.0	-6
Feb	151.0	157.0	-6.0	6.0	-9
Mar	176.0	180.0	-4.0	4.0	-7.5
Apr	84.9	98.9	-14.0	14.0	-11
May	91.6	93.9	-2.3	2.3	-4
Jun	98.0	99.0	-1.0	1.0	-1
Jul	98.0	100.0	-2.0	2.0	-2.5
Aug	155.0	127.0	28.0	28.0	12
Sep	112.0	114.0	-2.0	2.0	-2.5
Median	105.0	107.0	-2.9	3.5	
	n	m		N=	12
-	12	12		$\Sigma R=$	-54
	α	]		W+=	
	5.0%			12	
	<b>W'</b> α,n			p-test	
	17			0.017	
					•
H ₀	median [D]	=0	REJECT		
H ₁	median [D]	-0	ACCEPT		

Wilcoxon-signed-ranks test Exact Form								
Variable:		, Standard	l Units					
vanabio.	X	Y						
Site	#6	#54	Differe	ences				
Year	WY2011	WY2011	D	D	Rank			
Oct	6.71	6.76	-0.05	0.05	-3			
Nov	7.66	7.62	0.04	0.04	2			
Dec	7.92	7.74	0.18	0.18	4			
Jan	7.49	7.49	0.00					
Feb	7.27	7.65	-0.38	0.38	-10			
Mar	7.67	7.42	0.25	0.25	6			
Apr	7.74	7.40	0.34	0.34	7.5			
May	7.63	7.27	0.36	0.36	9			
Jun	7.40	6.90	0.50	0.50	11			
Jul	7.66	7.86	-0.20	0.20	-5			
Aug	7.88	7.54	0.34	0.34	7.5			
Sep	7.79	7.82	-0.03	0.03	-1			
Median	7.66	7.52	0.11	0.25				
	n	m		N=	11			
	12	11		$\Sigma R=$	28			
	α	1	]	W+=				
	95.0%			47				
	<b>W'</b> α,n			p-test				
	51			0.897				
<b></b>			AOOFDT		1			
H ₀	median [D]		ACCEPT					
H ₁	median [D]	>0						

Wilcoxon-signed-ranks test Exact Form									
Variable:	Total All								
	X	Υ							
Site	#6	#54		ences					
Year	WY2011	WY2011	D	D	Rank				
Oct	27.6	30.4	-2.8	2.8	-11				
Nov	24.1	25.4	-1.3	1.3	-7				
Dec	48.4	53.3	-4.9	4.9	-12				
Jan	52.5	53.5	-1.0	1.0	-5.5				
Feb	48.4	48.9	-0.5	0.5	-2				
Mar	55.4	56.9	-1.5	1.5	-8.5				
Apr	52.9	53.1	-0.2	0.2	-1				
May	34.7	35.5	-0.8	0.8	-4				
Jun	34.7	34.0	0.7	0.7	3				
Jul	37.7	35.8	1.9	1.9	10				
Aug	47.7	46.7	1.0	1.0	5.5				
Sep	46.1	47.6	-1.5	1.5	-8.5				
Median	46.9	47.2	-0.9	1.2					
	n	m		N=	12				
	12	12		$\Sigma R=$	-41				
	α			W+=					
	95.0%			18.5					
	<b>W'</b> α,n			p-test					
	59			0.055					
	00			0.000	I				
H ₀	median [D]=	=0	ACCEPT						
H ₁	median [D]>	0							

Wilcoxon-signed-ranks test Exact Form								
Variable:		, Total (mg	/I)					
	Χ	Ŷ						
Site	#6	#54	Differe	ences				
Year	WY2011	WY2011	D	D	Rank			
Oct	8.0	8.9	-0.9	0.9	-11			
Nov	8.8	8.9	-0.1	0.1	-2			
Dec	23.6	24.1	-0.5	0.5	-7			
Jan	24.6	25.0	-0.4	0.4	-6			
Feb	21.7	22.4	-0.7	0.7	-8.5			
Mar	26.1	26.8	-0.7	0.7	-8.5			
Apr	25.0	25.8	-0.8	0.8	-10			
May	8.7	8.7	0.0					
Jun	10.5	10.6	-0.1	0.1	-2			
Jul	11.1	11.2	-0.1	0.1	-2			
Aug	15.1	15.3	-0.2	0.2	-5			
Sep	16.3	16.5	-0.2	0.2	-4			
Median	15.7	15.9	-0.3	0.4				
	n	m		N=	11			
-	12	11		$\Sigma R =$	-66			
[	α	1	[	W+=				
	5.0%			0				
	<b>W'</b> α,n			p-test				
	13			0.000				
L	10	J	l	0.000	I			
H ₀	median [D]	=0	REJECT					
H ₁	median [D]	<0	ACCEPT					

Wilcoxon-signed-ranks test Exact Form									
Variable:		solved (u	ıg/I)						
	X	Υ							
Site	#6	#54		Differences					
Year	WY2011	WY2011	D	D	Rank				
Oct	7.33	7.53	-0.20	0.20	-4				
Nov	13.00	11.80	1.20	1.20	11				
Dec	7.91	6.86	1.05	1.05	10				
Jan	7.46	6.46	1.00	1.00	9				
Feb	10.80	9.33	1.47	1.47	12				
Mar	7.29	6.45	0.84	0.84	8				
Apr	10.20	10.50	-0.30	0.30	-5				
May	3.95	3.76	0.19	0.19	3				
Jun	3.16	3.69	-0.53	0.53	-6				
Jul	3.61	3.65	-0.04	0.04	-1				
Aug	4.35	4.24	0.11	0.11	2				
Sep	7.74	7.02	0.72	0.72	7				
Median	7.40	6.66	0.46	0.63					
	n	m		N=	12				
	12	12		$\Sigma R =$	46				
				\A/+	1				
	α			W+=					
	5.0%			62					
	<b>W'</b> α,n			p-test					
	17			0.968					
H ₀	median [D]=	:0	ACCEPT						
H ₁	median [D]<	Ω							

## INTERPRETIVE REPORT SITE 49 "UPPER BRUIN CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HGC	CMC for the peri-	od of October	2006 through September	er 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2011**

		Limits						
Sample Date	Parameter	Value	Lower	Upper	Hardness			
No exceedan	nces have been identified by	y HGCMC for the pe	riod of October	2010 through S	September 2011.			

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There were no visually identifiable trends noted for the current water year. As mentioned in last year's report dissolved chromium increased roughly an order of magnitude in water year 2010. As of this water year chromium concentrations are trending down towards historical values. A similar decrease was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The below table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). For datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated.

	Mann-Kei	ndall test sta	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.50			
pH Field	6	0.02	-	-0.04	-0.4
Alkalinity, Total	6	0.22			
Sulfate, Total	6	0.08			
Zinc, Dissolved	6	0.02	+	0.17	8.1

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

The dataset for field pH has a statistically significant (p=0.02) negative trend with a slope estimate of -0.04 su/yr or a 0.45% decrease over the period. Also, there is a statistically significant increasing trend in dissolved zinc with a slope estimate of 0.17  $\mu$ g/L/yr or an 8.137% increase over the period. Given the low magnitude of the change, the fact that Site 49 is an upgradient background site, these variations are considered a part of the natural variation that can be expected for this type of monitoring.

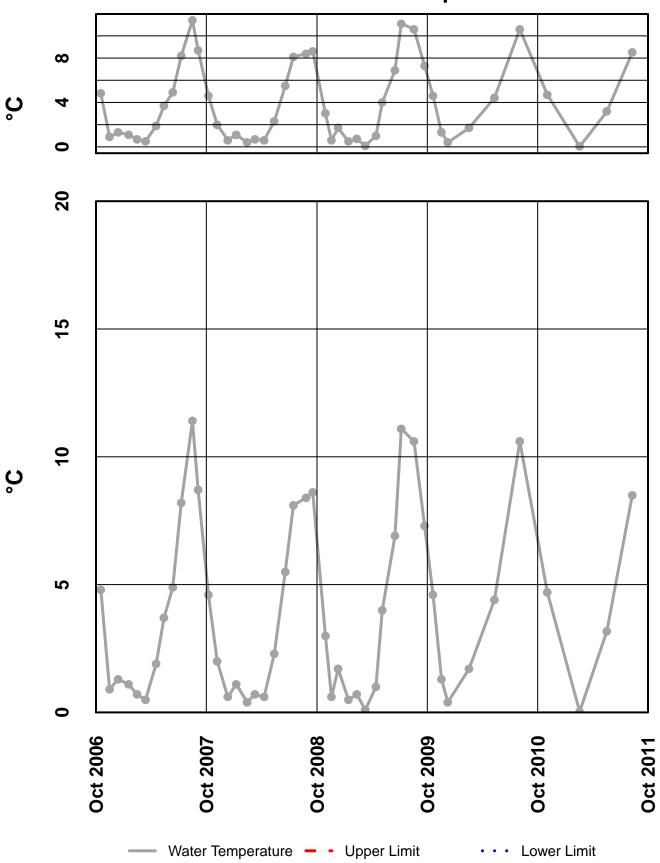
#### Table of Results for Water Year 2011

				Site 049	9FINI2 - 1	Upper E	sruin Cr	еек					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		4.7			0.0			3.2			8.5		4.0
Conductivity-Field(µmho)		108.5			171			114.3			153		133.7
Conductivity-Lab (µmho)		104			177			121			159		140
pH Lab (standard units)		7.22			7.78			7.68			7.85		7.73
pH Field (standard units)		7.94			7.29			7.93			8.12		7.94
Total Alkalinity (mg/L)		38.8			69.5			44.9			63.2		54.1
Total Sulfate (mg/L)		7.8			15.1			7.2			12.1		10.0
Hardness (mg/L)		56.3			86.2			57.3			77.1		67.2
Dissolved As (ug/L)		0.172			0.188			0.163			0.196		0.180
Dissolved Ba (ug/L)		8.5			11.1								9.8
Dissolved Cd (ug/L)		0.0431			0.024			0.0292			0.0316		0.0304
Dissolved Cr (ug/L)		0.27			1.2								0.735
Dissolved Cu (ug/L)		1.41			0.41			0.403			0.579		0.495
Dissolved Pb (ug/L)		0.0367			0.004			0.0097			0.0135		0.0116
Dissolved Ni (ug/L)		1.77			1.82								1.795
Dissolved Ag (ug/L)		0.004			0.002								0.003
Dissolved Zn (ug/L)		4.6			2.07			2.15			1.88		2.11
Dissolved Se (ug/L)		0.677			0.876								0.777
Dissolved Hg (ug/L)		0.00476			0.00115			0.00142			0.00123		0.001325

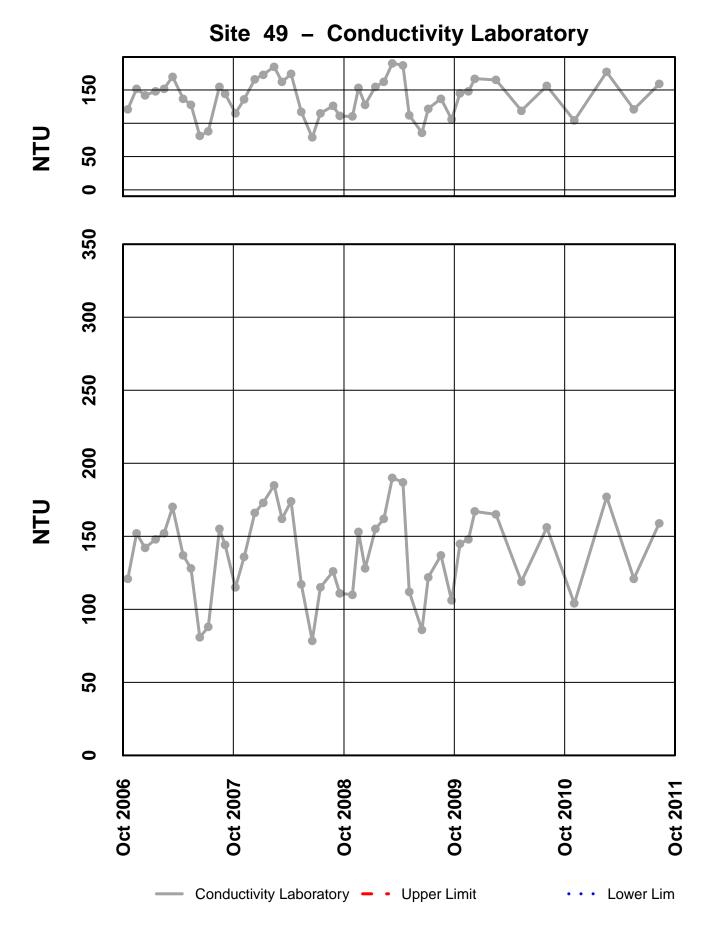
### Site 049FMS - 'Upper Bruin Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

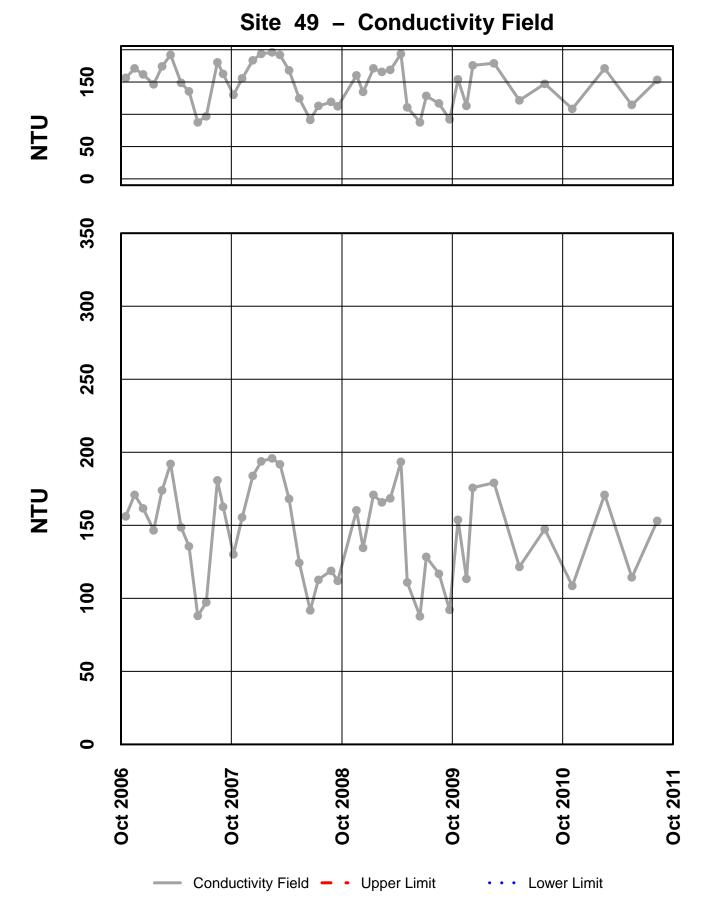
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

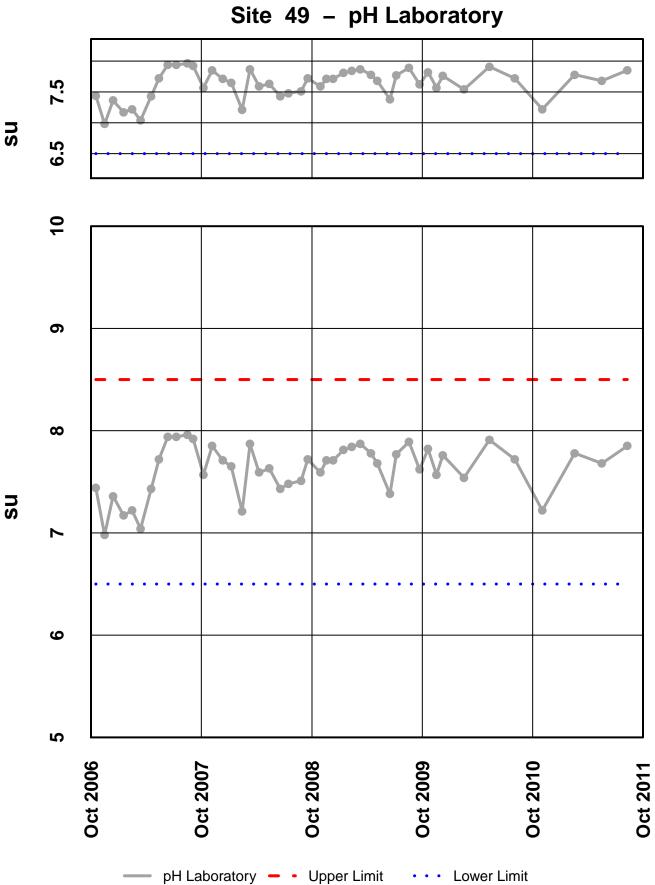
# Qualified Data by QA Reviewer


## Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
49	11/2/2010	12:00 AM				
			Cr diss, µg/l	0.27	J	Below Quantitative Range
			Se diss, µg/l	0.677	J	Below Quantitative Range
49	2/17/2011	12:00 AM				
			Pb diss, µg/l	0.00398	U	Field Blank Contamination
49	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	7.2	J	Sample Reciept Temperature
			pH Lab, su	7.68	J	Hold Time Violation
			Cd diss, µg/l	0.0292	U	Trip Blank Contamination
			Pb diss, µg/l	0.00969	U	Field Blank Contamination
49	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	12.1	J	Sample Receipt Temperature
			pH Lab, su	7.85	J	Hold Time Violation


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Qu




Site 49 – Water Temperature

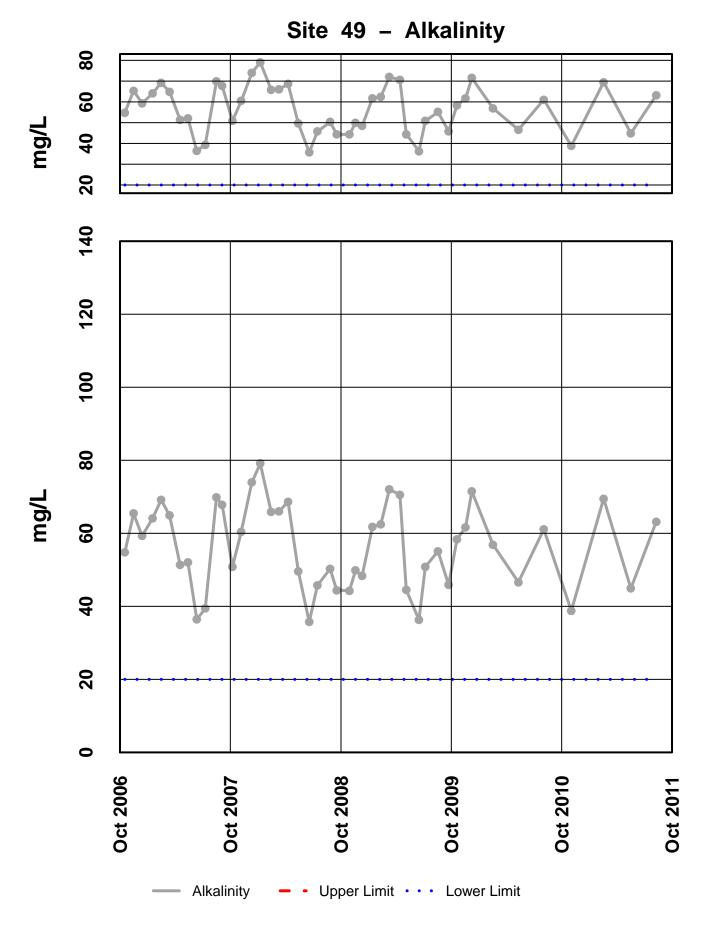


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

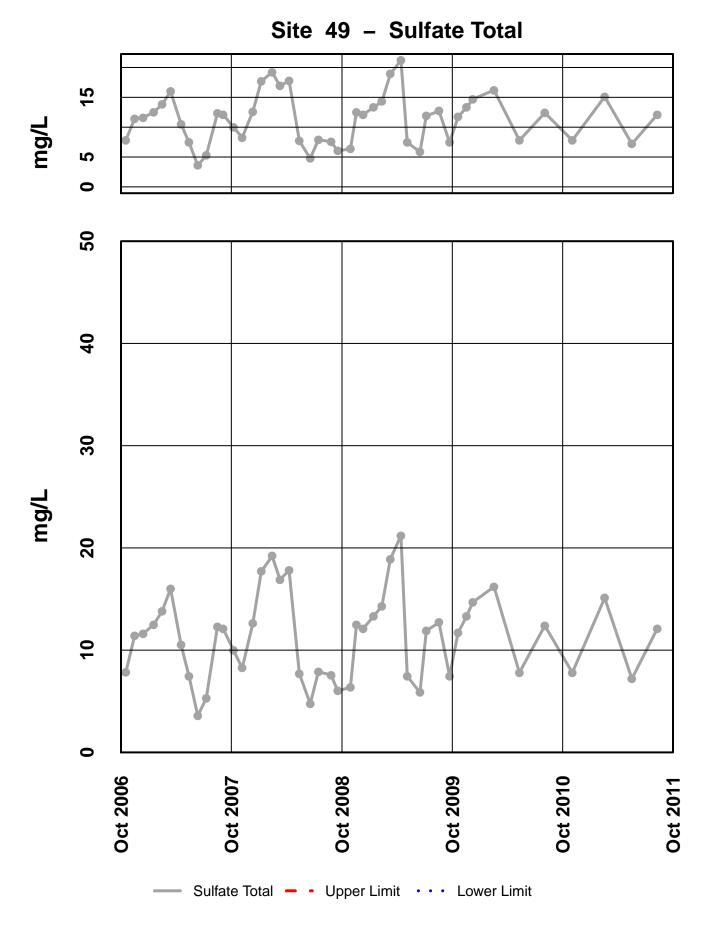



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

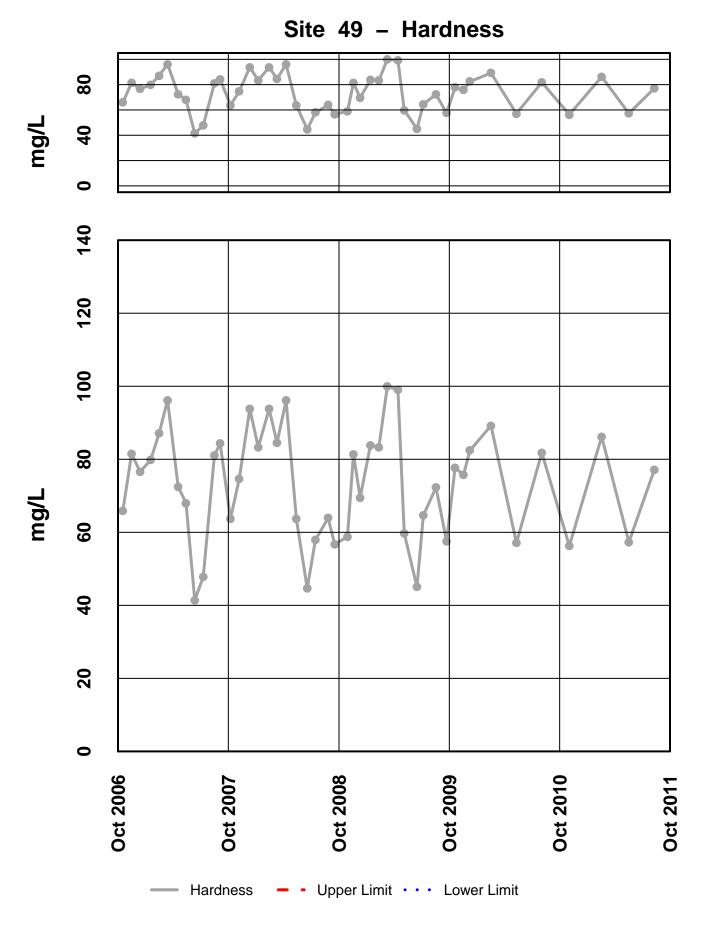



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

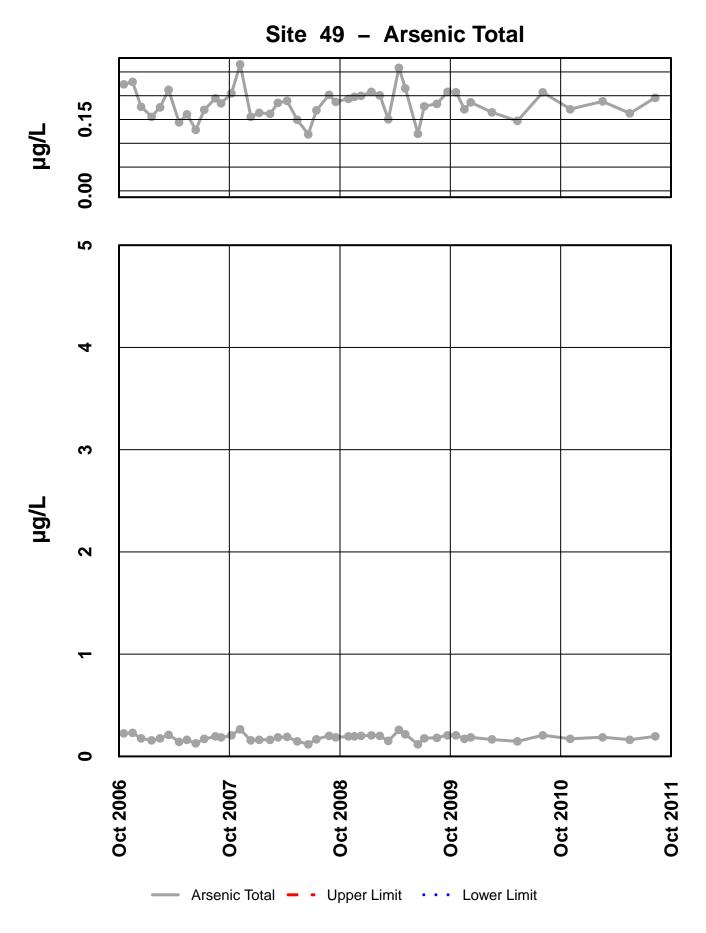
SU



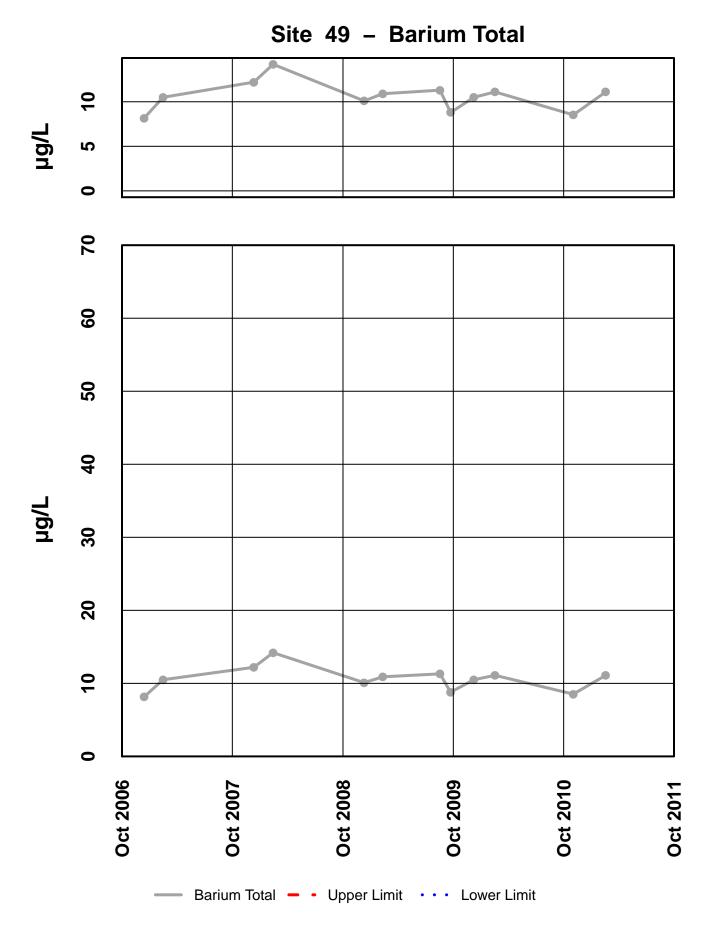

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

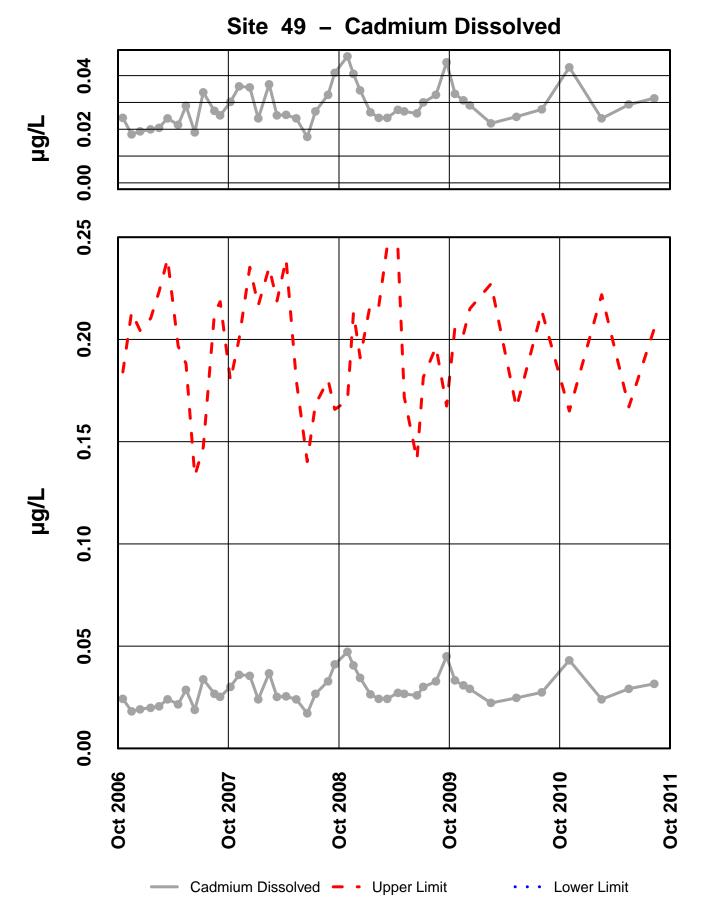



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

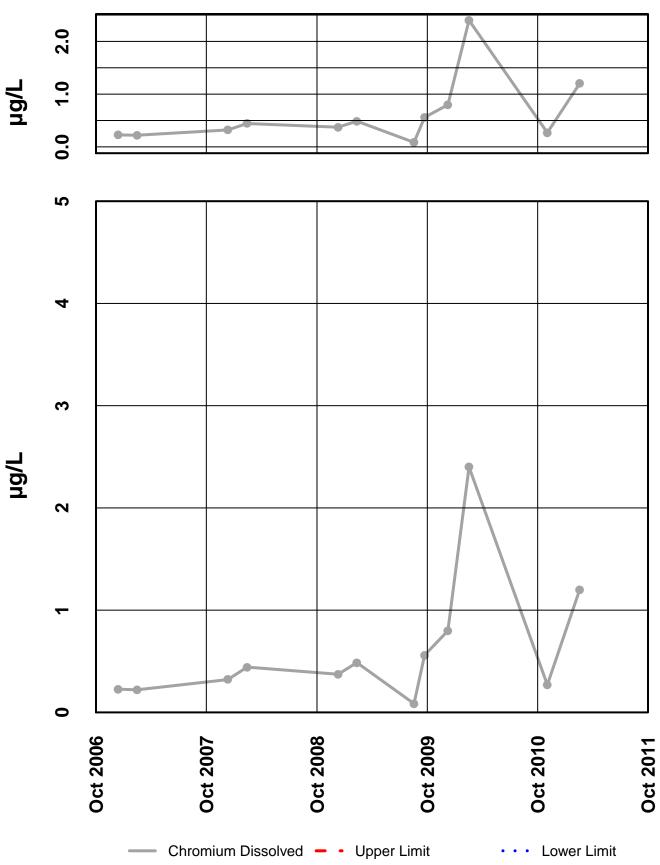



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

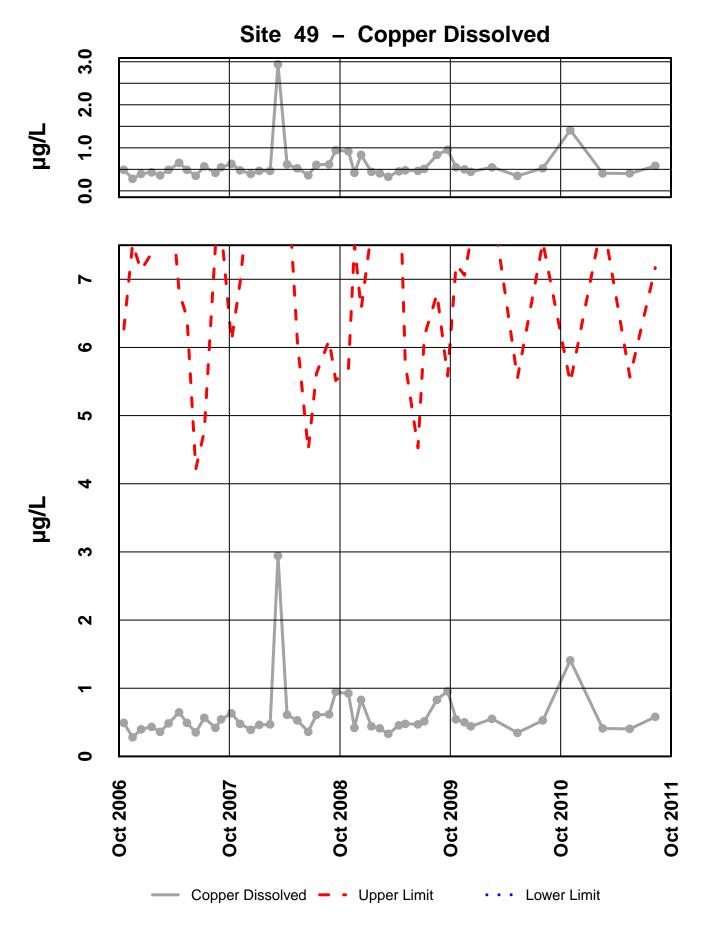



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

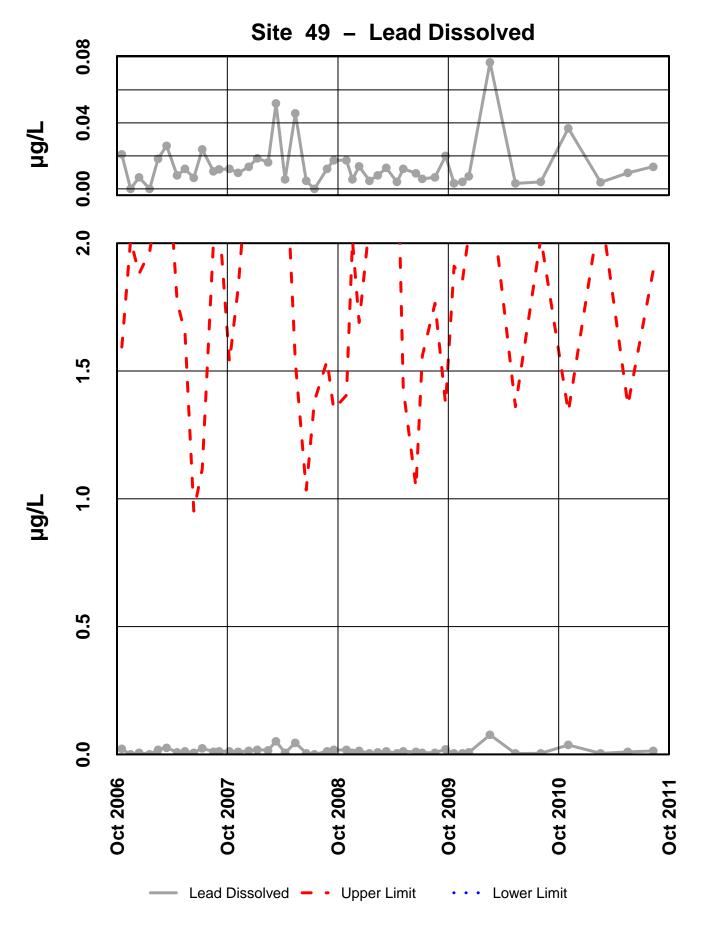



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

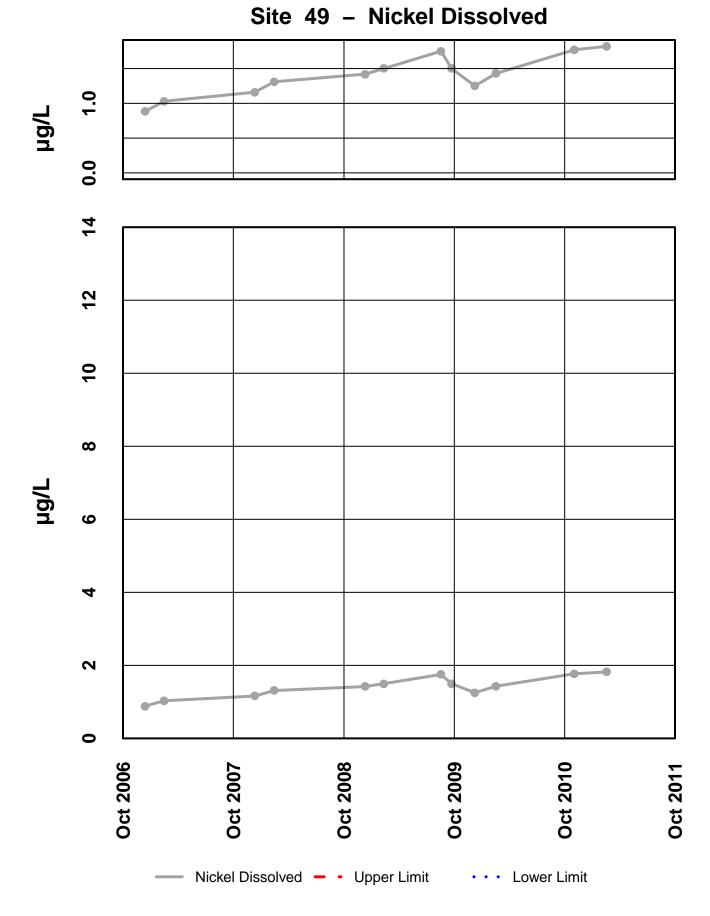


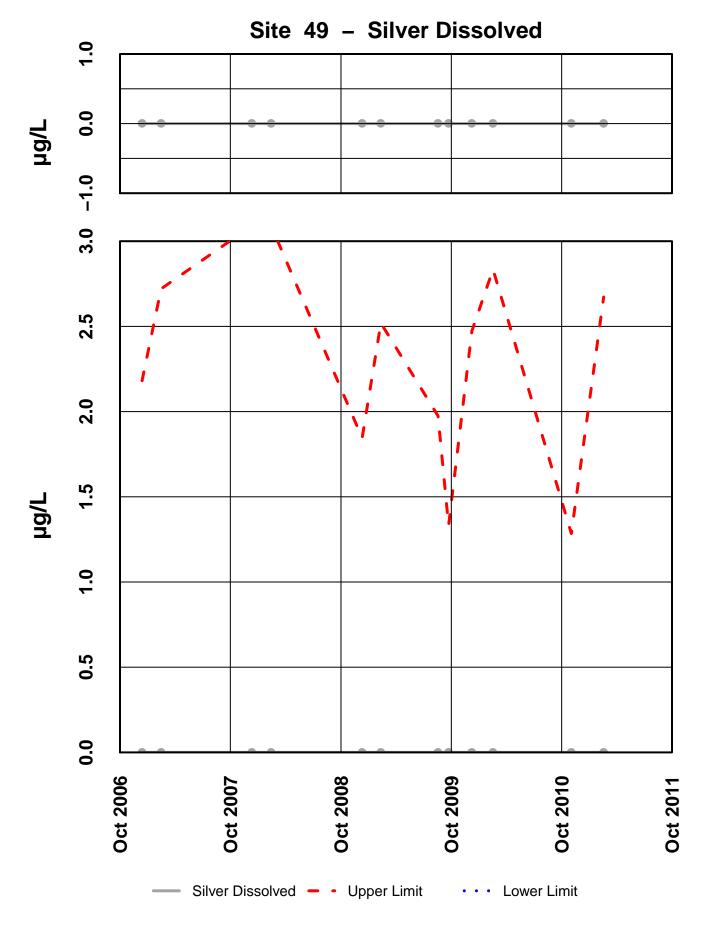

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



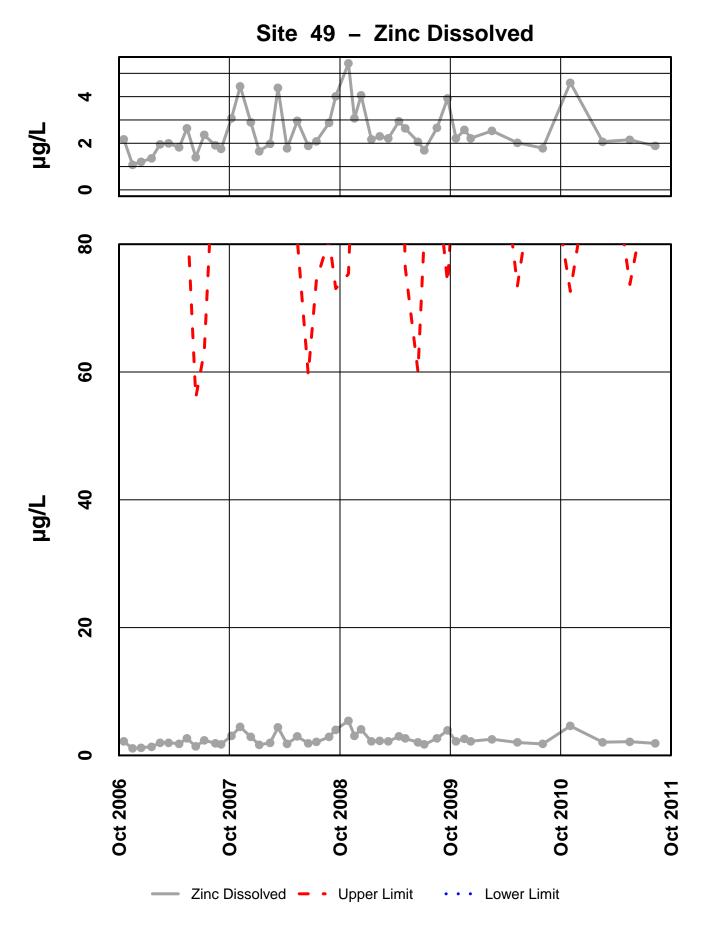

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



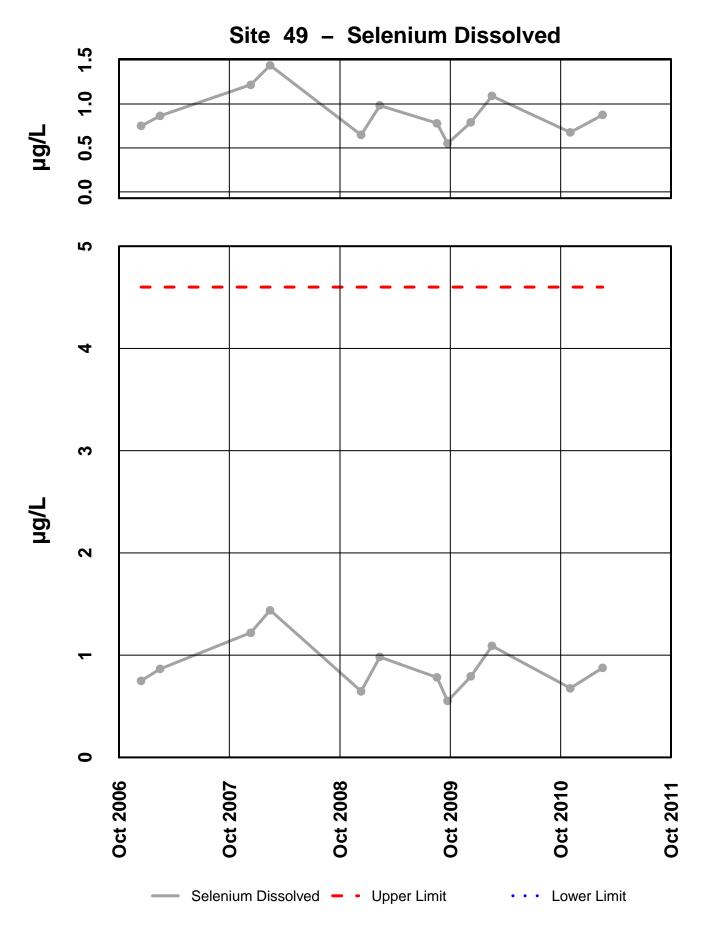

Site 49 – Chromium Dissolved



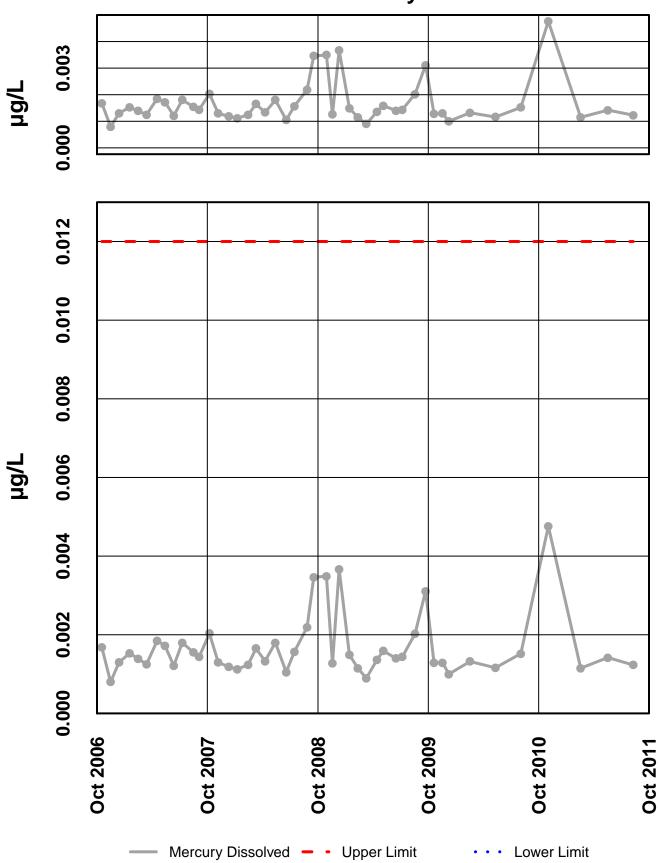

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





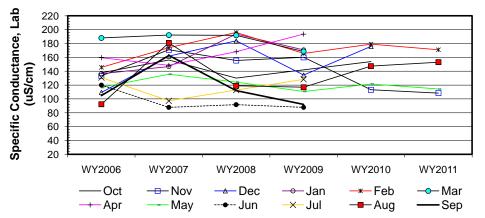


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 49 – Mercury Dissolved

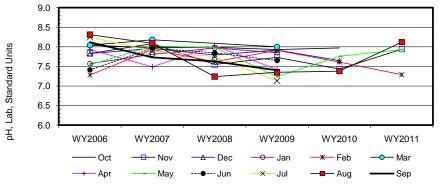
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	137.7	133.3	109.4	136.3	145.5	188	159.5	116.7	120	130.9	92.3	104.8
b	WY2007	156.3	170.9	161.7	146.7	173.9	192.2	148.5	135.7	87.9	97.2	180.8	162.7
c	WY2008	130.1	155.4	183.8	193.7	196	191.8	168.1	124.3	91.7	112.8	119	112
d	WY2009		160.1	134.5	170.8	165.7	168.5	193.5	110.8	87.8	128.3	116.9	92
е	WY2010	153.9	113.2	175.8		179.1			121.6			147.4	
f	WY2011		108.5			171			114.3			153	
	n	4	6	5	4	6	4	4	6	4	4	6	4
	t1	4	6	5	4	6	4	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1	1	1	1	1	-1	1	-1	-1	1	1
	c-a	-1	1	1	1	1	1	1	1	-1	-1	1	1
	d-a		1	1	1	1	-1	1	-1	-1	-1	1	-1
	e-a	1	-1	1		1			1			1	
	f-a		-1			1			-1			1	
	c-b	-1	-1	1	1	1	-1	1	-1	1	1	-1	-1
	d-b		-1	-1	1	-1	-1	1	-1	-1	1	-1	-1
	e-b	-1	-1	1		1			-1			-1	
	f-b d-c		-1	-1	-1	-1 -1	-1	1	-1 -1	-1	1	-1 -1	-1
	e-c	1	-1	-1	-1	-1	-1	I	-1	-1	1	-1	-1
	f-c	'	-1	-1		-1			-1			1	
	e-d		-1	1		1			1			1	
	f-d		-1	•		1			1			1	
	f-e		-1			-1			-1			1	
	S _k	0	-7	4	4	3	-2	4	-5	-4	0	5	-2
σ	² s=	8.67	28.33	16.67	8.67	28.33	8.67	8.67	28.33	8.67	8.67	28.33	8.67
	S _k /σ _s	0.00	-1.32	0.98	1.36	0.56	-0.68	1.36	-0.94	-1.36	0.00	0.94	-0.68
	<b>Z²</b> _k	0.00	1.73	0.96	1.85	0.32	0.46	1.85	0.88	1.85	0.00	0.88	0.46
	$\Sigma Z_k =$	0.23		Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	57
	$\Sigma Z_{k}^{2}$	11.23		Count	57	0	0	0	0			ΣS _k	0
	∠∠_ _k = Z-bar=∑Z _k /K=	0.02		Count	57	U	U	U	U			$\Delta \mathbf{O}_{k}$	0

@ $\alpha$ =5%  $\chi^2_{(K-1)}$ =  $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ 19.68 Test for station homogeneity 11.23  $\chi^2_h < \chi^2_{(K-1)}$ 0.424 ACCEPT р  $\Sigma VAR(S_k)$ @ $\alpha/2=2.5\%$  Z= 1.96 H₀ (No trend) ACCEPT  $Z_{\text{calc}}$ 0.00 190.67 0.500 H_A (± trend) REJECT р



Seasonal-Kendall Slope Confidence Intervals										
	Sen's	Upper								
α	Limit	Slope	Limit							
0.010	-4.72		6.82							
0.050	-3.94	0.59	4.44							
0.100	-3.15	0.09	4.01							
0.200	-1.26		3.42							


49

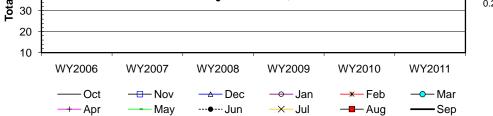
Seasonal Kendall analysis for pH, Lab, Standard Units

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	8.0	7.8	7.8	7.6	7.3	8.0	7.9	7.5	7.4	8.3	8.3	8.1
b	WY2007	8.0	8.1	8.0	7.8	7.9	8.2	7.5	8.0	8.0	7.9	8.1	7.7
С	WY2008	8.0	7.6	7.8	8.0	7.6		8.0	8.0	7.9	7.8	7.2	7.6
d	WY2009	7.9	7.7	7.9	7.9	7.9	8.0	7.4	7.2	7.7	7.1	7.4	7.4
е	WY2010	8.0	7.4	7.7		7.6			7.8			7.4	
f	WY2011		7.9			7.3			7.9			8.1	
	n	5	6	5	4	6	3	4	6	4	4	6	4
	t ₁	5	6	5	4	6	3	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0	0 0	0 0	0 0	0 0	0	0	0 0	0	0 0	0 0
	ι ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	1	1	1	-1	1	1	-1	-1	-1
	c-a	-1	-1	-1	1	1		1	1	1	-1	-1	-1
	d-a	-1	-1	1	1	1	-1	-1	-1	1	-1	-1	-1
	e-a	-1	-1	-1		1			1			-1	
	f-a		1			1			1			-1	
	c-b	1	-1	-1	1	-1		1	-1	-1	-1	-1	-1
	d-b	-1 -1	-1 -1	-1 -1	1	-1 -1	-1	-1	-1 -1	-1	-1	-1 -1	-1
	e-b f-b	-1	- 1 -1	-1		-1 -1			-1 -1			-1	
	d-c	-1	-1	1	-1	-1		-1	-1	-1	-1	1	-1
	e-c	-1	-1	-1	-1	-1		-1	-1	-1	-1	1	-1
	f-c		1			-1			-1			1	
	e-d	1	-1	-1		-1			1			1	
	f-d		1			-1			1			1	
	f-e		1			-1			1			1	
	S _k	-6	-3	-4	4	-3	-1	-2	-1	0	-6	-1	-6
σ	² s=	16.67	28.33	16.67	8.67	28.33	3.67	8.67	28.33	8.67	8.67	28.33	8.67
	S _k /σ _S	-1.47	-0.56	-0.98	1.36	-0.56	-0.52	-0.68	-0.19	0.00	-2.04	-0.19	-2.04
	$Z^2_k$	2.16	0.32	0.96	1.85	0.32	0.27	0.46	0.04	0.00	4.15	0.04	4.15
	ĸ		_				•.=.						
	$\Sigma Z_k =$	-7.87		Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	57
	$\Sigma Z_{k}^{2}$	14.71		Count	57	0	0	0	0			$\Sigma S_k$	-29
7	-har-∑7./K-	-0.66	F		-	-	-	-	-				

Z-bar= $\Sigma Z_k/K$ = -0.66

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	9.55	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.571			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-2.01	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
193.67	р	0.022			H _A (± trend)	ACCEPT




	Sen's	Upper	
α	Limit	Slope	Limit
0.010	-0.11		0.01
0.050	-0.10	-0.03	-0.01
0.100	-0.09	-0.03	-0.02
0.200	-0.06		-0.02

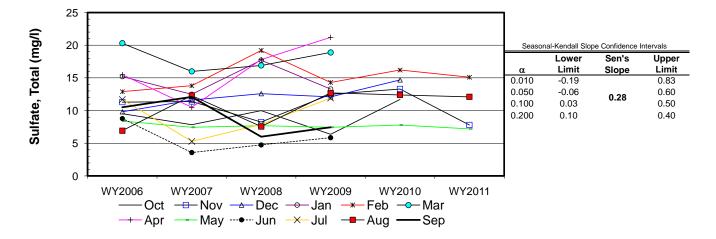
-0.4%

Site #49

Seasonal Kendall analysis for Total Alk, (mg/l)

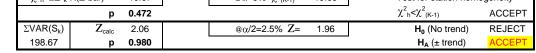
low label													
	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	59.3	58.0	52.8	62.6	55.6	77.8	58.9	53.4	51.2	60.7	52.0	57.3
b	WY2007	54.8	65.4	59.3	64.1	69.2	64.9	51.3	52.0	36.4	39.4	69.8	67.8
C	WY2008	50.8	60.4	73.9	79.1	65.9	66.0	68.6	49.6	35.7	45.7	50.3	44.4
d e	WY2009 WY2010	44.3 58.4	49.8 61.6	48.4 71.5	61.7	62.5 56.9	72.0	70.6	44.5 46.6	36.3	50.8	55.1 61.1	45.9
f	WY2010 WY2011	50.4	38.8	71.5		69.5			40.0			63.2	
-	n	5	6	5	4	6	4	4	6	4	4	6	4
-	t,	5	6	5	4	6	4	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
-	*5	0	0	0	0	0	0	0	0	0	0	0	
-	b-a	-1	1	1	1	1	-1	-1	-1	-1	-1	1	1
	c-a	-1	1	1	1	1	-1	1	-1	-1	-1	-1	-1
	d-a	-1	-1	-1	-1	1	-1	1	-1	-1	-1	1	-1
	e-a	-1	1	1		1			-1			1	
	f-a		-1			1			-1			1	
	c-b d-b	-1 -1	-1 -1	1 -1	1 -1	-1 -1	1 1	1 1	-1 -1	-1 -1	1 1	-1 -1	-1 -1
	e-b	-1	-1 -1	-1	-1	-1	I	1	-1 -1	-1	1	-1 -1	-1
	f-b	I	-1			1			-1			-1	
	d-c	-1	-1	-1	-1	-1	1	1	-1	1	1	1	1
	e-c	1	1	-1		-1			-1			1	
	f-c		-1			1			-1			1	
	e-d	1	1	1		-1			1			1	
	f-d		-1			1			1			1	
-	f-e S _k		-1			1			-1			1	
-	3 _k	-4	-5	2	0	3	0	4	-11	-4	0	5	-2
$\sigma^2$	s=	16.67	28.33	16.67	8.67	28.33	8.67	8.67	28.33	8.67	8.67	28.33	8.67
	S _k /σ _S	-0.98	-0.94	0.49	0.00	0.56	0.00	1.36	-2.07	-1.36	0.00	0.94	-0.68
Z		0.96	0.88	0.24	0.00	0.32	0.00	1.85	4.27	1.85	0.00	0.88	0.46
	к	0.00	0.00	0.21	0.00	0.02	0.00	1.00	1.27	1.00	0.00	0.00	0.10
	$\Sigma Z_k =$	-2.67		Tie Extent	t1	t ₂	t ₃	t ₄	t ₅			Σn	58
	$\Sigma Z_{k}^{2}$ =	11.71		Count	58	0	0	0	0			$\Sigma S_k$	-12
Z-I	bar=ΣZ _k /K=	-0.22	-										
	$x^2 \nabla^2 u$	$(7 h a r)^2$	11.11		@a=5%	6 χ ² (κ-1)=	19.68	т	est for stati	on homoge	neitv		
Γ	$\chi^2_h = \Sigma Z^2_k - k$	(z-bar) =			eu-0/	• 7. (K-I)					- ,		
F	χ _h =2Ζ k-۳	(z-bar) = p	0.434	L	ea-07	• 7. (K-1)	10.00		$\lambda_{h}^{2} < \chi_{(K-1)}^{2}$	А	CCEPT		
-	$\chi_{h}=2Z_{k}$ -r	· · ·				2.5% Z=	1.96						

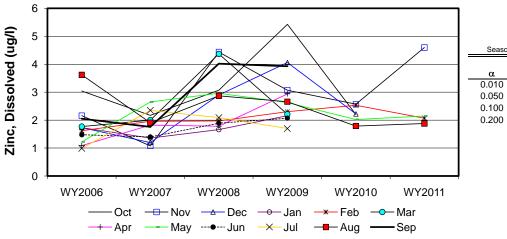



Site #49

Seasonal Kendall analysis for Sulfate, Total (mg/l)

Onto	<i>n</i> <b>+v</b>			•	0000.00				,				
Row label	Water Year	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	9.5	11.3	9.8	15.2	12.9	20.3	15.5	8.4	8.8	11.7	6.9	10.5
b	WY2007	7.8	11.4	11.6	12.5	13.8	16.0	10.5	7.5	3.6	5.3	12.3	12.1
С	WY2008	10.0	8.3	12.6	17.7	19.2	16.9	17.8	7.7	4.8	7.9	7.6	6.0
d	WY2009	6.4	12.5	12.1	13.3	14.3	18.9	21.2	7.5	5.9	11.9	12.7	7.5
е	WY2010	11.7	13.3	14.7		16.2			7.8			12.4	
f	WY2011		7.8			15.1			7.2			12.1	
	n	5	6	5	4	6	4	4	6	4	4	6	4
	t ₁	5	6	5	4	6	4	4	4	4	4	6	4
	t ₂	0	0	0	0	0	0	0	1	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	1	1	-1	1	-1	-1	-1	-1	-1	1	1
	c-a	1	-1	1	1	1	-1	1	-1	-1	-1	1	-1
	d-a	-1	1	1	-1	1	-1	1	-1	-1	1	1	-1
	e-a	1	1	1		1			-1			1	
	f-a		-1			1			-1			1	
	c-b	1	-1	1	1	1	1	1	1	1	1	-1	-1
	d-b	-1	1	1	1	1	1	1	0	1	1	1	-1
	e-b	1	1	1		1			1			1	
	f-b		-1			1			-1			-1	
	d-c	-1	1	-1	-1	-1	1	1	-1	1	1	1	1
	e-c	1	1	1		-1			1			1	
	f-c e-d	1	-1	1		-1			-1			1	
	f-d	1	-1	1		1			1			-1	
	f-e		-1			-1			-1			-1	
	S _k	2	1	8	0	7	0	4	-6	0	2	5	-2
σ	5 ² s=	16.67	28.33	16.67	8.67	28.33	8.67	8.67	27.33	8.67	8.67	28.33	8.67
	S _k /σ _s	0.49	0.19	1.96	0.00	1.32	0.00	1.36	-1.15	0.00	0.68	0.94	-0.68
	$Z_k^2$	0.24	0.04	3.84	0.00	1.73	0.00	1.85	1.32	0.00	0.46	0.88	0.46
	← k	0.24	0.04	5.04	0.00	1.75	0.00	1.00	1.52	0.00	0.+0	0.00	0.40
	$\Sigma Z_k =$	5.10	Ţ	Tie Extent	t,	t ₂	t ₃	t ₄	t _s			Σn	58
	$\Sigma Z_k^2 =$	10.81		Count	56	1	0	0	0			$\Sigma S_k$	21
7	Z-bar-∑Z./K-	0.42	L	Sound	00		v	v	v			—— K	


Z-bar= $\Sigma Z_k/K=$  0.43


$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	8.64	@α=5% χ ² _(K-1) =	19.68	Test for station home	ogeneity
	р	0.655			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	1.42	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
197.67	р	0.923			H _A (± trend)	REJECT



#### Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	3.0	2.2	1.7	1.7	1.6	1.8	1.1	1.2	1.5	1.0	3.6	2.1
b	WY2007	2.2	1.1	1.2	1.4	2.0	2.0	1.8	2.7	1.4	2.4	1.9	1.8
с	WY2008	3.1	4.4	2.9	1.7	2.0	4.4	1.8	3.0	1.9	2.1	2.9	4.0
d	WY2009	5.4	3.1	4.1	2.2	2.3	2.2	2.9	2.6	2.1	1.7	2.7	3.9
е	WY2010	2.2	2.6	2.2		2.5			2.0			1.8	
f	WY2011		4.6			2.1			2.2			1.9	
	n	5	6	5	4	6	4	4	6	4	4	6	4
	t ₁	5	6	5	4	6	4	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a	-1	-1	-1	-1	1	1	1	1	-1	1	-1	-1
	c-a	1	1	1	-1	1	1	1	1	1	1	-1	1
	d-a	1	1	1	1	1	1	1	1	1	1	-1	1
	e-a	-1	1	1		1			1			-1	
	f-a		1	•		1			1			-1	
	c-b	1	1	1	1	1	1	-1	1	1	-1	1	1
	d-b	1	1	1	1	1	1	1	-1	1	-1	1	1
	e-b	1	1	1		1			-1			-1	
	f-b	1	1	1		1			-1			-1	
	d-c	1	-1	1	1	1	-1	1	-1	1	-1	-1 -1	-1
	e-c	-1	-1	-1	1	1	-1	1	-1		-1	-1 -1	-1
	f-c	-1	-1	-1		1			-1 -1			-1 -1	
	e-d	-1	-1	-1		1			-1 -1			-1 -1	
	f-d	-1		-1									
	f-e		1			-1 -1			-1 1			-1 1	
	S _k	2	7	4	2	-1	4	4	-1	4	0	-9	2
		_	-					•				-	
	5 ² s=	16.67	28.33	16.67	8.67	28.33	8.67	8.67	28.33	8.67	8.67	28.33	8.67
$Z_k =$	s S _k /σ _S	0.49	1.32	0.98	0.68	2.07	1.36	1.36	-0.19	1.36	0.00	-1.69	0.68
;	Z ² _k	0.24	1.73	0.96	0.46	4.27	1.85	1.85	0.04	1.85	0.00	2.86	0.46
	$\Sigma Z_k =$	8.41	F	Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	58
	$\Sigma Z_{k}^{2}$												
		16.56		Count	58	0	0	0	0			$\Sigma S_k$	30
Z	Z-bar=ΣZ _k /K=	0.70											
	$\chi^2_h = \Sigma Z^2_k +$	(7-bar) ² -	10.67		@a-5º	% χ ² _(K-1) =	19.68	г	est for stati	on homoro	neity		
	λ h				€ <b>α=</b> 57	っん(K-1)=	19.00						
		D	0.472					2	$({}^{2}_{h} < \chi^{2}_{(K-1)})$	А	CCEPT		





Seasonal-Kendall Slope Confidence Intervals												
	Lower	Sen's	Upper									
α	Limit	Slope	Limit									
0.010	-0.02		0.32									
0.050	0.02	0.17	0.23									
0.100	0.05	0.17	0.23									
0.200	0.10		0.20									

8.1%

## INTERPRETIVE REPORT SITE 46 "LOWER BRUIN CREEK"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the period	od of Octobe	r 2006 through September 20011.	

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2011**

		Limits					
Sample Date	Parameter	Value	Lower	Upper	Hardness		
No exceedan	ces have been identified by	y HGCMC for the pe	riod of October	2010 through S	September 2011.		

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Dissolved chromium decreased to previously recorded values after roughly increasing an order of magnitude during water year 2010. A similar pattern was also noted for Site 6, Site 13, Site 46, Site 48, Site 49, and Site 54; all sites that are located in the 920 area.

A non-parametric statistical analysis for trend was performed for field conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). Datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated.

	Mann-Kei	ndall test sta	tistics	Sen's slope	estimate
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.35			
pH Field	6	< 0.01	-	-0.08	-1.0
Alkalinity, Total	6	0.08			
Sulfate, Total	6	0.17			
Zinc, Dissolved	6	< 0.01	+	0.18	9.6

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

The dataset for field pH has a statistically significant (p<0.01) negative trend with a slope estimate of -0.08 su/yr or a -1% decrease over the period. Dissolved zinc has a statistically significant (p<0.01) positive trend with a slope estimate of 0.176  $\mu$ g/L/yr or a 9.6% increase over the period. Both of these trends are similar in magnitude and direction as noted for the upgradient control Site 49 and therefore are interpreted as natural variation.

A comparison of median values for alkalinity, laboratory pH, laboratory conductivity, sulfate, and dissolved zinc between Site 49 and Site 46 has been conducted as specified in the Statistical Information Goals for Site 46. Additionally, X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 46 and Site 49, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The below table summarizes the results of the signed-rank test as performed on the water year 2011 dataset. For all of the analytes there were no statistically significant differences between the measured median values at a significance level of  $\alpha$ =0.05 for a one-tailed test.

Site 46 vs Site 49					
	Signed Ranks	Site 49	Site 46	Median	
Parameter	p-value	median	median	Differences	
Conductivity Field	0.969	133.7	119.7	5	
pH Field	0.938	7.94	7.85	0.09	
Alkalinity, Total	0.812	54.1	52	2.1	
Sulfate, Total	0.93	10	10.00	0.10	
Zinc, Dissolved	0.312	2.11	2.19	-0.08	

#### **Table of Summary Statistics for Median Analysis**

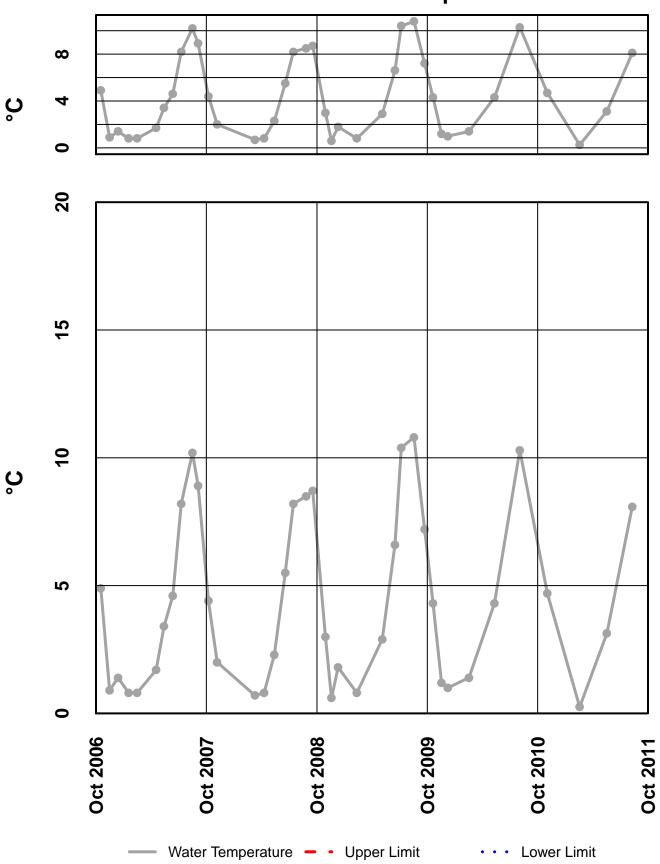
### Table of Results for Water Year 2011

				Site 040	DLINI2 -	Lower E		eek					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		4.7			0.3			3.1			8.1		3.9
Conductivity-Field(µmho)		105.6			164			114.3			125		119.7
Conductivity-Lab (µmho)		101			170			120			163		142
pH Lab (standard units)		6.89			7.52			7.68			7.65		7.59
pH Field (standard units)		7.85			7.36			7.84			7.87		7.85
Total Alkalinity (mg/L)		36.9			61.3			42.7			65.5		52.0
Total Sulfate (mg/L)		7.7			13.5			7.1			12.2		10.0
Hardness (mg/L)		53.3			82.1			56			77.9		67.0
Dissolved As (ug/L)		0.326			0.145			0.193			0.263		0.228
Dissolved Ba (ug/L)		11			12.7								11.9
Dissolved Cd (ug/L)		0.0518			0.0264			0.0198			0.0209		0.0237
Dissolved Cr (ug/L)		0.441			1.45								0.946
Dissolved Cu (ug/L)		1.59			0.444			0.453			0.626		0.540
Dissolved Pb (ug/L)		0.273			0.0035			0.0197			0.0064		0.0131
Dissolved Ni (ug/L)		1.71			1.77								1.740
Dissolved Ag (ug/L)		0.002			0.002								0.002
Dissolved Zn (ug/L)		7.82			2.33			2.04			1.64		2.19
Dissolved Se (ug/L)		0.559			0.887								0.723
Dissolved Hg (ug/L)		0.00515			0.00106			0.00142			0.0012		0.001310

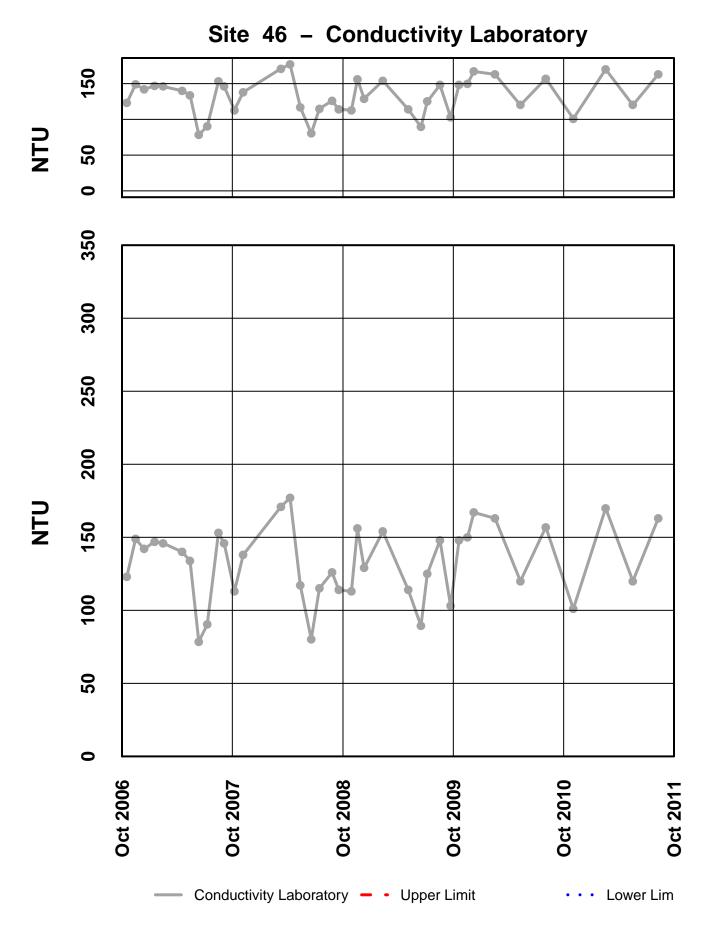
### Site 046FMS - 'Lower Bruin Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

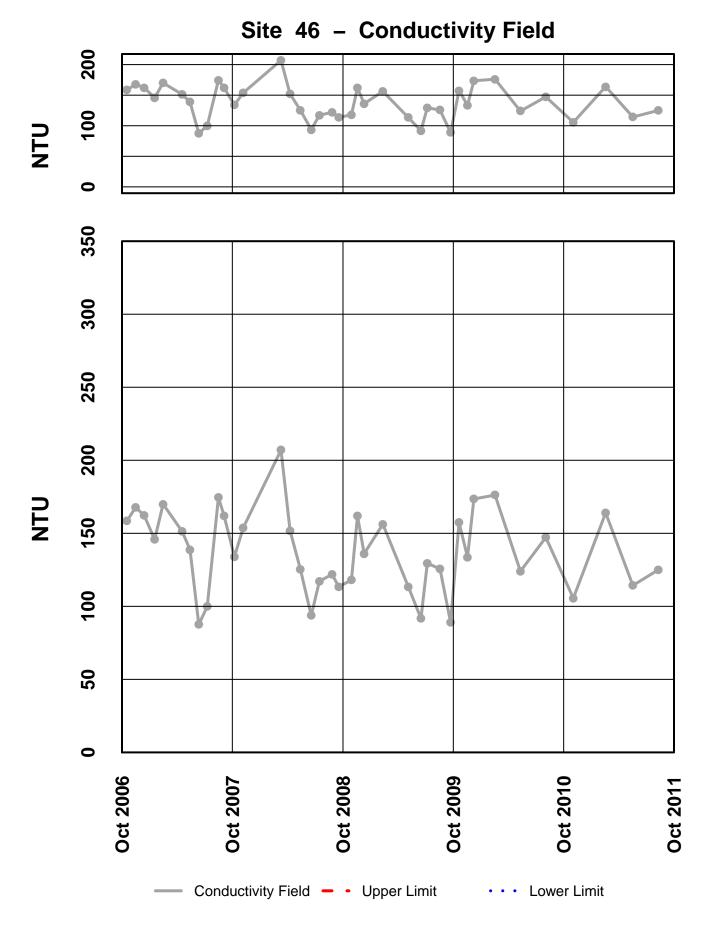
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

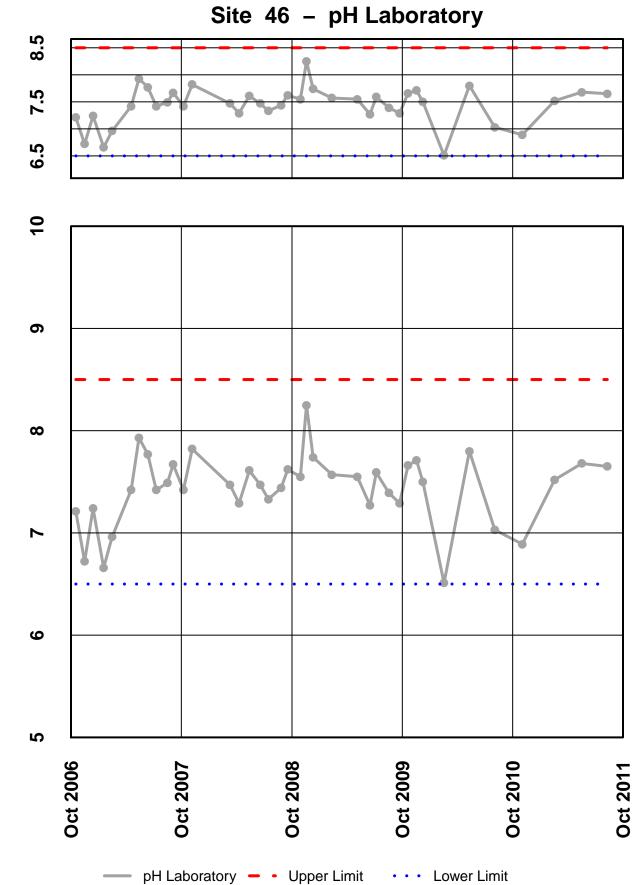
# Qualified Data by QA Reviewer


## Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
46	11/2/2010	12:00 AM				
			Se diss, µg/l	0.559	J	Below Quantitative Range
46	2/17/2011	12:00 AM				
			Pb diss, µg/l	0.00349	U	Field Blank Contamination
46	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	7.1	J	Sample Reciept Temperature
			pH Lab, su	7.68	J	Hold Time Violation
			Cd diss, µg/l	0.0198	U	Trip Blank Contamination
			Pb diss, µg/l	0.0197	U	Field Blank Contamination
46	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	12.2	J	Sample Receipt Temperature
			Pb diss, µg/l	0.00635	J	Below Quantitative Range
			pH Lab, su	7.65	J	Hold Time Violation


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

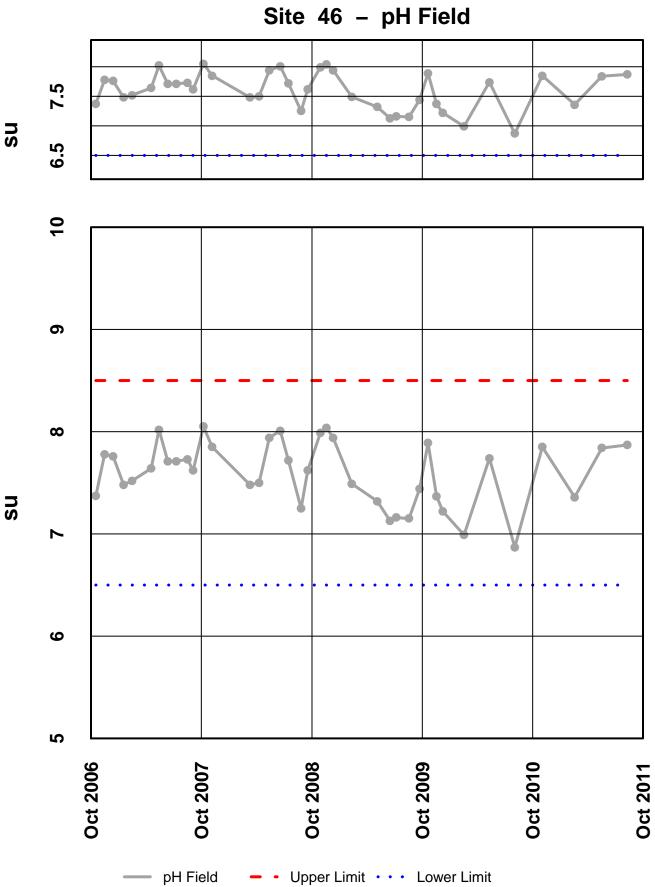



Site 46 – Water Temperature



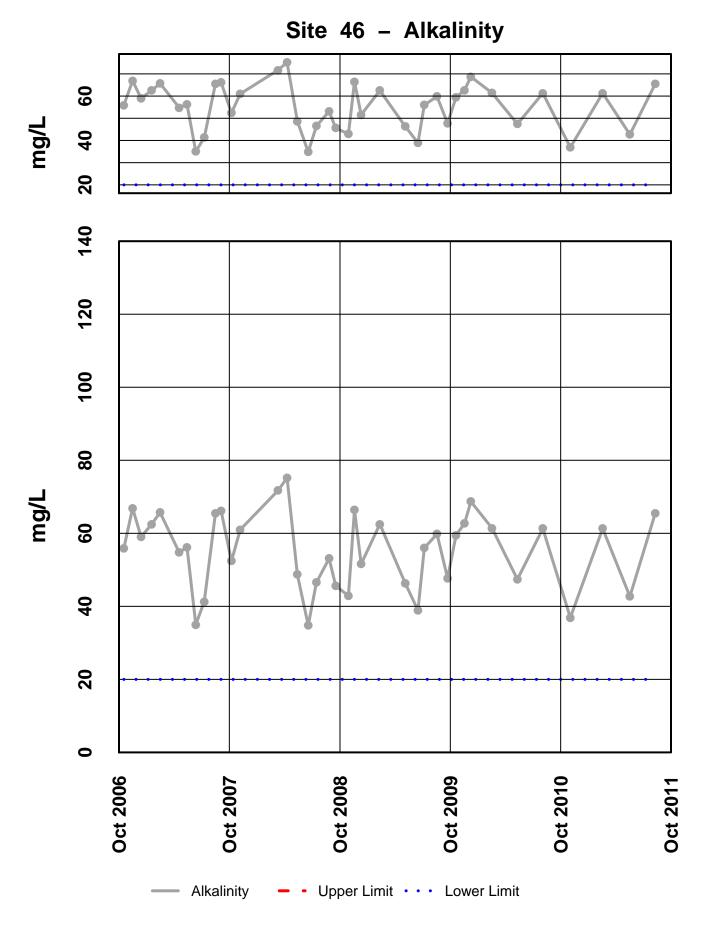
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

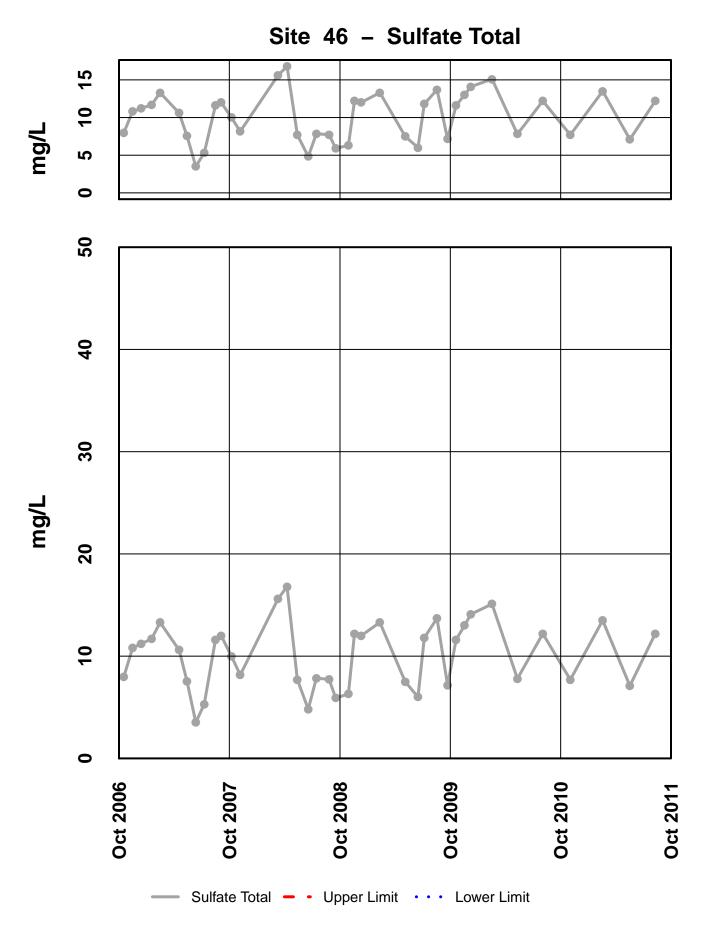



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

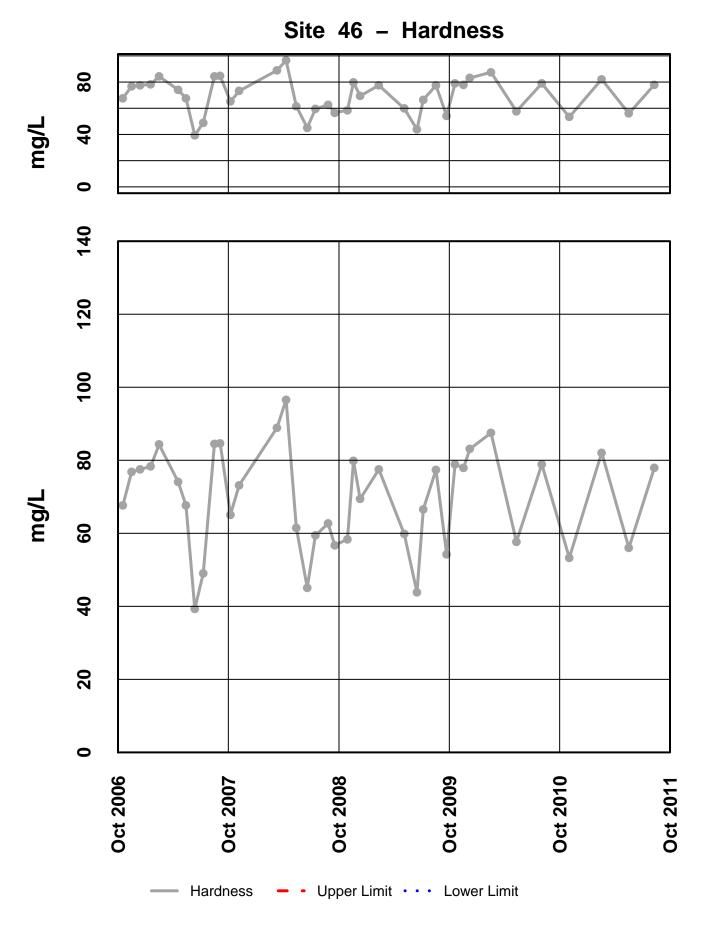


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

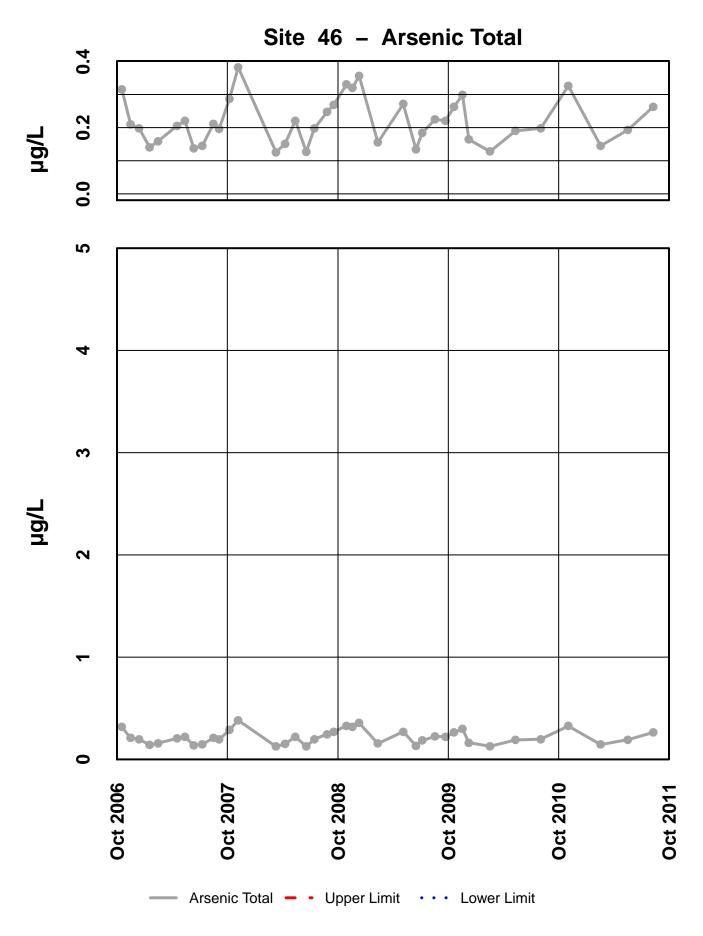

su

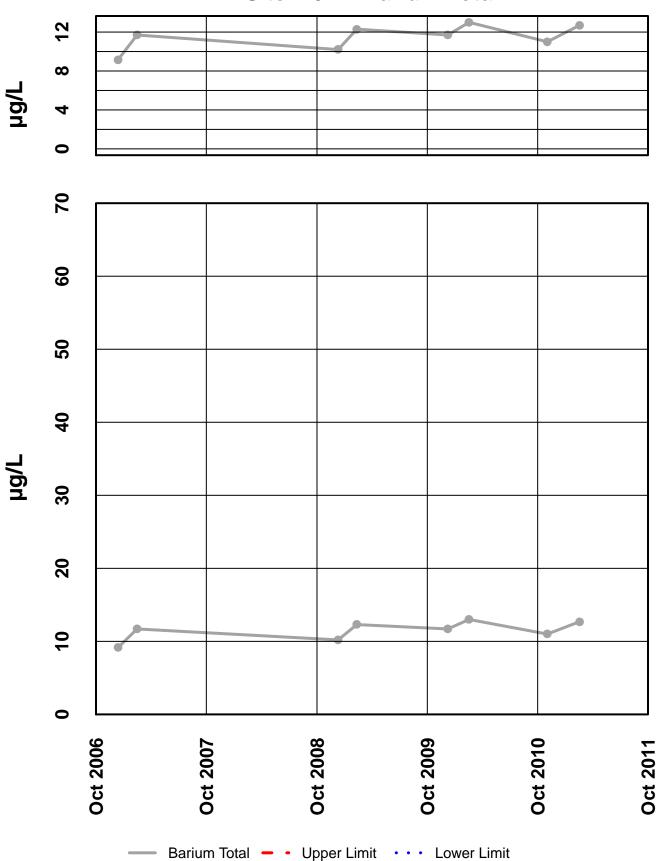

su




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

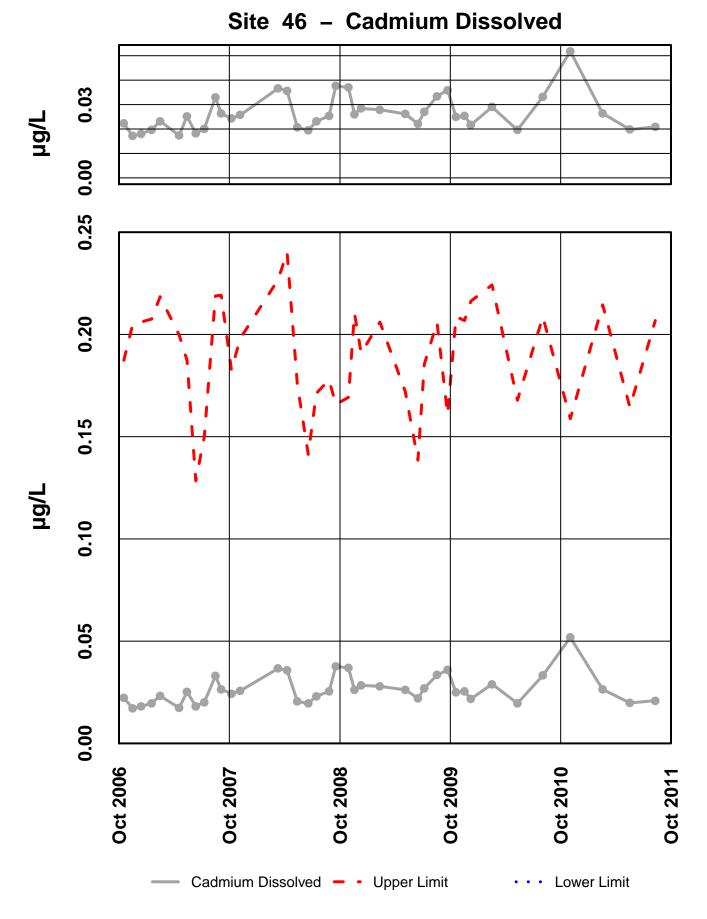
SU



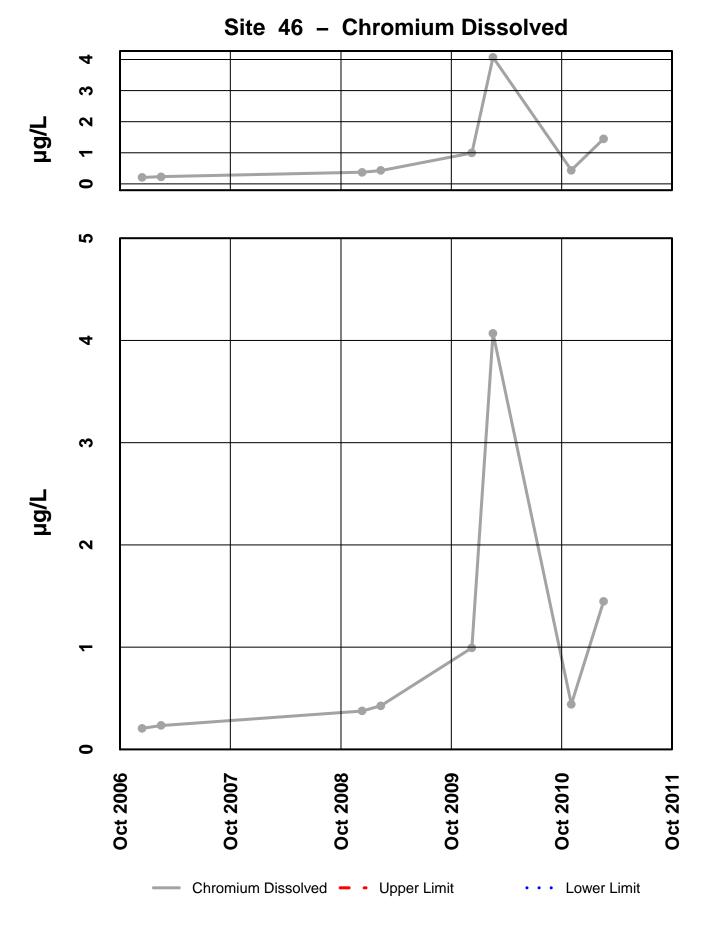




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

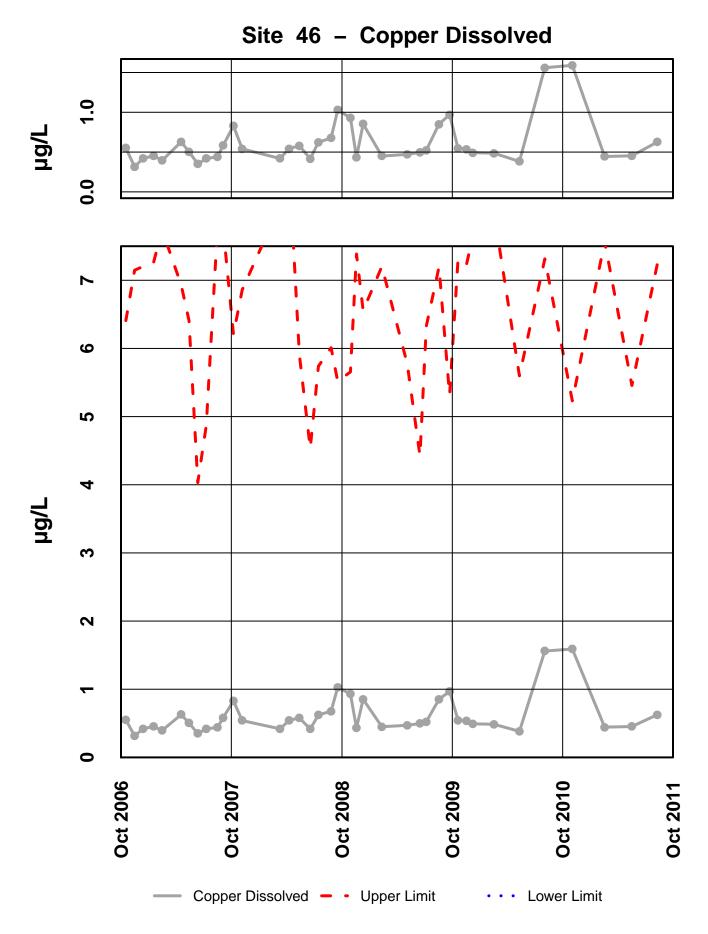



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

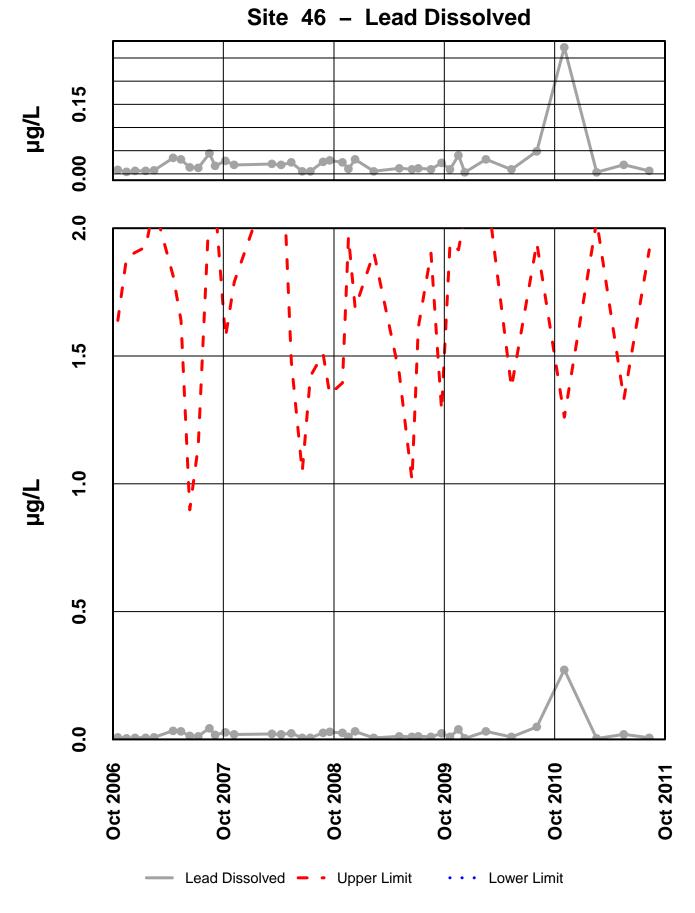




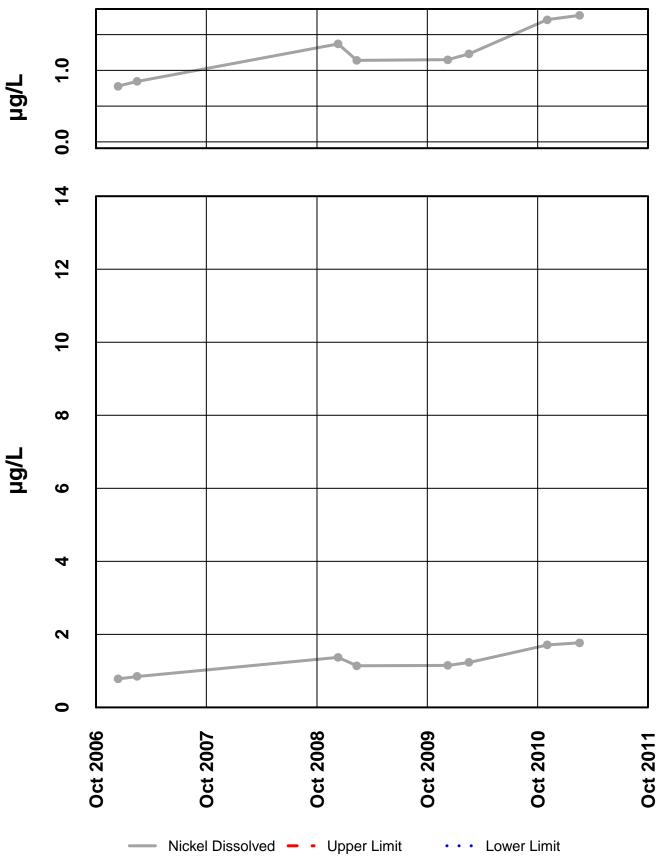

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


# Site 46 – Barium Total

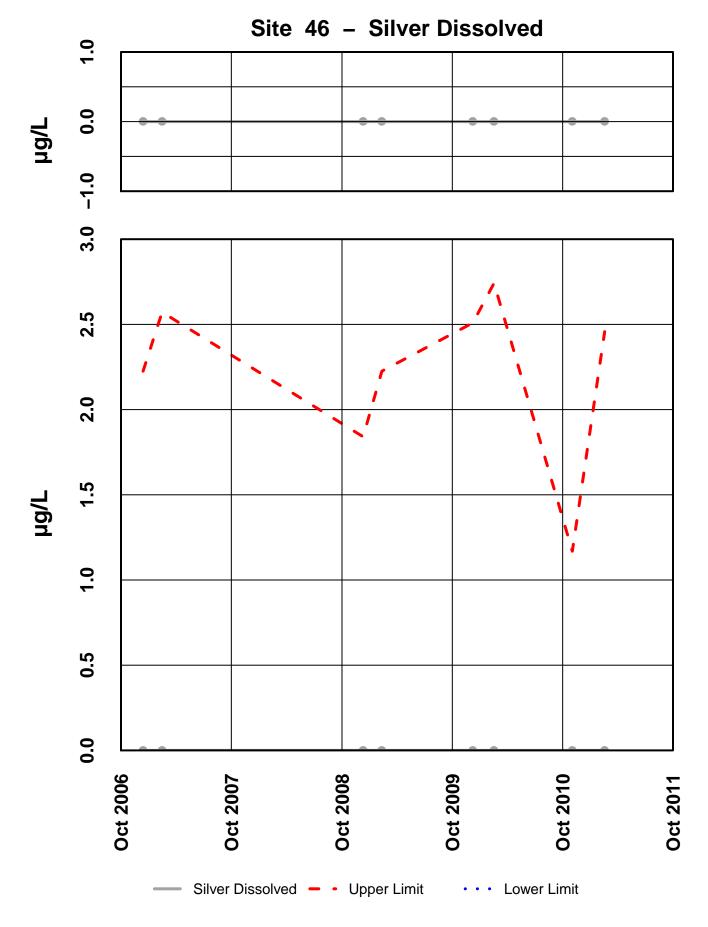



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

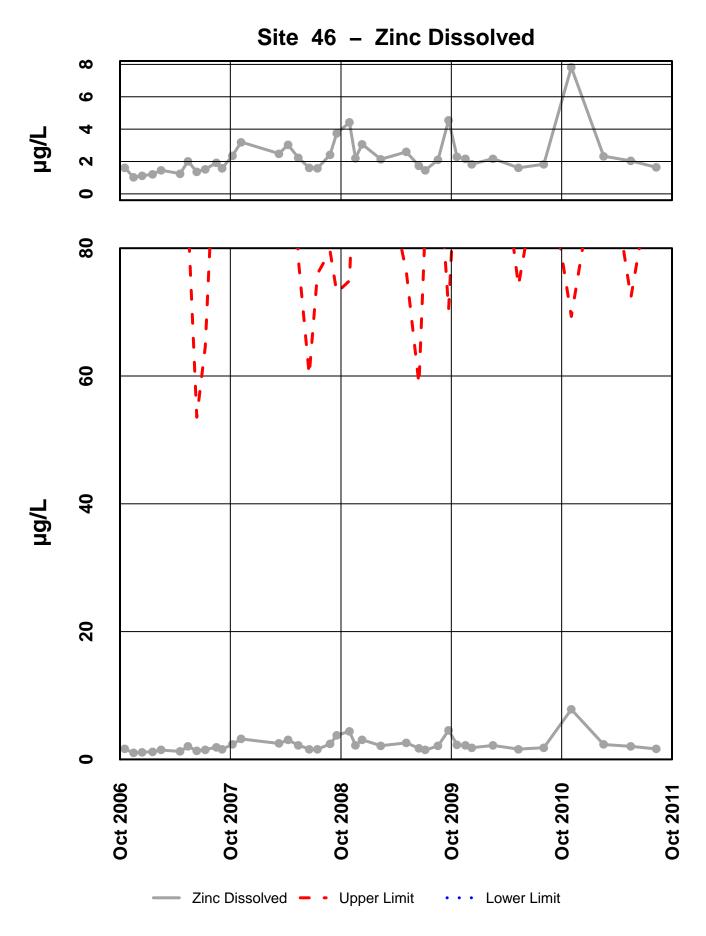


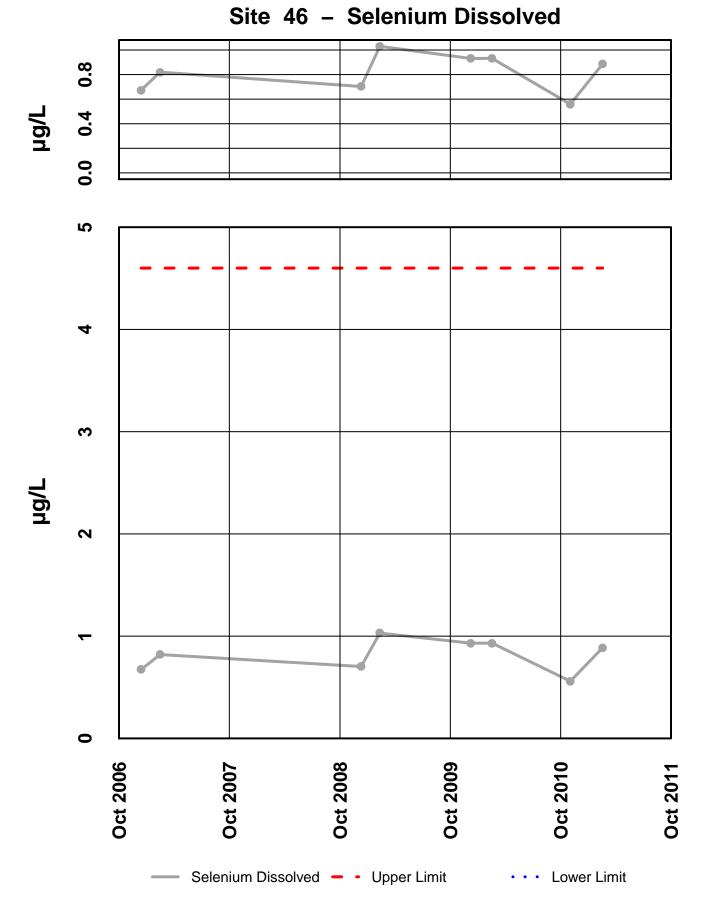

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

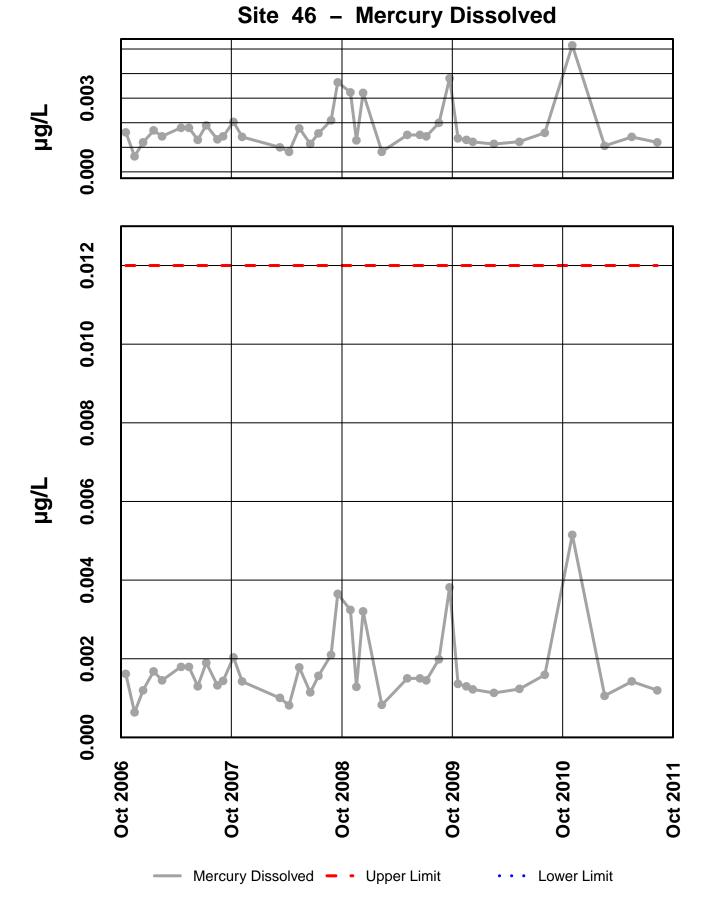



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



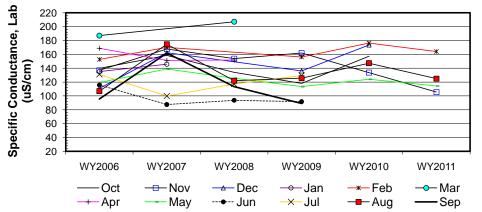


Site 46 – Nickel Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis








Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

w label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	139.9	137	110.9	135.1	152.7	187.1	168.7	119.4	115.7	131.1	106.8	95.6
b	WY2007	158.4	167.7	162.4	145.8	170		151.3	138.8	87.6	99.9	174.6	161.8
С	WY2008	134	153.8				207	151.8	125.5	93.7	117.2	121.9	113.4
d	WY2009	118	161.9	136.1		156.2			113.5	91.7	129.5	125.6	89
е	WY2010	157.4	133.6	173.5		176.2			124			147.2	
f	WY2011		105.6			164			114.3			125	
	n	5	6	4	2	5	2	3	6	4	4	6	4
	t1	5	6	4	2	5	2	3	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1	1	1	1		-1	1	-1	-1	1	1
	c-a	-1	1				1	-1	1	-1	-1	1	1
	d-a	-1	1	1		1			-1	-1	-1	1	-1
	e-a	1	-1	1		1			1			1	
	f-a		-1			1			-1			1	
	c-b	-1	-1					1	-1	1	1	-1	-1
	d-b	-1	-1	-1 1		-1			-1	1	1	-1	-1
	e-b f-b	-1	-1	1		-1			-1			-1	
	d-t d-c	-1	-1			-1			-1	-1	1	-1	-1
	e-c	-1	-1						-1	-1	1	1	-1
	f-c		-1						-1			1	
	e-d	1	-1	1		1			1			1	
	f-d		-1	·		1			1			-1	
	f-e		-1			-1			-1			-1	
	S _k	-2	-7	4	1	4	1	-1	-5	-2	0	3	-2
σ	² s=	16.67	28.33	8.67	1.00	16.67	1.00	3.67	28.33	8.67	8.67	28.33	8.67
	S _k /\sigma _S	-0.49	-1.32	1.36	1.00	0.98	1.00	-0.52	-0.94	-0.68	0.00	0.56	-0.68
	$Z^{2}_{k}$	0.24	1.73	1.85	1.00	0.96	1.00	0.27	0.88	0.46	0.00	0.32	0.46
	$\Sigma Z_k =$	0.28	Г	Tie Extent	t,	t ₂	t ₃	t₄	t _s			Σn	51
	$\Sigma Z_{k}^{2}$	0.28 9.17										ΣS _k	
	∠∠_ _k = Z-bar=∑Z _k /K=	9.17 0.02		Count	51	0	0	0	0			$20_k$	-6

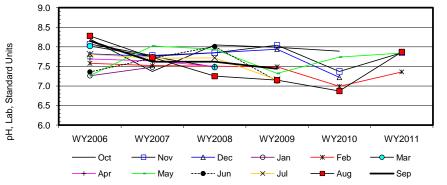
Seasonal Kendall ana	lysis for Specific	Conductance.	Lab (	uS/cm)

$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	9.16	@α=5% χ ² _(K-1) =	19.68	Test for station homogeneity	
	р	0.607			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	-0.40	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
158.67	р	0.346			H _A (± trend)	REJECT



	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-7.18		3.70
0.050	-5.36	0.04	2.14
0.100	-3.01	-0.64	1.23
0.200	-2.06		0.66

#4


**#46** 

### Seasonal Kendall analysis for pH, Lab, Standard Units

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	8.2	8.1	7.8	7.3	7.6	8.0	7.7	7.3	7.4	7.8	8.3	8.2
b	WY2007	7.4	7.8	7.8	7.5	7.5		7.6	8.0	7.7	7.7	7.7	7.6
С	WY2008	8.1	7.9				7.5	7.5	7.9	8.0	7.7	7.3	7.6
d	WY2009	8.0	8.0	7.9		7.5			7.3	7.1	7.2	7.2	7.4
е	WY2010	7.9	7.4	7.2		7.0			7.7			6.9	
f	WY2011		7.9			7.4			7.8			7.9	
	n	5	6	4	2	5	2	3	6	4	4	6	4
	t,	5	4	4	2	5	2	3	6	4	4	6	2
	t ₂	0	1	0	0	0	0	0	0	0	0	0	1
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	-1	1	-1		-1	1	1	-1	-1	-1
	c-a	-1	-1				-1	-1	1	1	-1	-1	-1
	d-a	-1	-1	1		-1			1	-1	-1	-1	-1
	e-a	-1	-1	-1		-1			1			-1	
	f-a		-1			-1			1			-1	
	c-b	1	1					-1	-1	1	1	-1	0
	d-b	1	1	1		-1			-1	-1	-1	-1	-1
	e-b	1	-1	-1		-1			-1			-1	
	f-b		1			-1			-1			1	
	d-c	-1	1						-1	-1	-1	-1	-1
	e-c	-1	-1						-1			-1	
	f-c	4	0	-1					-1			1	
	e-d f-d	-1	-1 -1	-1		-1 -1			1			-1	
	f-e		-1			-1			1			1	
	S _k	-4	-4	-2	1	-8	-1	-3	1	0	-4	-7	-5
	² s=	16.67	27.33	8.67	1.00	16.67	1.00	3.67	28.33	8.67	8.67	28.33	7.67
	s_ S _k /σ _s	-0.98	-0.77	-0.68	1.00	-1.96	-1.00	-1.57	0.19	0.00	-1.36	-1.32	-1.81
	Z ² _k	0.96	0.59	0.46	1.00	3.84	1.00	2.45	0.04	0.00	1.85	1.73	3.26
	$\Sigma Z_k =$	-10.24	Γ	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	51
	$\Sigma Z_{k}^{2}$	17.17		Count	47	2	0	0	0			$\Sigma S_k$	-36
7	κ γ-bar_Σ7. /K_	-0.85	Ļ	200.11		-	v	•	,			N	

Z-bar= $\Sigma Z_k/K$ = -0.85

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	8.43	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.674			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-2.80	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
156.67	р	0.003			H _A (± trend)	ACCEPT

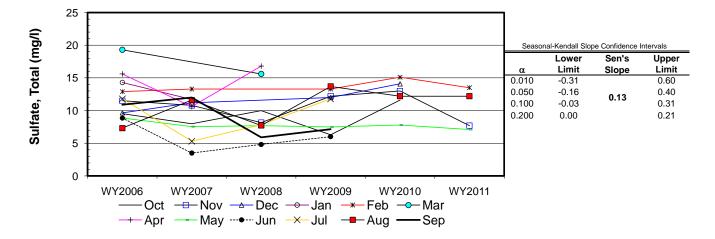


	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.14		-0.03
0.050	-0.10	-0.08	-0.04
0.100	-0.10	-0.00	-0.05
0.200	-0.09		-0.06

-1.0%

Site #46 Seasonal Kendall analysis for Total Alk, (mg/l)

label													
l )	Water Year WY2006 WY2007	Oct 60.8 55.9	Nov 59.8 66.9	<b>Dec</b> 51.9 59.0	Jan 63.0 62.5	Feb 59.6 65.7	<b>Mar</b> 73.6	Apr 62.4 54.8	May 56.3 56.2	Jun 53.3 35.0	Jul 62.0 41.3	Aug 54.1 65.5	<b>Sep</b> 64. 66.
;	WY2008	52.4	61.0	59.0	02.5	05.7	71.7	75.2	48.7	35.0 34.8	41.3	53.1	45
l	WY2009	42.9	66.4	51.6		62.5			46.3	38.9	56.0	59.8	47
	WY2010 WY2011	59.5	62.7 36.9	68.7		61.4 61.3			47.4 42.7			61.3 65.5	
_	n	5	6	4	2	5	2	3	6	4	4	6	
_	t₁ t₂	5 0	6 0	4 0	2 0	5 0	2 0	3 0	6 0	4 0	4 0	4 1	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
_	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
-	b-a	-1	1	1	-1	1		-1	-1	-1	-1	1	
	c-a d-a	-1 -1	1 1	-1		1	-1	1	-1 -1	-1 -1	-1 -1	-1 1	
	e-a	-1	1	-1		1			-1	-1	-1	1	
	f-a		-1			1			-1			1	
	c-b d-b	-1 -1	-1 -1	-1		-1		1	-1 -1	-1 1	1 1	-1 -1	•
	e-b	1	-1	1		-1			-1			-1	
	f-b d-c	-1	-1 1			-1			-1 -1	1	1	0 1	
	e-c	1	1						-1			1	
	f-c e-d	1	-1 -1	1		-1			-1 1			1 1	
	f-d	I	-1	I		-1			-1			1	
=	f-e S _k	-4	-1 -3	2	-1	-1 -2	-1	1	-1 -13	-2	0	<u>1</u> 6	-
	2	10.07											
	² <b>s=</b> S _k /σ _S	16.67 -0.98	28.33 -0.56	8.67 0.68	1.00 -1.00	16.67 -0.49	1.00 -1.00	3.67 0.52	28.33 -2.44	8.67 -0.68	8.67 0.00	27.33 1.15	8.6 -0.6
	2 - k	0.96	0.32	0.46	1.00	0.43	1.00	0.32	5.96	0.46	0.00	1.32	0.4
	ĸ					-		-				-	
			Г									<b>N</b>	
	$\Sigma Z_k = \Sigma Z_k^2$	-5.49 12.46	[	Tie Extent	t₁ 49	t ₂	t₃ 0	t4	t₅ O			Σn ΣSr	51 -19
Z-	$\Sigma Z_k = \Sigma Z_k^2$ -bar= $\Sigma Z_k/K =$	-5.49 12.46 -0.46	[	Tie Extent Count	t ₁ 49	t ₂ 1	t ₃ 0	t ₄ 0	t5 0			$\Sigma$ n $\Sigma$ S _k	51 -19
z-	$\Sigma Z_{k}^{2}$ =-bar= $\Sigma Z_{k}/K$ =	12.46 -0.46	9.95		49	1	0	0	0	tion homoc	jeneity		
z-	$\Sigma Z_{k}^{2} =$	12.46 -0.46 <(Z-bar) ² =	9.95 <b>0.535</b>		49			0 T	0 est for sta	tion homog			
Z-	$\Sigma Z_{k}^{2} =$ -bar= $\Sigma Z_{k}/K =$ $\chi_{h}^{2} = \Sigma Z_{k}^{2} - \lambda$	12.46 -0.46 <(Z-bar) ² = <b>p</b>	0.535		49 @α=5%	1 % χ ² _(K-1) =	0	0 T	0		ACCEPT		
Z-	$\Sigma Z_{k}^{2}$ =-bar= $\Sigma Z_{k}/K$ =	12.46 -0.46 <(Z-bar) ² =			49 @α=5%	1	0	0 T	$\frac{0}{est \text{ for sta}}$	trend)			
30 F	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0	0 T	0 est for sta _ ² h<χ ² (K-1) <b>H₀</b> (No	trend)	ACCEPT ACCEPT		
30 70	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0	0 T	0 est for sta _ ² h<χ ² (K-1) <b>H₀</b> (No	trend)	ACCEPT ACCEPT		
30 F	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0 19.68 1.96	0 T	0 est for sta _ ² h<χ ² (K-1) <b>H₀</b> (No	trend) trend)	ACCEPT ACCEPT REJECT	ΣS _k	-19
30 70 60	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0 19.68 1.96	0 T	0 est for sta _ ² h<χ ² (K-1) <b>H₀</b> (No	trend) trend) Seasona	ACCEPT ACCEPT REJECT al-Kendall Slope Lower	ΣS _k e Confidence II Sen's	-19 ntervals Upper
30 <del>-</del> 70 <del>-</del> 50 <del>-</del>	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0 19.68 1.96	0 T	0 est for sta _ ² h<χ ² (K-1) <b>H₀</b> (No	trend) trend) <u>Seasona</u> α 0.010	ACCEPT ACCEPT REJECT al-Kendall Slope Lower Limit -2.90	ΣS _k	-19 Upper Limit 0.80
30 70 60	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0 19.68 1.96	0 T	$0$ est for sta $\int_{h}^{2} \sqrt{2} (K-1)$ H ₀ (No H _A (±)	trend) trend) Seasona	ACCEPT ACCEPT REJECT al-Kendall Slope Lower Limit	ΣS _k e Confidence II Sen's	-19 Upper Limit
	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	$\frac{12.46}{-0.46}$ $\overline{\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}}$	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² _(K-1) =	0 19.68 1.96		$0$ est for sta $\int_{h}^{2} \sqrt{2} (K-1)$ H ₀ (No H _A (±)	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT al-Kendall Slope Lower Limit -2.90 -2.07 -1.81	ΣS _k e Confidence II Sen's Slope	-19 Upper Limit 0.11 -0.10
	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} +$ $\Sigma VAR(S_{k})$ 157.67	12.46 -0.46 $\langle (Z-bar)^2 =$ <b>p</b> Z _{calc} <b>p</b>	<b>0.535</b> -1.43		49 @α=5%	1 % χ ² (κ-1)= 2.5% Z=	0 19.68 1.96		$\begin{array}{c} 0 \\ \hline \\ eest for sta} \\ \hline \\ H_0 (No \\ H_A (\pm \\ \hline \\ \hline \\ \hline \\ H_A (\pm \\ \hline \\ $	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT al-Kendall Slope Lower Limit -2.90 -2.07 -1.81	ΣS _k e Confidence II Sen's Slope	-19 Upper Limit 0.80 0.11 -0.10
	$\Sigma Z^{2}_{k} =$ $bar = \Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z_{k}^{2}/K =$ $\Sigma VAR(S_{k})$ $157.67$	12.46 -0.46 ((Z-bar) ² = <b>p</b> Z _{calc} <b>p</b>	0.535 -1.43 0.076	Count	49 @α=59 @α/2=	1 6 χ ² (κ-1)= 2.5% Z= 009	0	0 Τ χ	$\begin{array}{c} 0 \\ \hline \\ eest for sta} \\ \hline \\ H_0 (No \\ H_A (\pm \\ \hline \\ \hline \\ \hline \\ H_A (\pm \\ \hline \\ $	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT al-Kendall Slope Lower Limit -2.90 -2.07 -1.81	ΣS _k e Confidence II Sen's Slope	-19 Upper Limit 0.80 0.11 -0.10


Site #	<b>#46</b>
--------	------------

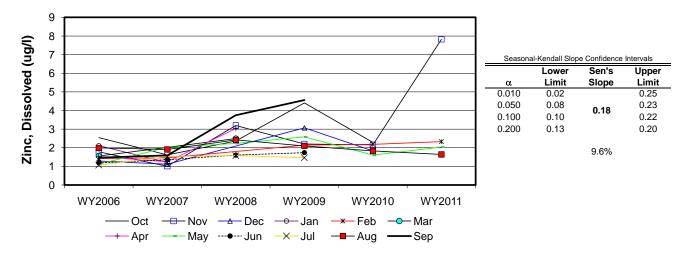
Seasonal Kendall analysis for Sulfate, Total (mg/l)

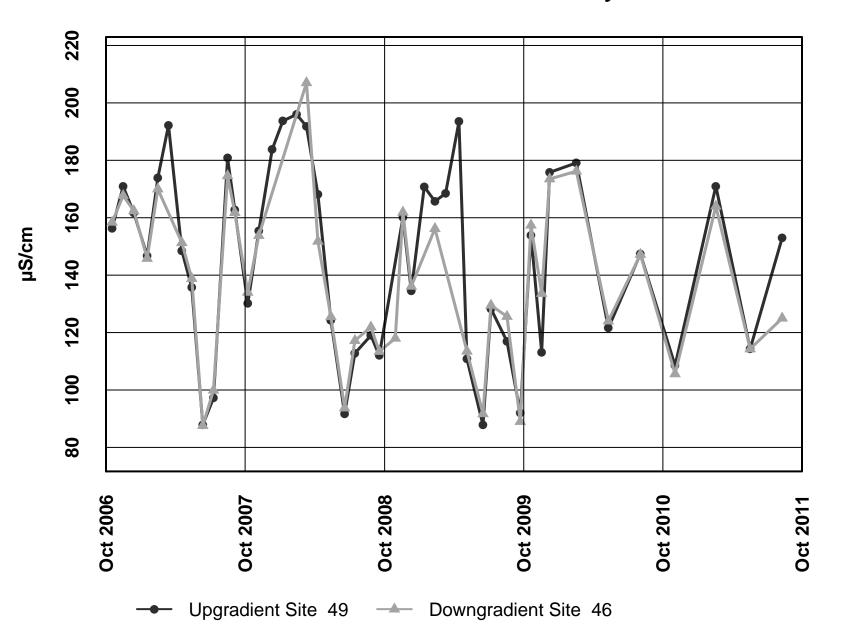
Unio				-						(			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	9.5	11.5	9.7	14.3	12.9	19.3	15.6	8.9	8.9	11.8	7.3	10.9
b	WY2007	8.0	10.8	11.2	11.7	13.3		10.6	7.6	3.5	5.3	11.6	12.0
С	WY2008	10.0	8.2				15.6	16.8	7.7	4.8	7.9	7.7	5.9
d	WY2009	6.3	12.2	12.0		13.3			7.5	6.0	11.8	13.7	7.2
е	WY2010	11.6	13.0	14.1		15.1			7.8			12.2	
f	WY2011		7.7			13.5			7.1			12.2	
	n	5	6	4	2	5	2	3	6	4	4	6	4
	t,	5	6	4	2	3	2	3	6	4	2	4	4
	t ₂	0	0	0	0	1	0	0	0	0	1	1	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1	1	-1	1		-1	-1	-1	-1	1	1
	c-a	1	-1				-1	1	-1	-1	-1	1	-1
	d-a	-1	1	1		1			-1	-1	0	1	-1
	e-a	1	1	1		1			-1			1	
	f-a		-1			1			-1			1	
	c-b	1	-1					1	1	1	1	-1	-1
	d-b	-1	1	1		0			-1	1	1	1	-1
	e-b	1	1	1		1			1			1	
	f-b		-1			1			-1			1	
	d-c	-1	1						-1	1	1	1	1
	e-c	1	1						1			1	
	f-c e-d	1	-1	1		1			-1			1	
	e-u f-d	1	-1	1		1			-1			-1	
	f-e		-1 -1			-1			-1 -1			-1	
	S _k	2	-1	6	-1	7	-1	1	-7	0	1	8	-2
o	5 ² s=	16.67	28.33	8.67	1.00	15.67	1.00	3.67	28.33	8.67	7.67	27.33	8.67
	S _k /σ _s	0.49	-0.19	2.04	-1.00	1.77	-1.00	0.52	-1.32	0.00	0.36	1.53	-0.68
	$Z_k^2$	0.24	0.04	4.15	1.00	3.13	1.00	0.27	1.73	0.00	0.13	2.34	0.46
	$\Sigma Z_k =$	2.53	j	Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	51
	$\Sigma Z_k^2 =$			Count	45	3	0	0	0			$\Sigma S_k$	13
7	$har = \sum 7 / K =$	0.21											

Z-bar= $\Sigma Z_k/K$ = 0.21

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	13.96	@α=5% χ ² _(K-1) =	19.68	Test for station homo	geneity
	р	0.235			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	0.96	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
155.67	р	0.832			H _A (± trend)	REJECT

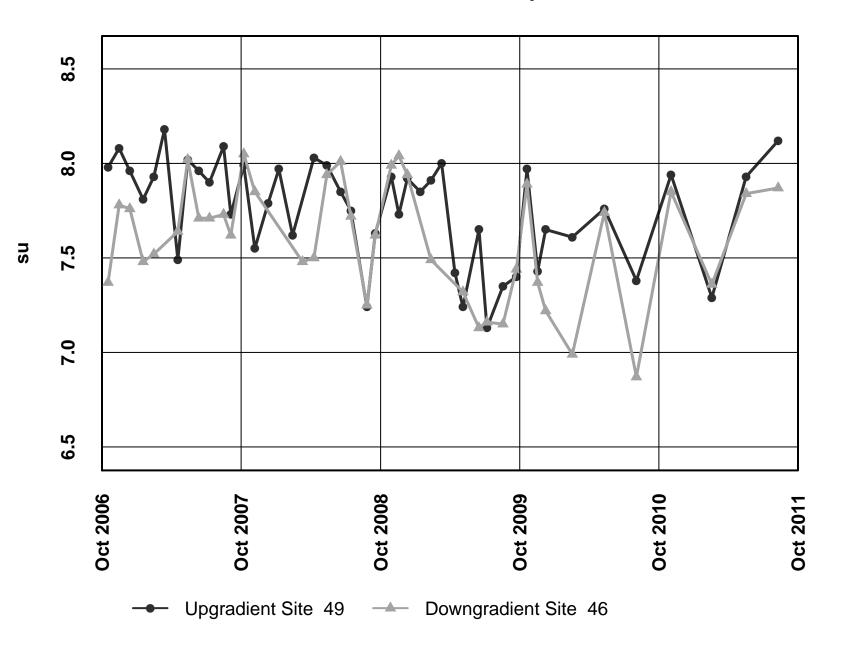



Site	#4

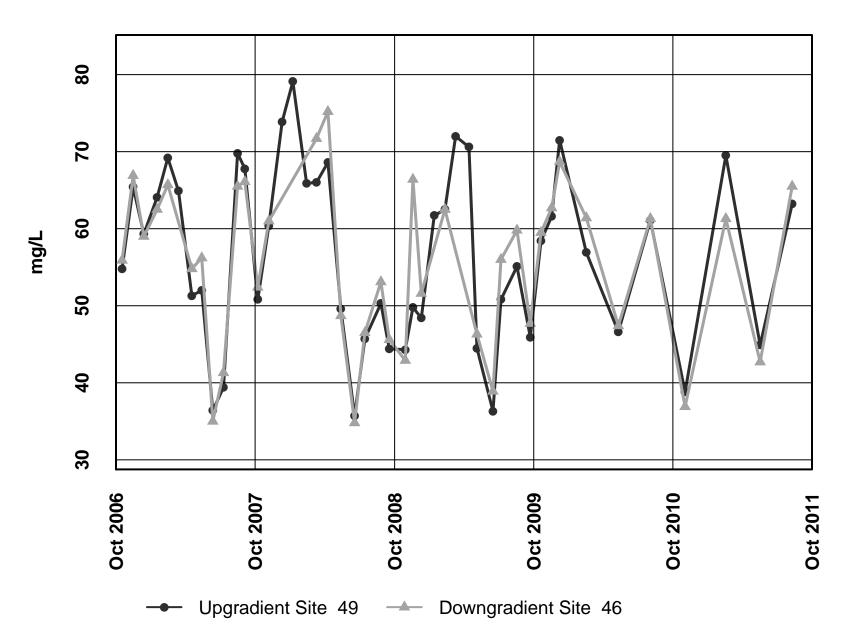

**I**6

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

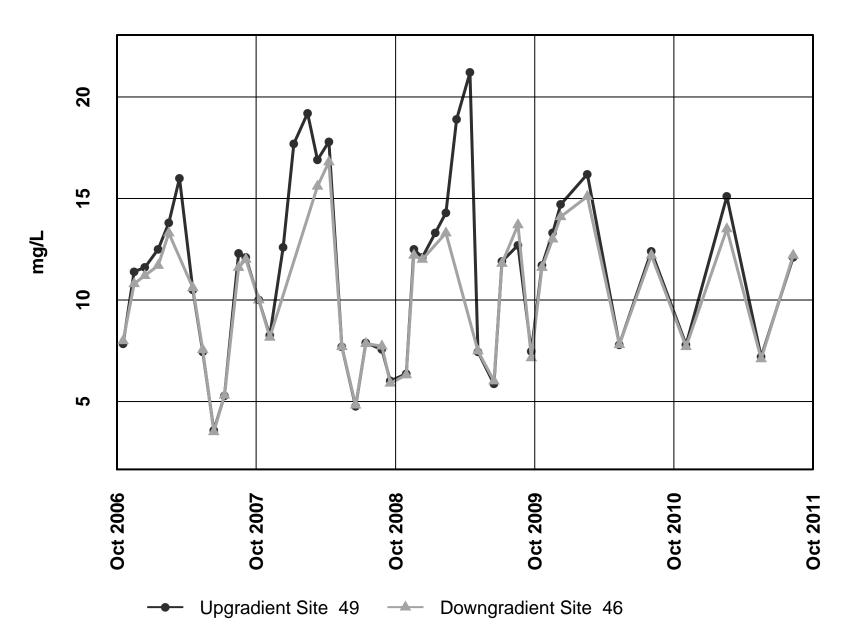
Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
WY2006	2.5	1.8	1.3	2.1	1.4	1.6	1.5	1.1	1.2	1.1	2.0	1.5
WY2007	1.6	1.0	1.1	1.2	1.5		1.3	2.0	1.4	1.5	1.9	1.6
WY2008	2.4	3.2				2.5	3.0	2.2	1.6	1.6	2.4	3.8
WY2009	4.4	2.2	3.1		2.1			2.6	1.7	1.5	2.1	4.6
WY2010	2.3	2.2	1.8		2.2			1.6			1.8	
WY2011		7.8			2.3			2.0			1.6	
n	5	6	4	2	5	2	3	6	4	4	6	4
t,	5	6	4	2	5	2	3	6	4	4	6	4
												0
												0
t ₄												0
t ₅	0	0	0	0	0	0	0	0	0	0	0	0
b-a	-1	-1	-1	-1	1	_	-1	1	1	1	-1	1
						1	1					1
		1			1			1	1	1		1
	-1	1	1		1			1			-1	
					1			1			-	
	1	1					1					1
	1	1			1			1	1	-1	-	1
	1	•	1		1			-1				
		•			1			1				
	-	•						1	1	-1		1
	-1							-1				
								-				
	-1		-1		-			-			-	
		-			1							
					1	<u> </u>						
Sk	0	(	2	-1	10	1	1	5	6	2	-/	6
2 _s =	16.67	28.33	8.67	1.00	16.67	1.00	3.67	28.33	8.67	8.67	28.33	8.67
$S_k\!/\!\sigma_S$	0.00	1.32	0.68	-1.00	2.45	1.00	0.52	0.94	2.04	0.68	-1.32	2.04
Z ² _k	0.00	1.73	0.46	1.00	6.00	1.00	0.27	0.88	4.15	0.46	1.73	4.15
$\Sigma Z_{k} =$	9.35	F	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	51
											ΣS	32
		L	Journ	51	U	U	U	U			20 _K	52
-bar=22k/K=	0.78											
	WY2006           WY2007           WY2008           WY2010           WY2011           n           t₁           t₂           t₃           t₃           t₀           d⋅a           c-a           d-a           c-a           d-a           c-b           d-b           d-b           d-b           d-b           d-b           d-c           e-a           f-b           d-c           e-c           f-b           d-c           e-c           f-b           d-c           e-c           f-b           d-c           e-b           f-b           d-c           S_k           S=           S_k/\sigma_S	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

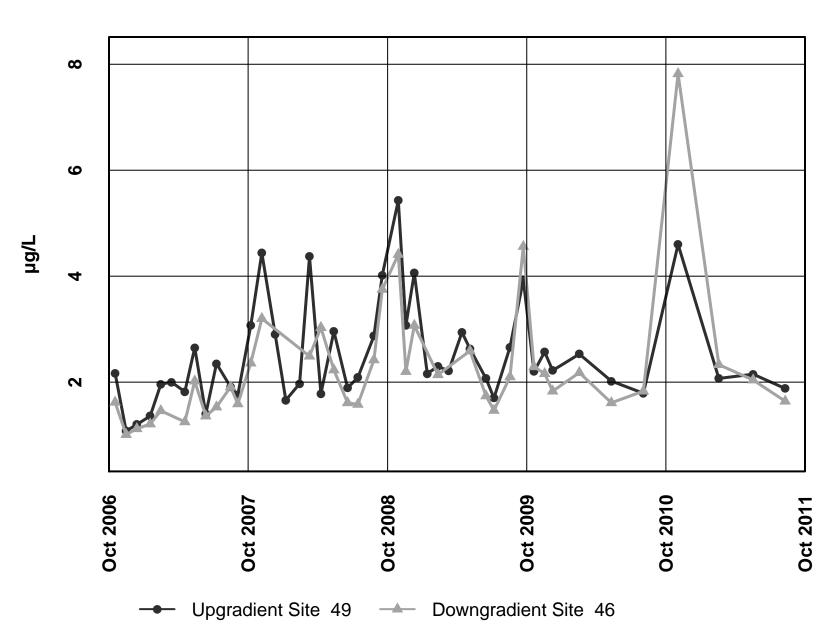

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	14.57	@α=5% χ ²	(K-1)=	19.68	Test for station homog	eneity
	р	0.203				$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	2.46	@α/2=2.5%	Z=	1.96	H ₀ (No trend)	REJECT
158.67	р	0.993				H _A (± trend)	ACCEPT






Site 49 vs. Site 46 – Conductivity Field


Site 49 vs. Site 46 – pH Field














Site 49 vs. Site 46 – Zinc Dissolved

Wil	-	ned-ranks ⁻ Form	test		
Variable:			ance, Lab (	uS/cm)	
Site	#49	<b>#</b> 46	Differe	ences	
Year	WY2011	WY2011	D	D	Rank
Oct					
Nov	108.5	105.6	2.9	2.9	1
Dec					
Jan					
Feb	171.0	164.0	7.0	7.0	2
Mar					
Apr					
May	114.3	114.3	0.0		
Jun					
Jul					
Aug	153.0	125.0	28.0	28.0	3
Sep					
Median	133.7	119.7	5.0	7.0	
	n	m		N=	: 3
	4	3		$\Sigma R =$	6
	α	1	ſ	W+=	٦
	5.0%			6	
	<b>W'</b> α,n				
				p-test	
	#N/A	1	l	6.000	J
H ₀	median [D]	=0	ACCEPT		ר
H ₁	median [D]	-0			

VVIIC	coxon-sigr Exact	Form	test		
Variable:	pH, Lab	o, Standard	l Units		
0'1-	X	Y	D'#		
Site	#49	#46	Differe		Denla
Year	WY2011	WY2011	D	D	Rank
Oct	7.04	7.05	0.00	0.00	2
Nov	7.94	7.85	0.09	0.09	3
Dec Jan					
Feb	7.29	7.36	-0.07	0.07	-1
Mar	1.29	7.30	-0.07	0.07	-1
Apr					
May	7.93	7.84	0.09	0.09	2
Jun	1.00	7.04	0.00	0.00	~
Jul					
Aug	8.12	7.87	0.25	0.25	4
Sep					
Median	7.94	7.85	0.09	0.09	
	n	m		N=	4
-	4	4	•	$\Sigma R =$	
					-
1	α	1	I	W+=	
	95.0%			9	
	<b>W'</b> α,n			p-test	
	#N/A			0.000	
H ₀	median [D]	=0	ACCEPT		
H ₁	median [D]	>0			

Wile	coxon-sign Exact		test		_
Variable:	Total All X	k, (mg/l) <b>Y</b>			
Site	#49	#46	Differ	rences	
Year	WY2011	WY2011	D	D	Rank
Oct					
Nov	38.8	36.9	1.9	1.9	1
Dec					
Jan					
Feb	69.5	61.3	8.2	8.2	4
Mar					
Apr					
May	44.9	42.7	2.2	2.2	2
Jun					
Jul		05.5			
Aug	63.2	65.5	-2.3	2.3	-3
Sep	<b>E</b> 4 4	50.0	0.1		
Median	54.1	52.0	2.1	2.3	
	n	m		N=	4
	4	4		$\Sigma R=$	4
	α			W+=	
	95.0%			7	
	<b>W'</b> α,n			p-test	
	#N/A			0.000	l
H _o	median [D]=	=0	ACCEPT		
H₁	median [D]>				

Wile		ned-ranks f Form	test		
Variable:		, Total (mg	/I)		
0.4	X	Y	D'''		
Site	#49	#46	Differe		Dent
Year	WY2011	WY2011	D	D	Rank
Oct	7.0		0.4	0.4	
Nov	7.8	7.7	0.1	0.1	1
Dec					
Jan Tab	15 1	10 E	1.0	1.6	4
Feb	15.1	13.5	1.6	1.6	4
Mar Apr					
Apr May	7.2	7.1	0.1	0.1	2.5
Jun	1.2	1.1	0.1	0.1	2.0
Jul					
Aug	12.1	12.2	-0.1	0.1	-2.5
Sep			0.1	0.1	2.0
Median	10.0	10.0	0.1	0.1	
	n	m		N=	
	4	4		$\Sigma R=$	5
	α	1	г	W+=	1
	5.0%			7.5	
	<b>W'</b> α,n				
	#N/A			p-test 0.000	
	#IN/A	J	L	0.000	]
H ₀	median [D]	=0	REJECT		
H ₁	median [D]	-0	ACCEPT		

Wile	coxon-sign Exact		est		
Variable:	Zinc, Di	ssolved (u	g/l)		
Site	<b>X</b> #49	<b>Y</b> #46	Diffor		
Year	#49 WY2011	#46 WY2011	Differe D		Rank
Oct	VV12011	VV12011		וטן	naiin
Nov	4.60	7.82	-3.22	3.22	-4
Dec	4.00	1.02	-3.22	5.22	-4
Jan					
Feb	2.07	2.33	-0.26	0.26	-3
Mar	2.07	2.00	-0.20	0.20	-0
Apr					
May	2.15	2.04	0.11	0.11	1
Jun				••••	
Jul					
Aug	1.88	1.64	0.24	0.24	2
Sep					
Median	2.11	2.19	-0.08	0.25	
-	n	m		N=	
	4	4		$\Sigma R =$	-4
]	α			W+=	1
	5.0%			3	
	<b>W'</b> α,n			p-test	
	#N/A			0.000	
L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I	0.000	
H ₀	median [D]=	=0	REJECT		
H ₁	median [D]-	-0	ACCEPT		I

## INTERPRETIVE REPORT SITE 57 "MONITORING WELL 23-00-03"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes		
No outliers have	been identified by HG	CMC for the peri-	od of October	2006 through S	eptember 2011.	

The data for Water Year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

### **Table of Exceedance for Water Year 2011**

		Limits						
Sample Date	Parameter	Value	Lower	Upper	Hardness			
No exceedan	ces have been identified by	y HGCMC for the per	riod of October	2010 through S	September 2011.			

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Though values for dissolved cadmium, dissolved lead, and dissolved zinc had shown a large variation in the past, the current water year's data continues the trend from water year 2009 of these analytes leveling out. Also, as with the decrease in dissolved chromium noted at the other sites (site 48, site 6, site 54, site 49, site 46, and site 13), dissolved chromium was seen to decrease at this site too during the current water year.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). Datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated.

	Mann-Ker	ndall test sta	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.13			
pH Field	6	0.04			
Alkalinity, Total	6	< 0.01	-	-4.00	-2.9
Sulfate, Total	6	0.30			
Zinc, Dissolved	6	0.30			

#### **Table of Summary Statistics for Trend Analysis**

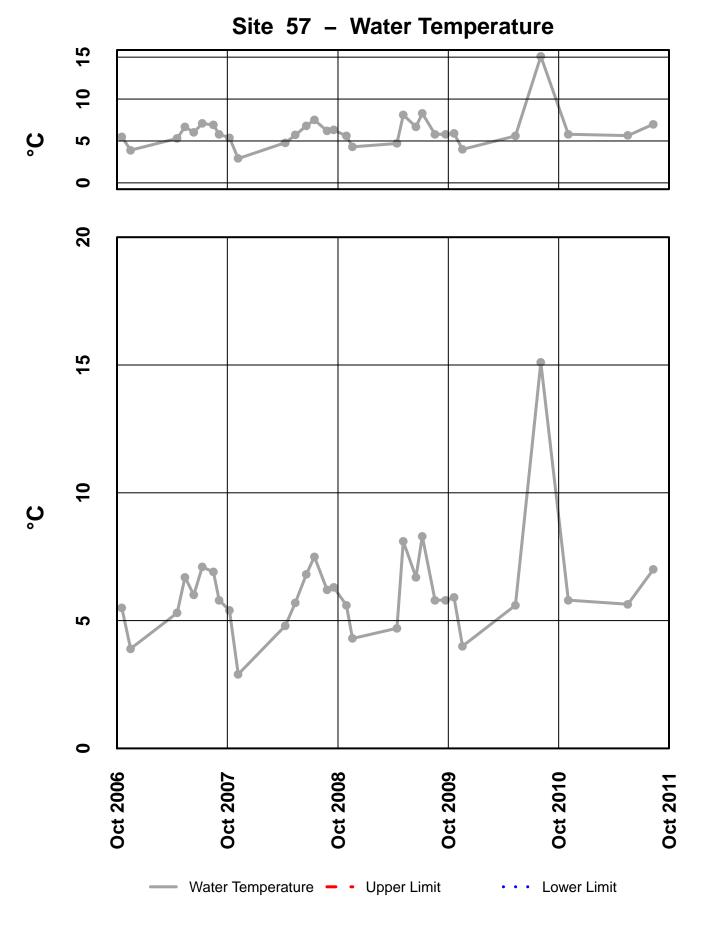
* Number of Years ** Significance level

The dataset for total alkalinity shows a statistically significant (p<0.01) trend with a slope estimate of -4.00 mg/L/yr or a 2.9% decrease, this is similar to the value obtained in the 2010 water year of -4.88 mg/L/yr. Given that Site 57 is an upgradient reference site, this trends is interpreted by HGCMC to be part of the natural variation that characterizes this site.

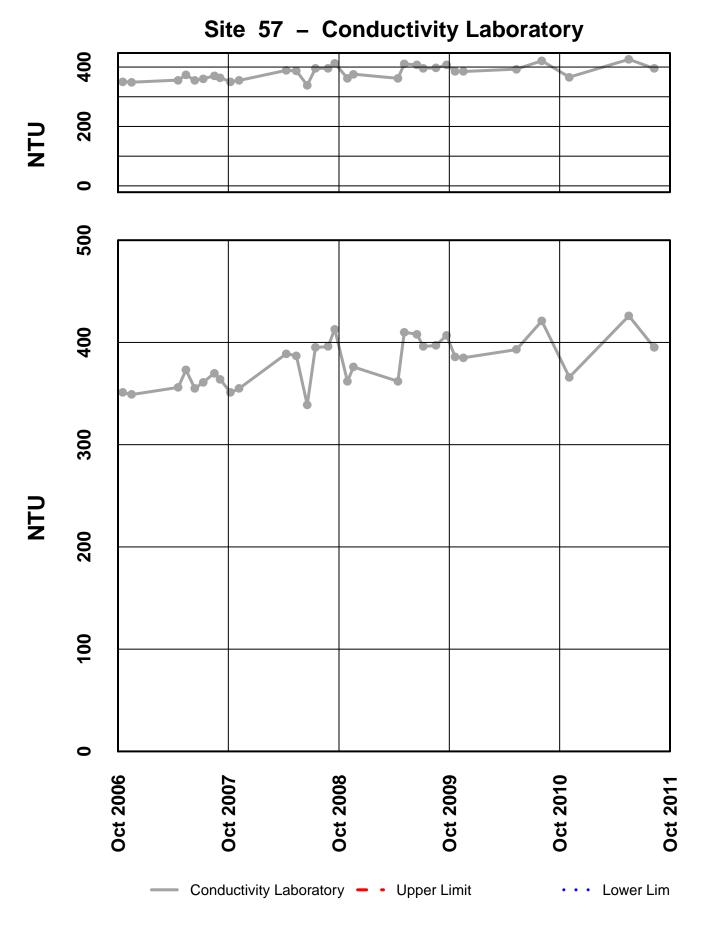
Site 057FMG - 'Monitoring Well -23-00-03'													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		5.8						5.6			7		5.8
Conductivity-Field(µmho)		384						427			407		407.0
Conductivity-Lab (µmho)		366						426			395		395
pH Lab (standard units)		7.17						7.67			7.58		7.58
pH Field (standard units)		7.72						7.61			7.74		7.72
Total Alkalinity (mg/L)		135						157			142		142.0
Total Sulfate (mg/L)		44.9						59.6			51.2		51.2
Hardness (mg/L)		198						222			203		203.0
Dissolved As (ug/L)		0.496						0.486			0.461		0.486
Dissolved Ba (ug/L)		26						31			30.2		30.2
Dissolved Cd (ug/L)		0.199						0.217			0.199		0.1990
Dissolved Cr (ug/L)		0.893						0.571			0.67		0.670
Dissolved Cu (ug/L)		0.422						1.15			1.27		1.150
Dissolved Pb (ug/L)		0.165						0.306			0.787		0.3060
Dissolved Ni (ug/L)		2.99						3.03			3.43		3.030
Dissolved Ag (ug/L)		0.004						0.002			0.002		0.002
Dissolved Zn (ug/L)		14						14.2			17.6		14.20
Dissolved Se (ug/L)		1.05						1.12			1		1.050
Dissolved Hg (ug/L)		0.000136						0.000221			0.000322		0.000221

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

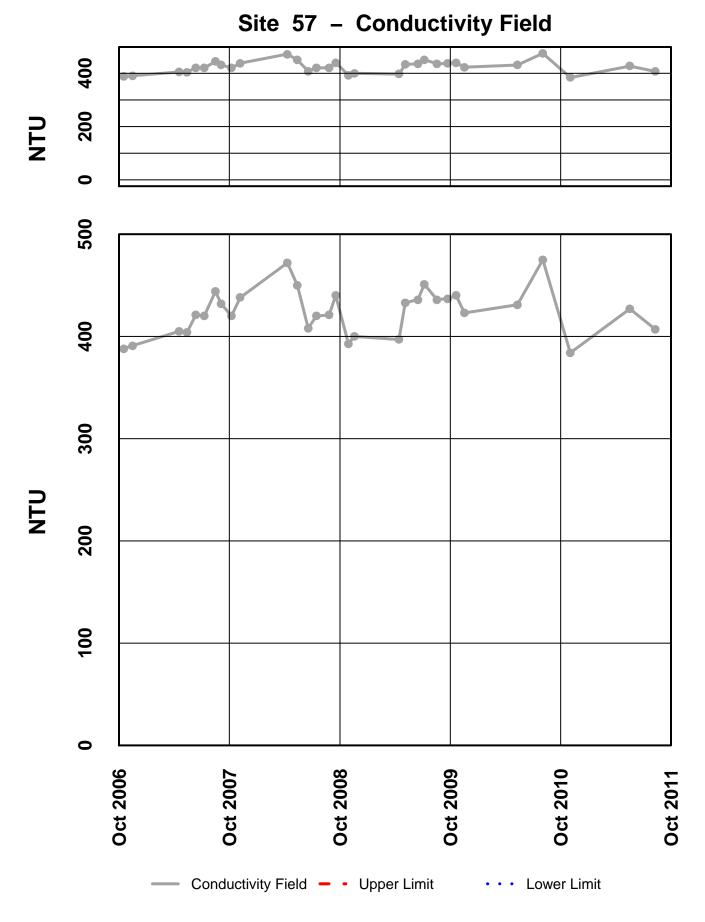
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

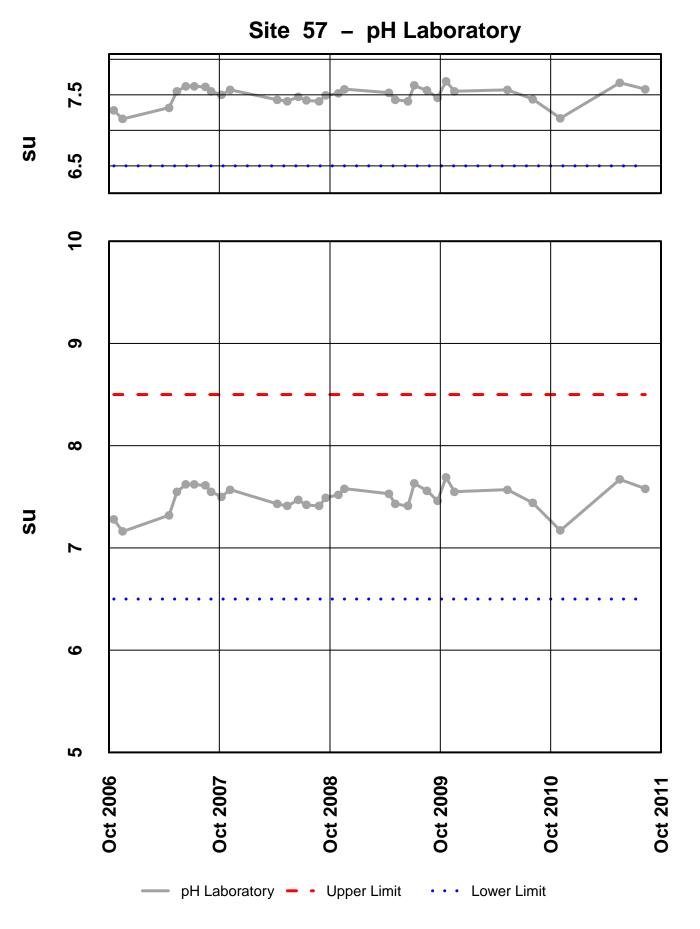
# Qualified Data by QA Reviewer


## Date Range: 10/01/2010 to 09/30/2011

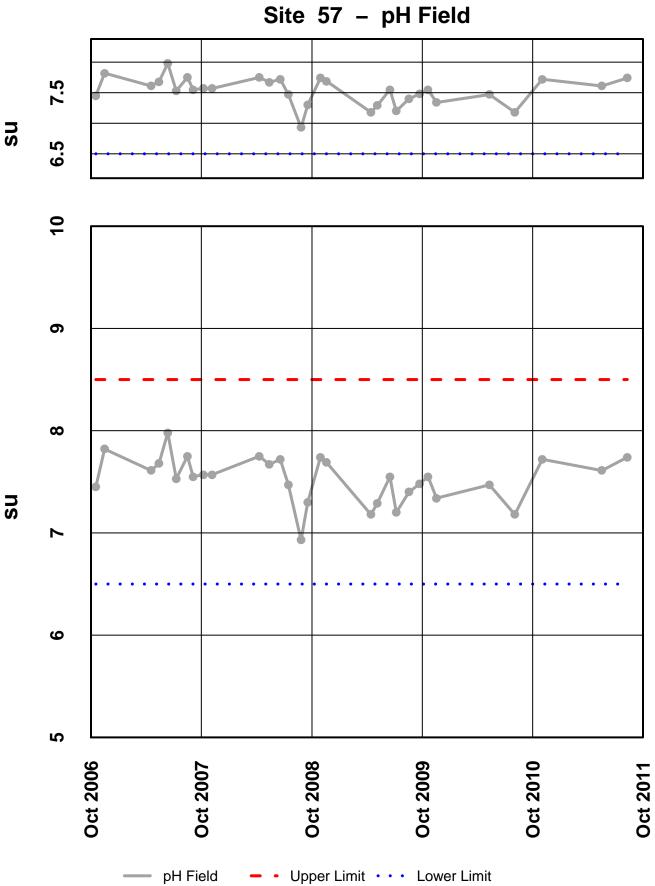
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
57	11/2/2010	12:00 AM				
			Hg diss, µg/l	0.000136	U	Field Blank Contamination
57	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	59.6	J	Sample Reciept Temperature
			pH Lab, su	7.67	J	Hold Time Violation
			Hg diss, µg/l	0.000221	U	Field Blank Contamination
57	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	51.2	J	Sample Receipt Temperature
			pH Lab, su	7.58	J	Hold Time Violation
			Hg diss, µg/l	0.000322	U	Field Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit



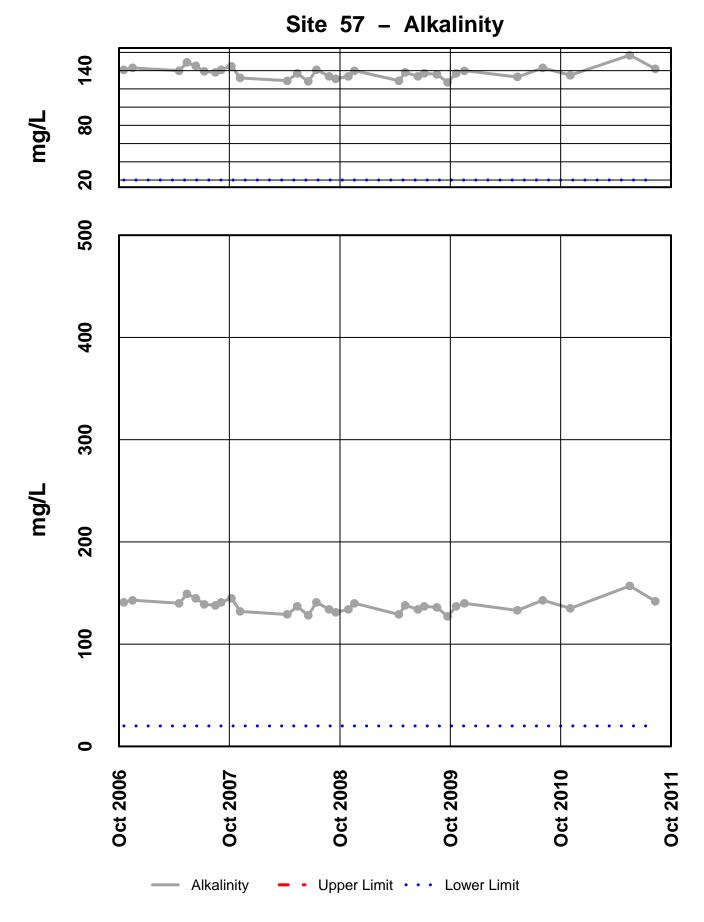

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



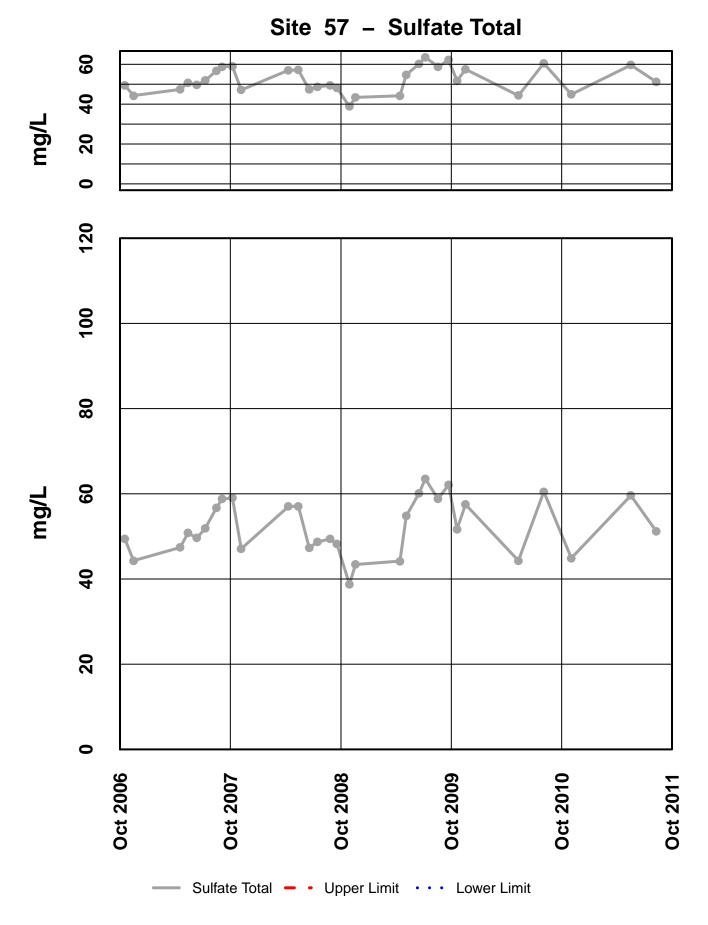

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



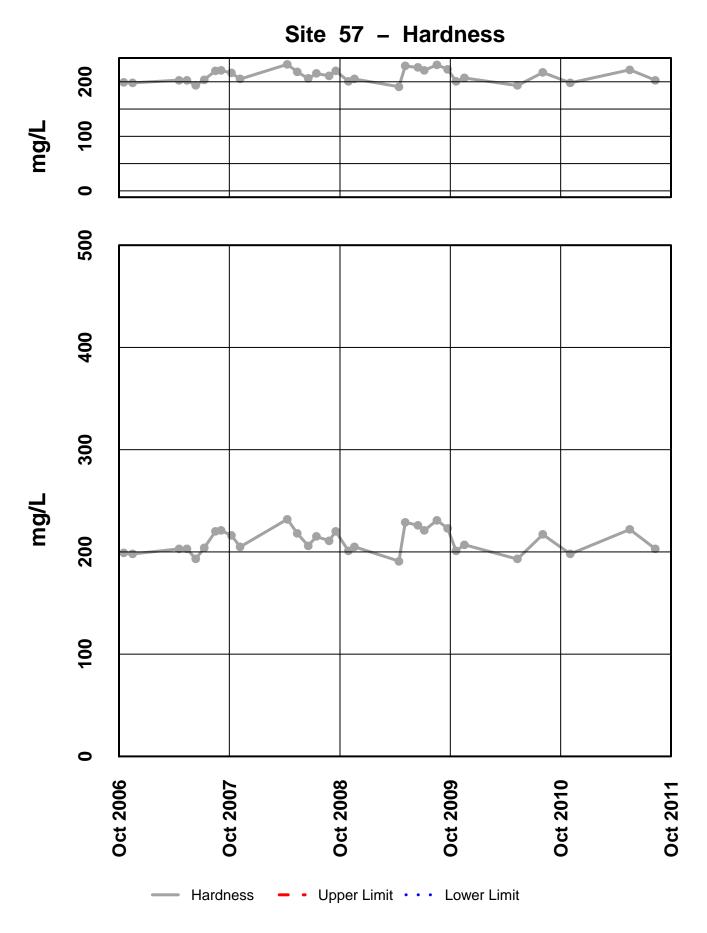
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



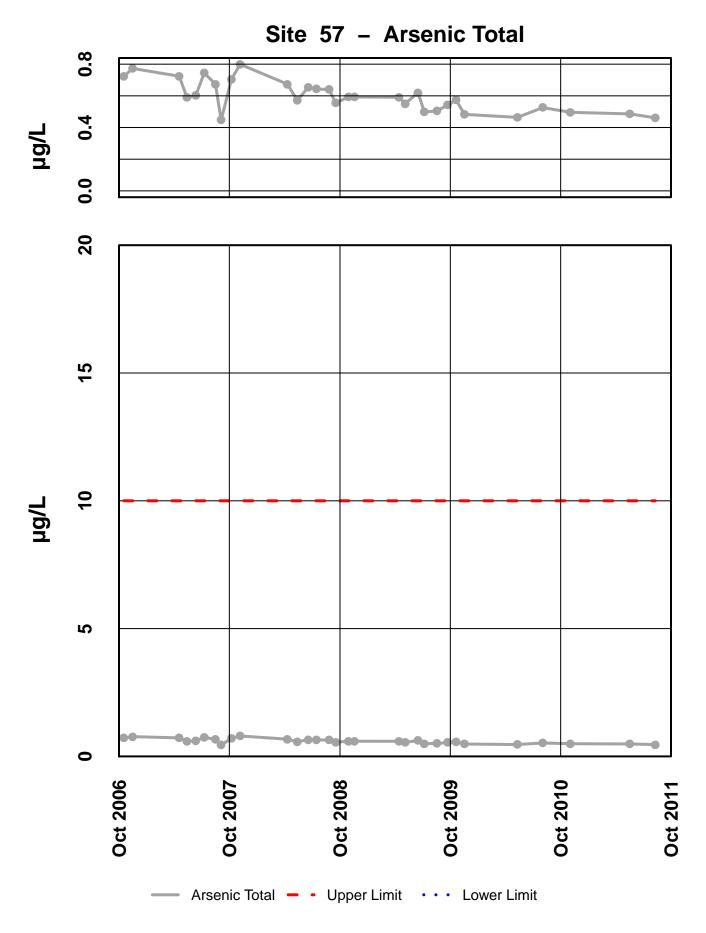

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



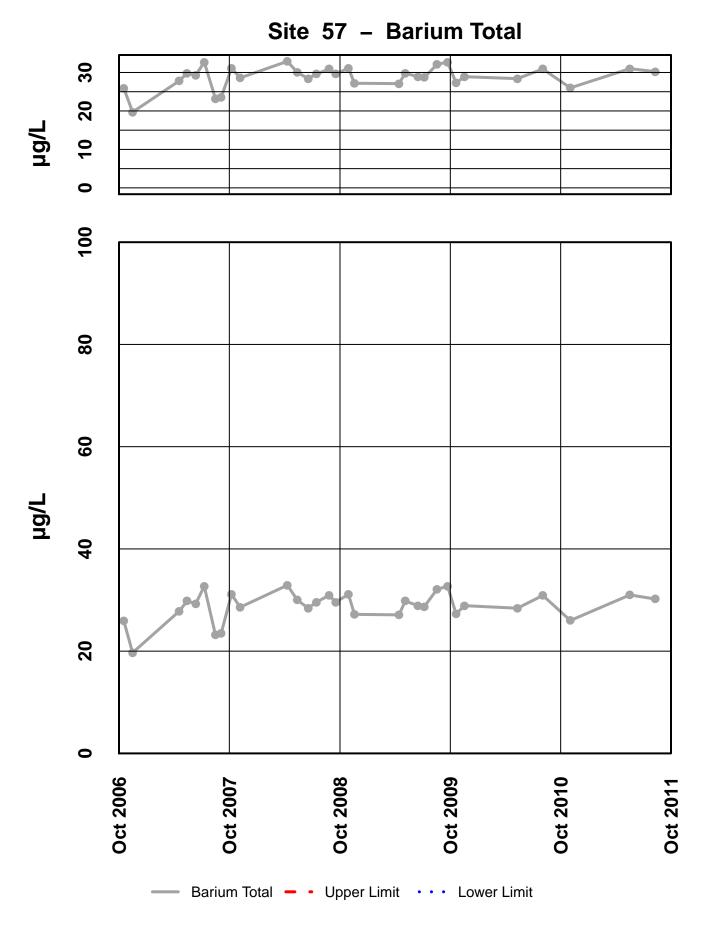

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

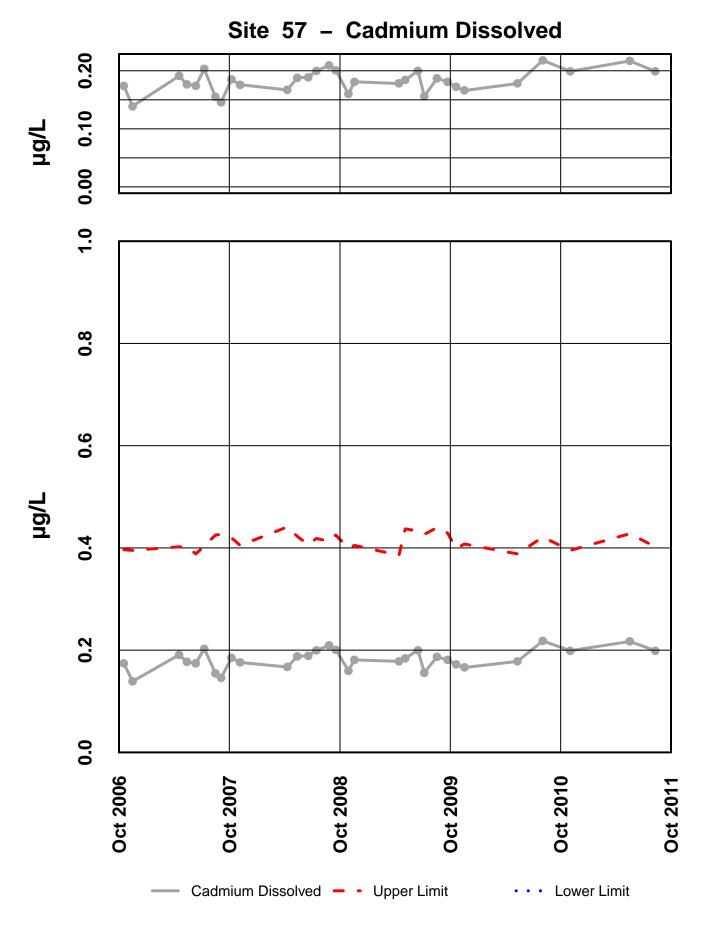



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

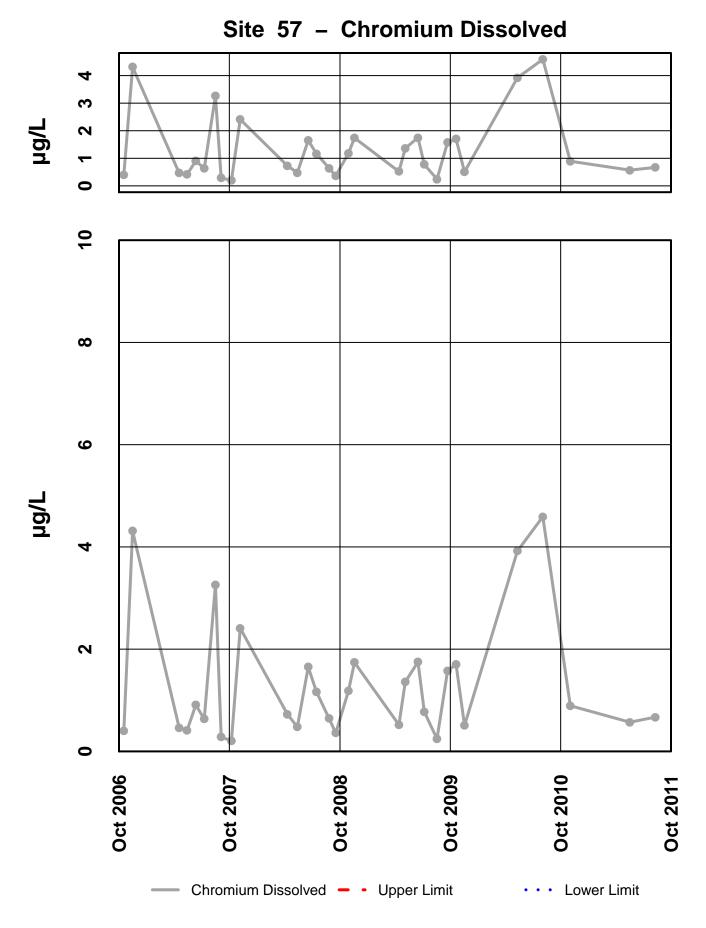



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

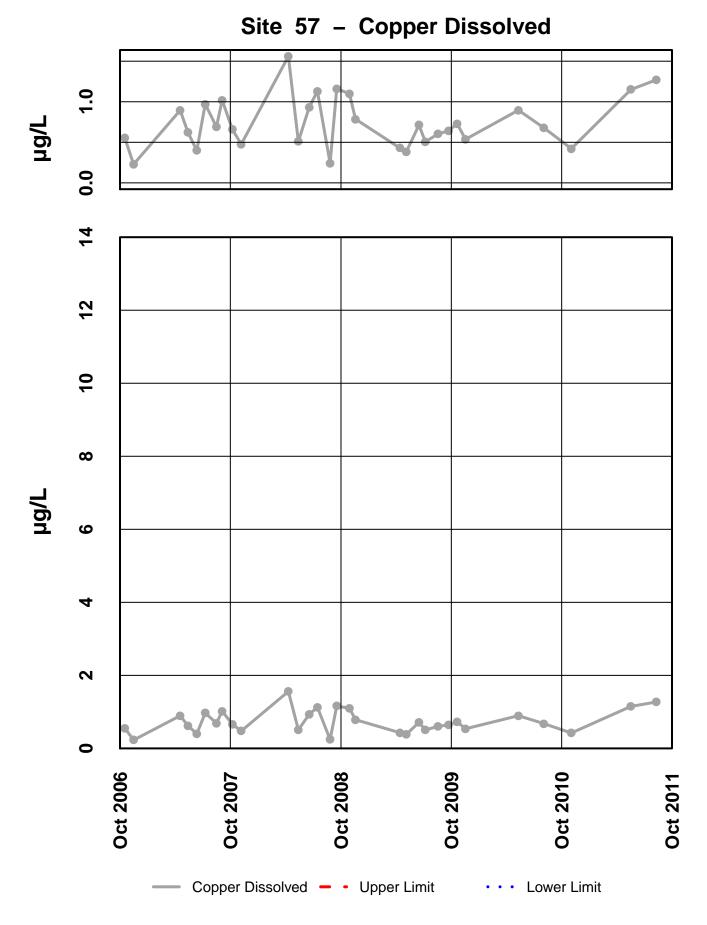



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

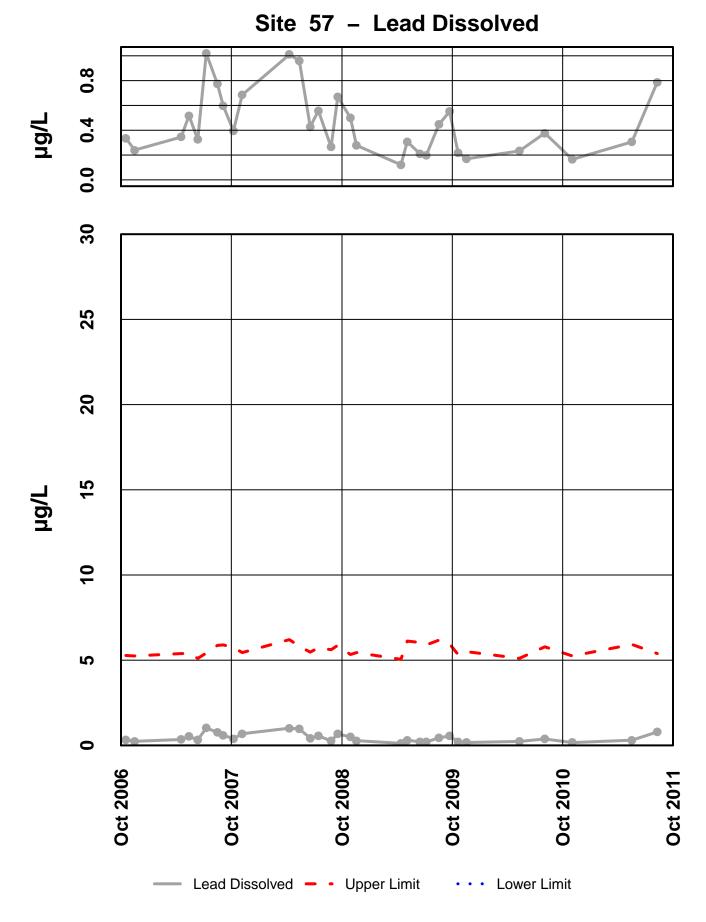



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

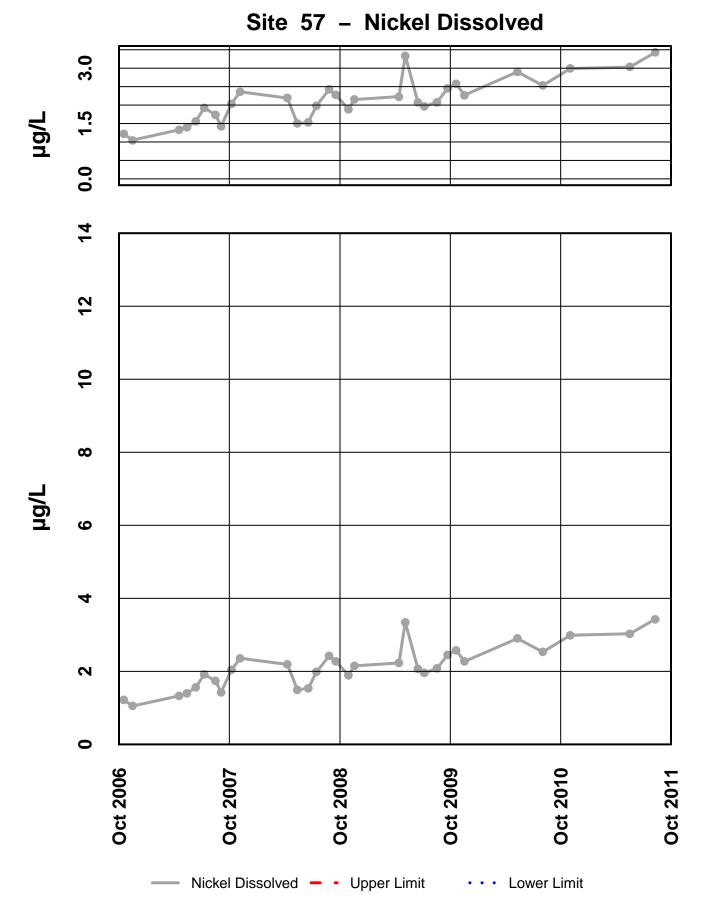



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

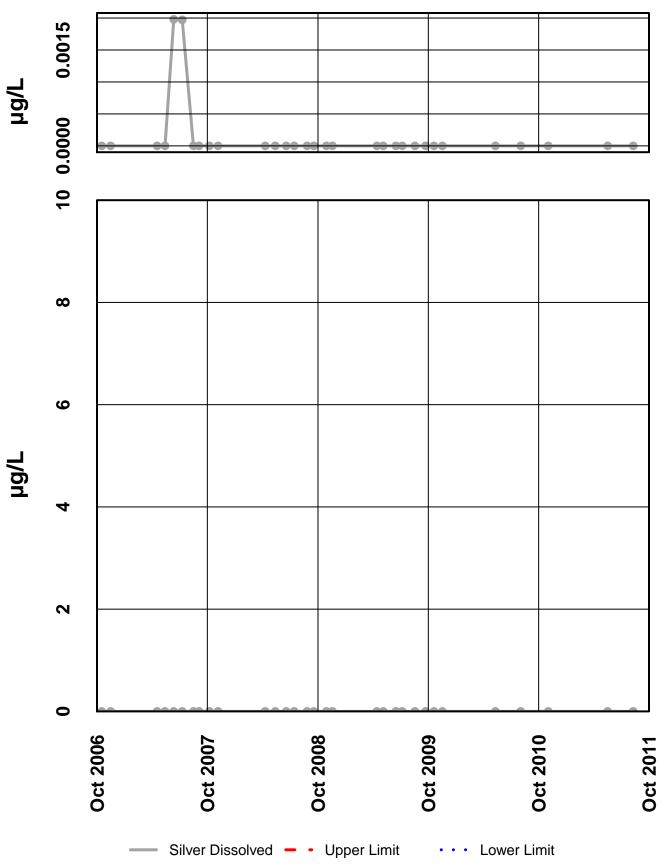



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



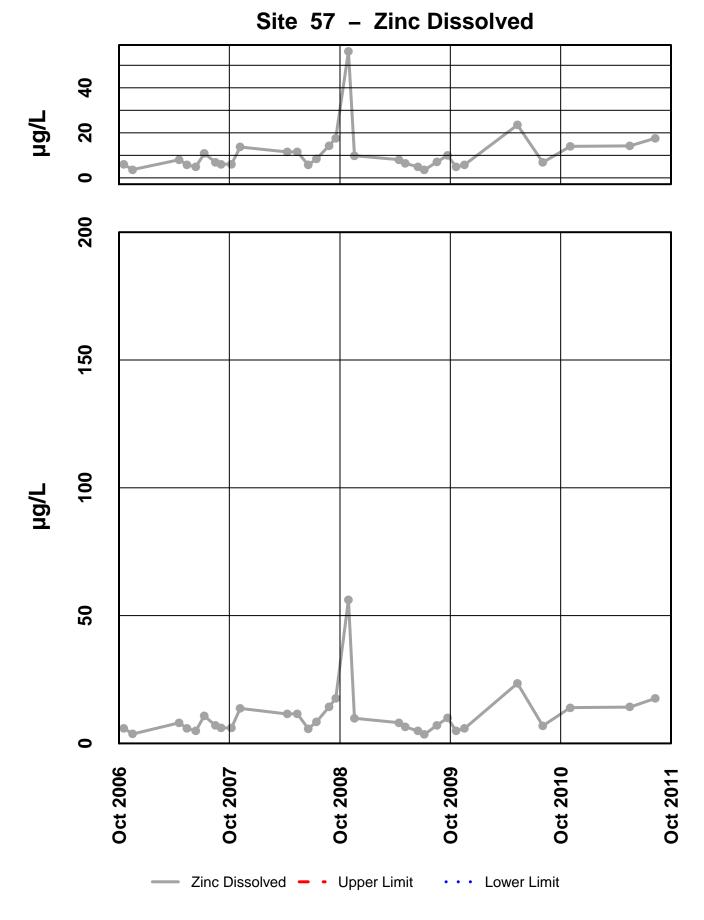

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



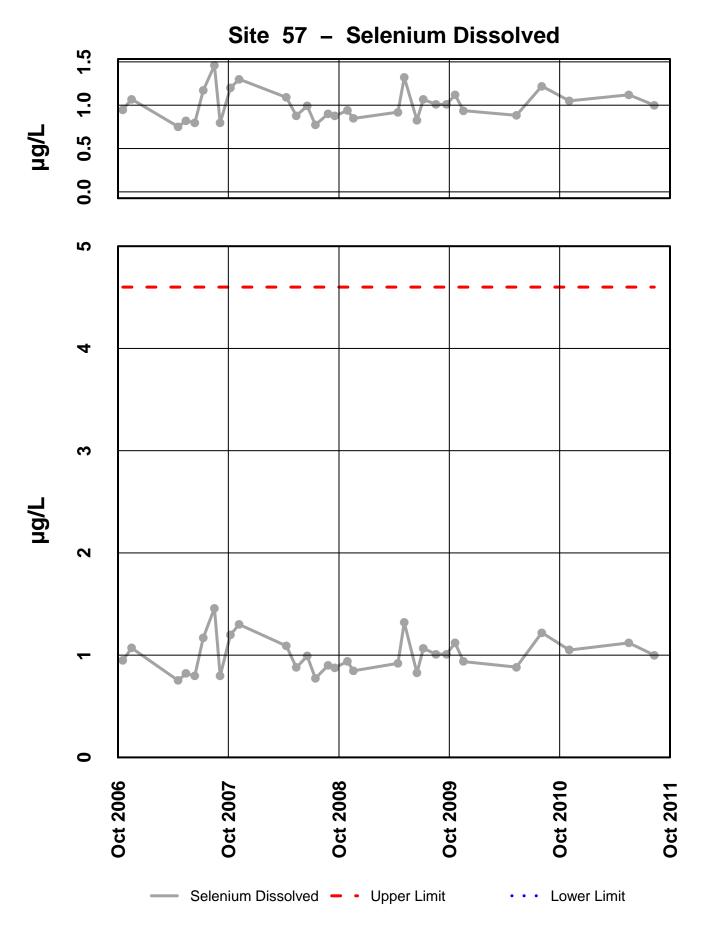

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



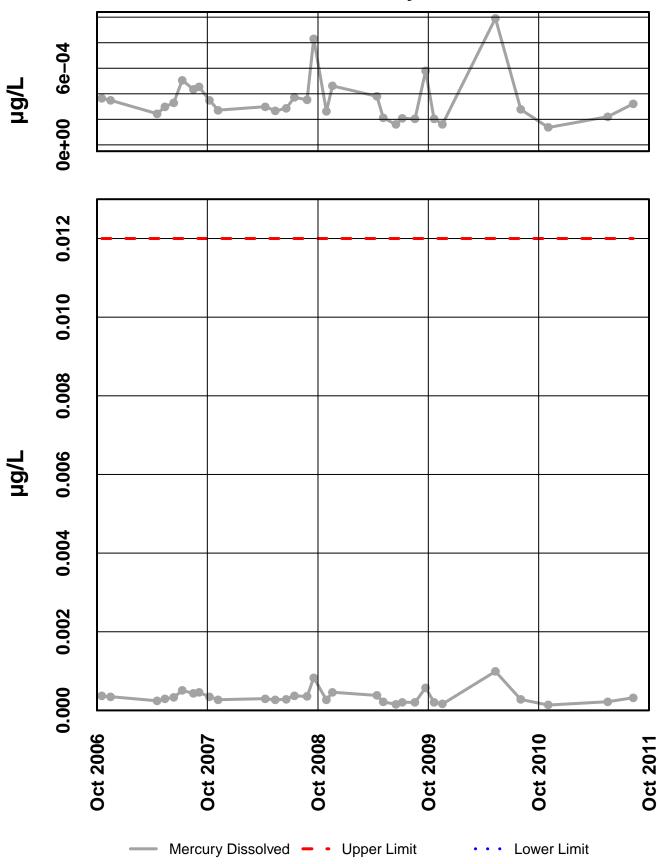
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



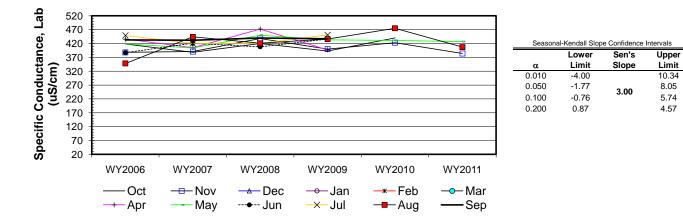

# Site 57 – Silver Dissolved


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

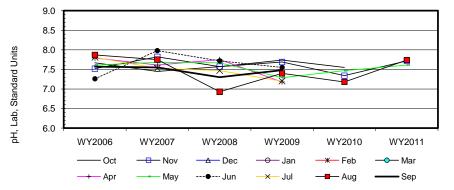



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 57 – Mercury Dissolved

Site	#57								ductance, L				_
ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2006	418	388					436	419	387	449	348	43
b	WY2007	388	391					405	404	421	420	444	43
c	WY2008	420	438					472	450	408	420	421	44
d	WY2009	393	400					397	433	436	451	436	43
e f	WY2010 WY2011	440	423 384						431 427			475 407	
I	n	5		0	0	0	0	4	427	4	4	407	
		Ŭ	Ŭ	0	Ũ		Ū.	•	0	•	•		
	t1	5	6	0	0	0	0	4	6	4	2	6	
	t ₂	0	0	0	0	0	0	0	0	0	1	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t4	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	1					-1	-1	1	-1	1	-
	c-a	1	1					1	1	1	-1	1	
	d-a	-1	1					-1	1	1	1	1	
	e-a	1	1						1			1	
	f-a		-1						1			1	
	c-b	1	1					1	1	-1	0	-1	
	d-b	1	1					-1	1	1	1	-1	
	e-b	1	1						1			1	
	f-b		-1						1			-1	
	d-c	-1	-1					-1	-1	1	1	1	-
	e-c	1	-1						-1			1	
	f-c		-1						-1			-1	
	e-d	1	1						-1			1	
	f-d		-1						-1			-1	
	f-e		-1						-1			-1	
	S _k	4	1	0	0	0	0	-2	1	4	1	3	
	² s=	16.67	28.33					8.67	28.33	8.67	7.67	28.33	8.6
	s- S _k /σ _s	0.98	0.19					-0.68	0.19	1.36	0.36	0.56	0.6
4	Z ² k	0.96	0.04					0.46	0.04	1.85	0.13	0.32	0.4
	$\Sigma Z_k =$	3.64	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	39
	$\Sigma Z_k^2 =$	4.25		Count	37	1	0	0	0			$\Sigma S_k$	14
_	Z-bar=∑Z _k /K=	0.45	L			-	-	-	-			n	


$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 2.59$			$@\alpha = 5\% \chi^2_{(K-1)} = 14.07$ Test for station homogene	eity
	р	0.920	χ ² h ^{&lt;} χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.12	@α/2=2.5% Z= 1.96 H ₀ (No trend)	ACCEPT
135.33	р	0.868	H _A (± trend)	REJECT



Site	#57			Sea	asonal r	Cendall a	naiysis	or pH, La	ab, Stand	dard Unit	S		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	7.7	7.5					7.8	7.6	7.3	7.8	7.9	7.6
b	WY2007	7.5	7.8					7.6	7.7	8.0	7.5	7.8	7.6
С	WY2008	7.6	7.6					7.8	7.7	7.7	7.5	6.9	7.3
d	WY2009	7.7	7.7					7.2	7.3	7.6	7.2	7.4	7.5
e f	WY2010	7.6	7.3						7.5			7.2	
I	WY2011 n	5	7.7	0	0	0	0	4	7.6 6	4	4	7.7	4
	t ₁	5	6	0	0	0	0	4	4	4	4	6	4
	t ₂	0	0	0	0	0	0	0	1	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	-5	Ű	Ŭ	Ũ	0	0	Ŭ	0	Ŭ	0	Ŭ	Ŭ	
	b-a	-1	1					-1	1	1	-1	-1	-1
	c-a	-1	1					-1	1	1	-1	-1	-1
	d-a	1	1					-1	-1	1	-1	-1	-1
	e-a	-1	-1						-1			-1	
	f-a		1						0			-1	
	c-b	1	-1					1	-1	-1	-1	-1	-1
	d-b	1	-1					-1	-1	-1	-1	-1	-1
	e-b	1	-1						-1			-1	
	f-b d-c	1	-1 1					-1	-1 -1	-1	-1	-1	1
	e-c	1 -1	-1					-1	-1 -1	-1	-1	1	1
	f-c	-1	-1						-1			1	
	e-d	-1	-1						-1			-1	
	f-d		1						1			1	
	f-e		1						1			1	
	S _k	0	1	0	0	0	0	-4	-4	0	-6	-5	-4
	²s=	16.67	28.33					8.67	27.33	8.67	8.67	28.33	8.67
	s- S _k /σ _S	0.00	0.19					-1.36	-0.77	0.00	-2.04	-0.94	-1.36
2	Z ² _k	0.00	0.04					1.85	0.59	0.00	4.15	0.88	1.85
	$\Sigma Z_k =$	-6.27	Г	Tie Extent	t ₁	t ₂	t ₃	t₄	t _s			Σn	39
	$\Sigma Z_{k}^{2}$	9.35		Count	37	1	0	0	0			$\Sigma S_k$	-22
	$\Delta L_k = \frac{1}{2}$ -bar= $\Sigma Z_k/K = \frac{1}{2}$	-0.78	L	Jount	51	1	U	U	0			20 _K	-22

Seasonal	Kendall	anal	sis fo	or pH.	Lab.	Standard	Uni
ocusonai	1 Children	anan			LUD,	olunduru	<b>U</b> 11

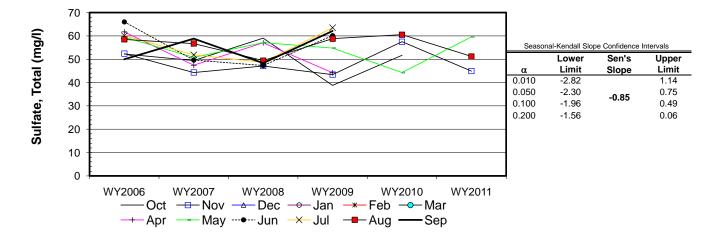
$\chi^2_h = \Sigma Z^2_k$ -	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 4.43$			@α=5% χ ² _(K-1) =	14.07	Test for station homo	ogeneity
	р	0.729				$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.81		@α/2=2.5% Z=	1.96	H₀ (No trend)	ACCEPT
135.33	р	0.036				H _A (± trend)	REJECT



Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.16		0.02
0.050	-0.12	-0.03	-0.01
0.100	-0.10	-0.03	-0.02
0.200	-0.06		-0.02

Site	#57
------	-----

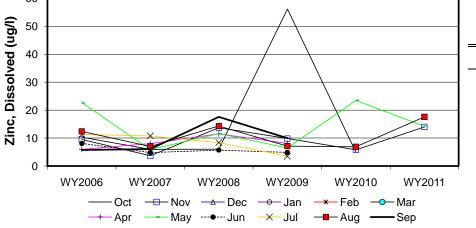
Seasonal Kendall analysis for Total Alk, (mg/l)


one	#J1				0003011		an analys	5510110	tai Aik,	(119/1)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	160.0	144.0					151.0	152.0	159.0		154.0	146.
b	WY2007	141.0	143.0					140.0	149.0	145.0		138.0	141.
c	WY2008	145.0	132.0					129.0	137.0	128.0		134.0	131.
d	WY2009	134.0	140.0					129.0	138.0	134.0	137.0	136.0	127.
е	WY2010	137.0	140.0						133.0			143.0	
f	WY2011		135.0						157.0			142.0	
	n	5	6	0	0	0	0	4	6	4	4	6	
	t,	5	4	0	0	0	0	2	6	4	4	6	
		0	1	0	0	0	0 0	1	0	0		0	
	t ₂												
	t ₃	0	0	0	0	0	0	0	0	0		0	
	t ₄	0	0	0	0	0	0	0	0	0		0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	-1	-1					-1	-1	-1	-1	-1	-
	c-a	-1	-1					-1	-1	-1	-1	-1	-
	d-a	-1	-1					-1	-1	-1	-1	-1	-
	e-a	-1	-1						-1			-1	
		-1											
	f-a		-1						1			-1	
	c-b	1	-1					-1	-1	-1	1	-1	-
	d-b	-1	-1					-1	-1	-1	-1	-1	-
	e-b	-1	-1						-1			1	
	f-b		-1						1			1	
	d-c	-1	1					0	1	1	-1	1	-
	e-c	-1	1					0	-1		•	. 1	
		-1										1	
	f-c		1						1			1	
	e-d	1	0						-1			1	
	f-d		-1						1			1	
	f-e		-1						1			-1	
	S _k	-6	-8	0	0	0	0	-5	-3	-4	-4	-1	-
	2												
	5 ² s=	16.67	27.33					7.67	28.33	8.67	8.67	28.33	8.6
Z _k =	= S _k /σ _S	-1.47	-1.53					-1.81	-0.56	-1.36	-1.36	-0.19	-2.04
4	Z ² _k	2.16	2.34					3.26	0.32	1.85	1.85	0.04	4.1
	$\Sigma Z_k =$	-10.31		Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	39
	$\Sigma Z_{k}^{2}$ = Z-bar= $\Sigma Z_{k}/K$ =	15.96		Count	35	2	0	0	0			$\Sigma S_k$	-37
	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	2.67		@α=5%	⁄ω χ ² _(K-1) =	14.07			tion homog			
		р	0.914					χ	$L^{2}_{h} < \chi^{2}_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	-3.11		@a/2=	2.5% Z=	1.96		H₀ (No	trend)	REJECT		
	134.33	p p	0.001	L	-00				H _A (±		ACCEPT		
	<b></b>												
170	<b>•</b>							~					
150 -				$\sim$									
130 -	-							E	]	Season	al-Kendall Slope	a Confidence I	ntenvals
- 100 - 00 - 07 - 07 - 07 - 07									-	Seasona	Lower	Sen's	Upper
த்பல ந										α	Limit	Slope	Limit
E	-								I ·			Slope	
90 -	-									0.010	-5.50		-1.00
	-									0.050	-5.01	-4.00	-1.49
<b>L</b> 70 -	ŀ									0.100	-4.98		-2.00
<u> </u>	E									0.200	-4.25		-2.46
<b>o</b> 50 -	t												
												-2.9%	
- 30 -	-												
30 -	-												
30 - 10 -	WY2006	3 WY:	2007	WY2008	WY2	009	WY2010	WY2	2011				
30 -	WY2006		2007	WY2008	WY2		WY2010	WY2					
30 -	—— Oc	t <del>– B</del>	– Nov	<u> </u>	0_	Jan	<del>*</del> Feb	) — <del>0</del> —	-Mar				
30 -		t <del>– B</del>			·	Jan		) — <del>0</del> —					

Site	#57
One	<b><i>m</i>J</b>

Seasonal Kendall analysis for Sulfate, Total (mg/l)

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2006	52.2	52.4					61.7	59.4	66.0	60.1	58.5	50.0
b	WY2007	49.4	44.3					47.4	50.8	49.6	51.9	56.7	58.8
С	WY2008	59.0	47.1					57.0	57.1	47.3	48.7	49.4	48.3
d	WY2009	38.8	43.4					44.2	54.8	60.1	63.5	58.8	62.1
е	WY2010	51.7	57.5						44.3			60.5	
f	WY2011		44.9						59.6			51.2	
	n	5	6	0	0	0	0	4	6	4	4	6	4
	t,	5	6	0	0	0	0	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
i	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
I	b-a	-1	-1					-1	-1	-1	-1	-1	1
	c-a	1	-1					-1	-1	-1	-1	-1	-1
	d-a	-1	-1					-1	-1	-1	1	1	1
	e-a	-1	1						-1			1	
	f-a		-1						1			-1	
	c-b	1	1					1	1	-1	-1	-1	-1
	d-b	-1	-1					-1	1	1	1	1	1
	e-b	1	1						-1			1	
	f-b		1						1			-1	
	d-c	-1	-1					-1	-1	1	1	1	1
	e-c	-1	1						-1			1	
	f-c		-1						1			1	
	e-d	1	1						-1			1	
	f-d		1						1			-1	
:	f-e S _k	-2	-1 -1	0	0	0	0	-4	-1	-2	0	-1 1	2
		-		0	0	0	0			-	Ū		-
	² _s =	16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
Z _k =	$S_k/\sigma_S$	-0.49	-0.19					-1.36	-0.19	-0.68	0.00	0.19	0.68
Z	<mark>/2</mark> k	0.24	0.04					1.85	0.04	0.46	0.00	0.04	0.46
	$\Sigma Z_k =$	-2.04	Ι	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	39
	$\Sigma Z_{k}^{2} =$	3.12		Count	39	0	0	0	0			$\Sigma S_k$	-7
	-bar=ΣZ _k /K=	-0.25	l	Count	39	U	U	U	U			20k	-7


$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	2.60		@α=5% χ ² _(K-1) =	14.07	Test for station hom	ogeneity
	р	0.920	-			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-0.51		@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
136.33	р	0.304				H _A (± trend)	REJECT



Site #57	

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

One	#31			0			-						
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	10.3	9.5					6.0	22.7	8.1	11.3	12.4	5.8
b	WY2007	6.0	3.7					8.1 11.5	5.9	4.8	10.8	7.0	6.1
c d	WY2008 WY2009	6.0 56.2	13.7 9.8					8.1	11.6 6.5	5.7 4.9	8.4 3.5	14.3 7.1	17.6 10.0
e	WY2010	4.9	9.8 5.8					0.1	23.5	4.9	5.5	6.9	10.0
f	WY2011	4.5	14.0						14.2			17.6	
	n	5	6	0	0	0	0	4	6	4	4	6	4
	t ₁	5	6	0	0	0	0	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1					1	-1	-1	-1	-1	1
	c-a	-1	1					1	-1	-1	-1	1	1
	d-a	1	1					1	-1	-1	-1	-1	1
	e-a	-1	-1						1			-1	
	f-a		1						-1			1	
	c-b	1	1					1	1	1	-1	1	1
	d-b	1	1					1	1	1	-1	1	1
	e-b f-b	-1	1						1			-1 1	
	d-c	1	ا 1-					-1	-1	-1	-1	-1	-1
	e-c	-1	-1					-1	-1	-1	-1	-1	-1
	f-c		1						1			1	
	e-d	-1	-1						1			-1	
	f-d		1						1			1	
	f-e S _k	-2	<u>1</u> 5	0	0	0	0	4	-1 3	-2	-6	1	4
	5 ² s=	16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
	s S _k /σ _S	-0.49	0.94					1.36	0.56	-0.68	-2.04	0.19	1.36
	Z ² _k	0.24	0.88					1.85	0.32	0.46	4.15	0.04	1.85
	$\Sigma Z_k =$	1.20	Γ	Tie Extent	t ₁	t ₂	t ₃	t₄	t₅			Σn	39
	$\Sigma Z_{k}^{2}$	9.78		Count	39	0	0	0	0			$\Sigma S_k$	7
Z	Z-bar= $\Sigma Z_k/K=$	0.15	L	Count	00	0	0	0	Ŭ			20 K	•
	22 .					. 2							
	$\chi^2_h = \Sigma Z^2_k - I$		9.60		@α=5	% χ ² _(K-1) =	14.07		est for stat $\chi^2_h < \chi^2_{(K-1)}$	ion homoge	CCEPT		
	$\Sigma VAR(S_k)$	p Z _{calc}	<b>0.212</b> 0.51		@~/ <b>?</b> -	=2.5% Z=	1.96	,	^ℓ h ^{&lt;} ℓ (K-1) <b>H₀ (N</b> o 1		CCEPT		
	136.33	P _{calc}	0.696	L	@0/Z-	2.370 2-	1.50		$H_0$ (NO		REJECT		
60						^							
50					/	$\backslash$							
( <b>1/6r</b> 50										Seasonal-I	Kondoll Slope	Confidence Ir	toruolo



Seasonal-Kendall Slope Confidence Intervals									
	Lower	Sen's	Upper						
α	Limit	Slope	Limit						
0.010	-1.39		1.12						
0.050	-0.95	0.08	0.87						
0.100	-0.55	0.00	0.71						
0.200	-0.30		0.31						

## INTERPRETIVE REPORT SITE 56 "MONITORING WELL D-00-01"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in October-2001. All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes				
No outliers have been identified by HGCMC for the period of October 2006 through September 2011.								

The data for Water Year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

### Table of Exceedance for Water Year 2011

		Limits							
Sample Date	Parameter	Value	Lower	Upper	Hardness				
No exceedances have been identified by HGCMC for the period of October 2010 through September 2011.									

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No visually obvious trends were apparent. As with the decrease in dissolved chromium seen at the other sites (site 48, site 6, site 54, site 49, site 46, and site 13), dissolved chromium was seen to decrease at this site also.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-2005 and Sep-11 (WY2006-WY2011). There were no statistically significant ( $\alpha/2=2.5\%$ ) trends identified for the current water year.

	Mann-Ker	ndall test st	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.30			
pH Field	6	0.50			
Alkalinity, Total	6	0.04			
Sulfate, Total	6	0.25			
Zinc, Dissolved	6	0.04			

**Table of Summary Statistics for Trend Analysis** 

* Number of Years ** Significance level

A comparison of median values for total alkalinity, laboratory pH, laboratory conductivity, total sulfate, and dissolved zinc between Site 56 and Site 57 has been conducted as specified in the Statistical Information Goals for Site 56. Additional X-Y plots have been generated for total alkalinity, field pH, specific conductivity, total sulfate, and dissolved zinc that co-plot data from Site 56 and Site 57, the up-gradient control site, to aid in the comparison between those two sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the water year 2011 dataset.

Site 56 vs Site 57										
	Signed Ranks	Site 57	Site 56	Median						
Parameter	p-value	median	median	Differences						
Conductivity Field	1	407.0	156.2	250.0						
pH Field	0.625	7.7	7.7	0.0						
Alkalinity, Total	1	142.0	57.8	78.3						
Sulfate, Total	1	51.2	10.0	39.3						
Zinc, Dissolved	1	14.2	0.2	14.0						

### **Table of Summary Statistics for Median Analysis**

The only significant difference identified by the typical one-tailed test was for total alkalinity. Median values for alkalinity for Site 49 and Site 46 are 142 mg/L and 57.8 mg/L respectively. The median difference, Site 49 minus Site 46, is 78.3 mg/L. It should be noted that if a two-tailed signed-rank test was applied to the dataset for these sites a very significant (p=1.00) difference would exist with respect to the other parameters included in the signed-ranks analysis. Specifically, conductivity, sulfate, and dissolved zinc fail to meet the null hypothesis of no significant difference between medians when the alternative hypothesis is cast in terms without regard to the direction of the difference (H_a: median [D] $\neq$ 0). The obvious differences of the major water-quality parameters at these sites are likely the result of several inherent hydrological/geological differences between the two sites.

The two major differences between the sites are the unit of completion and the hydrological setting. The up-gradient control site, Site 57, is in an area away from the influence of any major surface flow. The screened interval is in the colluvial unit that underlies most of Site 23 production rock area and samples 63 to 68 feet below the surface. The aquifer sampled by the screened interval may be one of multiple perched aquifers located below Site 23 as noted in the "Site 23/D Hydrogeology and Geochemistry Analysis" report (EDE, 2004). The down-gradient well, Site 56, is to the southeast of the Site 23/D production rock areas and is located approximately 40 feet west of the lower reaches of Bruin Creek. The screened interval was originally interpreted as the same colluvial unit as Site 57, but recent drilling information suggests the completion is in the alluvial sands which underlie most of Site D. The sampled interval is at a depth of 14 to 19 feet. The difference in the unit of completion may have an effect on the resulting water quality. The colluvium is characterized as a fine to coarse sand with angular to sub-rounded, partially weathered chloritic rock with localized residual pyrite. The alluvial sand is characterized as a fine to coarse sand with subangular to rounded gravel and is composed of well-weathered clasts with a more stable mineral assemblage. Thus the colluvial material, being less deeply weathered, would typically generate a higher leachable load of dissolved salts that would be reflected in the chemistry of the associated ground water. Additionally, the proximity of Site 56 to Bruin Creek and Greens Creek and its shallow completion depth suggest there would be a much greater influence of a surface water component relative to Site 57. The water temperature data for Site 56 reflects this by showing a very strong seasonal variation that is very similar to the data collected at the nearby surface sites 46 and 6. In contrast the Site 57 water temperature data shows a much lower variation that is indicative of groundwater with a minor seasonal surface component. The surface water recharge to the local aquifer would tend to act as a diluent with respect to the more concentrated dissolved fraction of groundwater. Finally, if Site 57 does sample a localized, perched aquifer it would probably be more strongly influenced by seasonal and/or annual variations in recharge rate since the area of capture would be more limited than for Site 56. In summary, the combined effects of the difference in completion units and the different hydrological regimes likely explain the disparity in analyte concentrations found at the two sites.

Because of the differences in the completions of these well the statistical analysis of the intercomparison is prone to failure if not misinterpretation. An attempt was made this season to analyze this well data on an intra-well comparison basis using the combined Shewhart-CUSUM control chart approach. This method was first referenced by Westgard et al. 1977 then further developed by Lucas (1982). This form of analysis has been recommended for use in intra-well monitoring by the U.S. Environmental Protection Agency (EPA) (EPA 1989, 1992).

The Shewhart-CUSUM is a sequential analysis technique to determine changes in a variable. The methodology involves the calculation of a standardized difference  $z_i$  for each measurement at time  $t_i$  as  $x_i$ :

$$Z_i = (x_i - x) / s$$

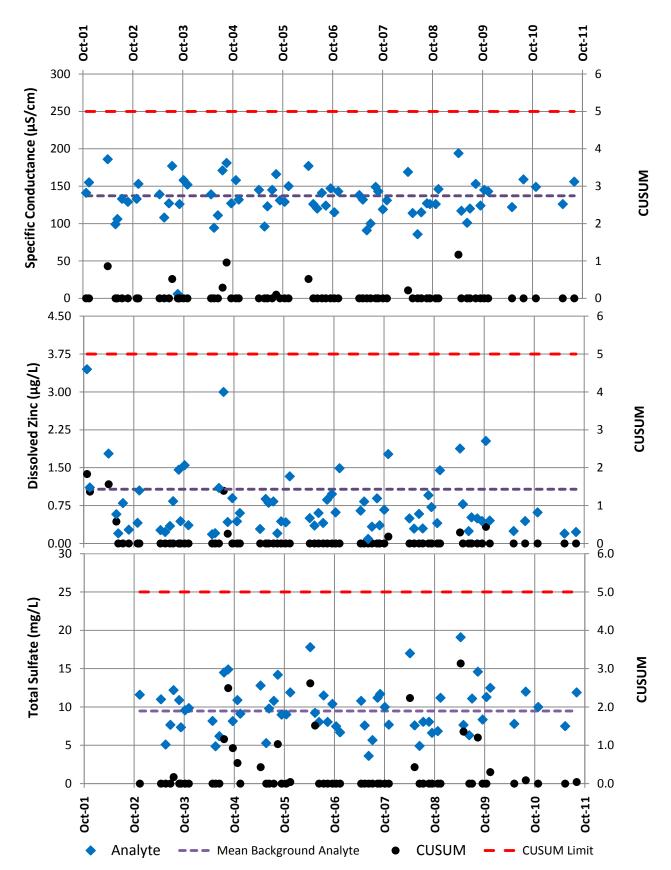
At each time t_i, the cumulative sum is computed as:

$$S_0 = 0$$
  
 $S_i = \max[0, (z_i - d) + (S_i - 1)]$ 

Setting  $S_0 = 0$  ensures that only cumulative increase over background are monitored. When the value of *S* exceeds a certain threshold value, a change in value has been found. The above formula only detects changes in the positive direction. Plot the values  $S_i$  (y-axis) versus  $t_i$  (x-axis) on time plot for visual purposes. A process (analyte) is considered 'out of control' when the cumulative increase in the parameter over background  $S_i >= h$  (e.g. h=5) or a standardized increase  $z_i >= SCL$  (e.g. SCL = 4.5 standard deviations units over background).

For this year's FWMP report the combined Shewhart-CUSUM control chart statistical analysis was carried out on the specific conductance, dissolved zinc, and total sulfate data from Site 56 starting from October 2001. In order to use the analysis background values were calculated for each of the analytes. Without a true background record the first year of sampling was chosen for this calculation. Results of these calculations are summarized in the Table 1.

The visual representations of these calculations are graphed in Figure 1. All three of the analytes reached the lowest control limit (SCL=2) and only total sulfate reached the control limit of SCL=4. Each of the sites were below the EPA recommend control limit of SCL=4.5. Values for the CUMSUM statistic ranged from a low of 0, observed in each analysis to a high of 3.3 recorded for total sulfate. None of the analysis exceed the established limit of h=5. In order for a process to be considered 'out of control' both metrics (Shewhart & CUMSUM) need to be 'out of control'. With these analyses the only analyte that neared both these limits was total sulfate.


Once a background value is established the proceeding years are not 'out of control' the data for those years can be used to recalculate the background values. It is suggested that these calculations be carried out every two years. In order to prevent the incorporation of a gradual trend into the background data, it is important to test for background trends on a routine basis. Currently, HGCMC is using the Mann-Kendall test for seasonal trends for trend analysis. Of the three analytes used, for the combined Shewhart-CUSUM control charts, none of them had a significant seasonal trend. Therefore, it should be possible to incorporate more of the measurements into the calculation of the baseline statistics.

This is the second year that the combined Shewhart-CUSUM control charts analysis was performed on Site 56 and the results obtained were identical to last year's. As this is a new technique for intra-well monitoring the results of these analyses need to be considered carefully. From the seasonal trend analyses, the similarity to Site 46 analytes, and the Shewhart-CUSUM results; it is concluded that the impact HGCMC has had on the groundwater at Site 56 is negligible or currently undetectable.

	Site 56 Conductivity (µS/cm)	Site 56 Diss. Zinc (μg/L)	Site 56 Total Sulfate (mg/L)						
Baseline Statistics									
Baseline Period Number of Samples	10/25/01 - 11/12/02 9	11/12/02 - 11/06/03 9	10/25/01 - 11/12/02 9						
Mean (x) Standard Deviation	137.20 26.20	1.07 1.02	9.47 2.33						
Shewhart-CUSUM Control Limits	(SCL)	·							
Control Limit (mean x+ 2s) Control Limit (mean x + 3s) Control Limit (mean x + 4s) Control Limit (mean x + 4.5s)	190 216 242 255	3 4 5 6	14 16 19 20						
CUSUM Control Limits									
Cumulative increase – h	5	5	5						

# Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br/>Summary Statistics and Various Control Limits

Figure 1.Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate<br/>from Site 56 Compared to the Shewhart-CUSUM Control Limits From Table 1

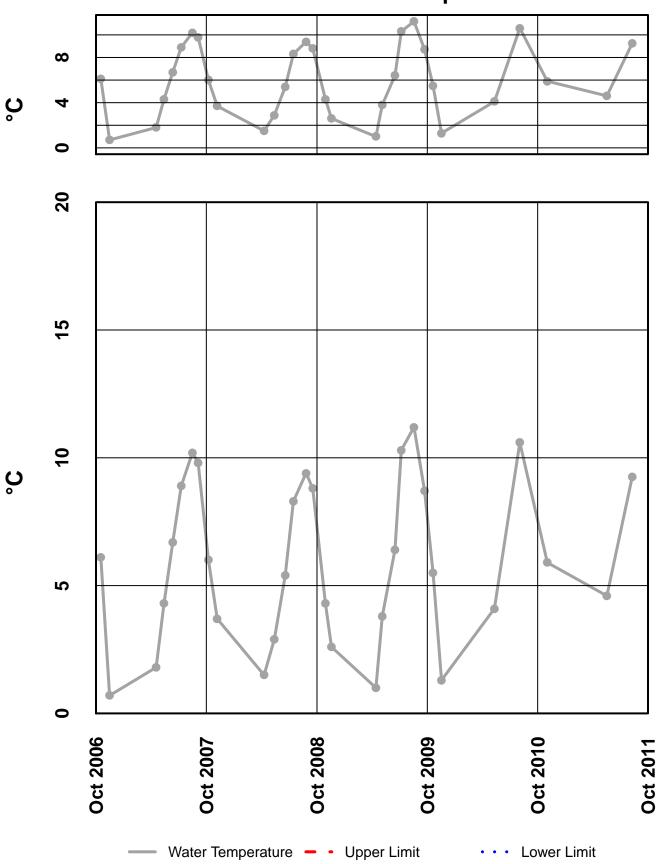


	Site 056FMG - 'Monitoring Well -D-00-01'												
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		5.9						4.6			9.3		5.9
Conductivity-Field(µmho)		156.2						135			157		156.2
Conductivity-Lab (µmho)		149						126			156		149
pH Lab (standard units)		6.82						7.56			7.39		7.39
pH Field (standard units)		7.5						7.65			7.8		7.65
Total Alkalinity (mg/L)		57.8						46.1			63.7		57.8
Total Sulfate (mg/L)		10						7.5			11.9		10.0
Hardness (mg/L)		70.6						60			74.4		70.6
Dissolved As (ug/L)		0.156						0.151			0.188		0.156
Dissolved Ba (ug/L)		10.6						9.2			13		10.6
Dissolved Cd (ug/L)		0.018						0.0142			0.0083		0.0142
Dissolved Cr (ug/L)		0.506						0.278			0.468		0.468
Dissolved Cu (ug/L)		0.676						0.579			0.647		0.647
Dissolved Pb (ug/L)		0.0146						0.0081			0.0053		0.0081
Dissolved Ni (ug/L)		1.05						0.777			1.18		1.050
Dissolved Ag (ug/L)		0.002						0.002			0.002		0.002
Dissolved Zn (ug/L)		0.62						0.2			0.23		0.23
Dissolved Se (ug/L)		0.674						0.413			0.558		0.558
Dissolved Hg (ug/L)		0.00168						0.00175			0.000707		0.001680

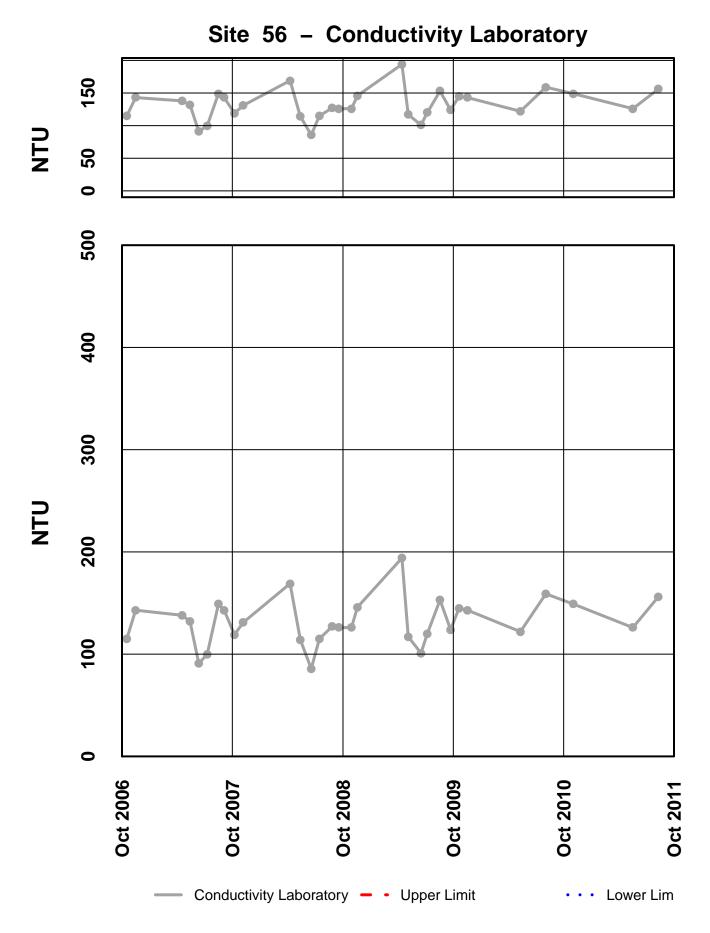
#### 

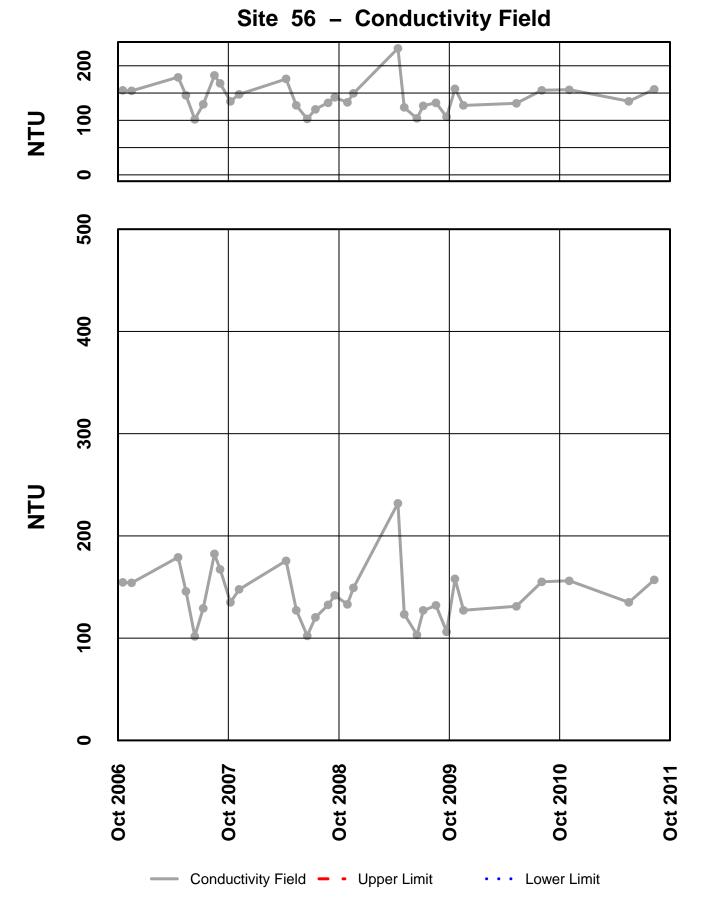
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

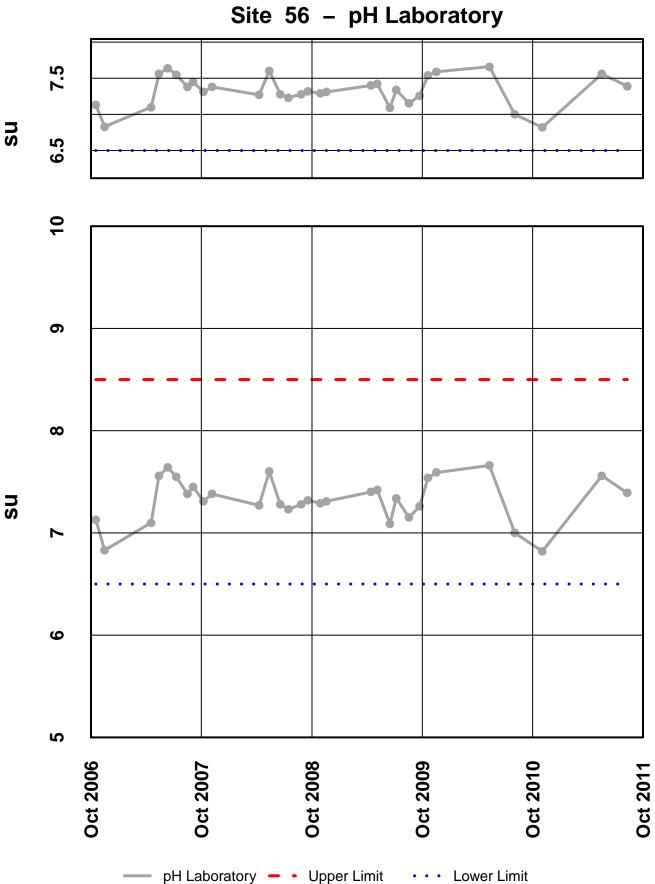
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

## Qualified Data by QA Reviewer

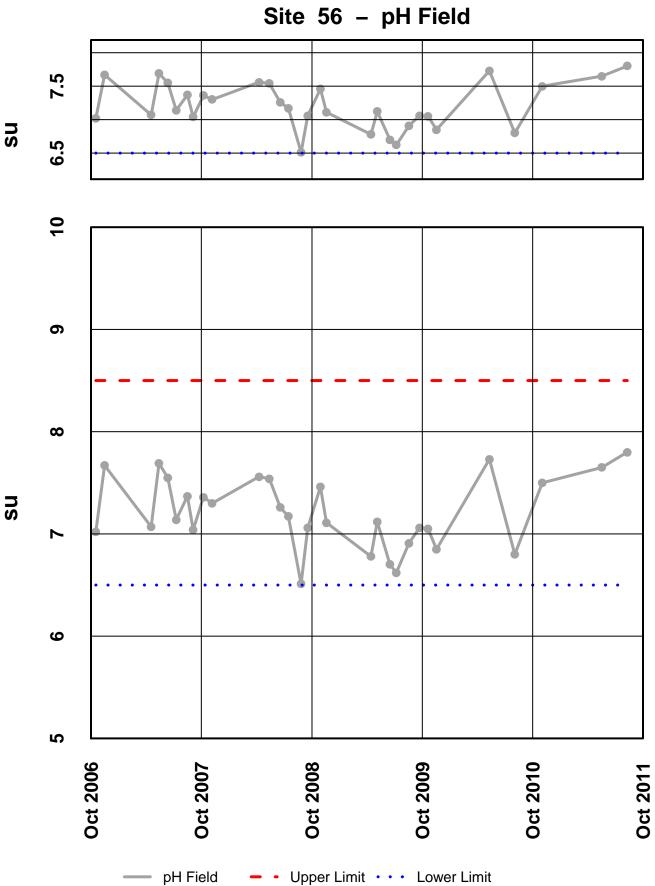

## Date Range: 10/01/2010 to 09/30/2011


Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
56	11/2/2010	12:00 AM			_	
			SO4 Tot, mg/l	10	J	Below Quantitative Range
			Se diss, µg/l	0.674	J	Below Quantitative Range
			Cd diss, µg/l	0.018	J	Below Quantitative Range
			Pb diss, µg/l	0.0146	U	Field Blank Contamination
56	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	7.5	J	Sample Reciept Temperature
			pH Lab, su	7.56	J	Hold Time Violation
			Ni diss, µg/l	0.777	U	Field Blank Contamination
			Cd diss, µg/l	0.0142	U	Trip Blank Contamination
			Pb diss, µg/l	0.00811	U	Field Blank Contamination
6	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	11.9	J	Sample Receipt Temperature
			Cd diss, µg/l	0.00827	J	Below Quantitative Range
			Pb diss, µg/l	0.00531	J	Below Quantitative Range
			pH Lab, su	7.39	J	Hold Time Violation
			Hg diss, µg/l	0.000707	U	Field Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

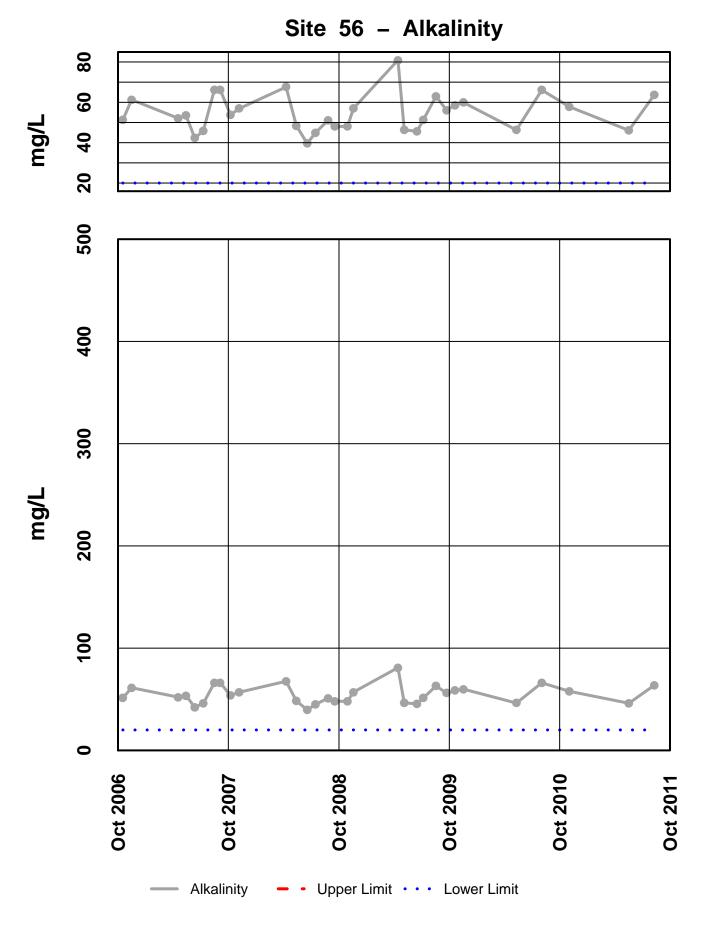


Site 56 – Water Temperature

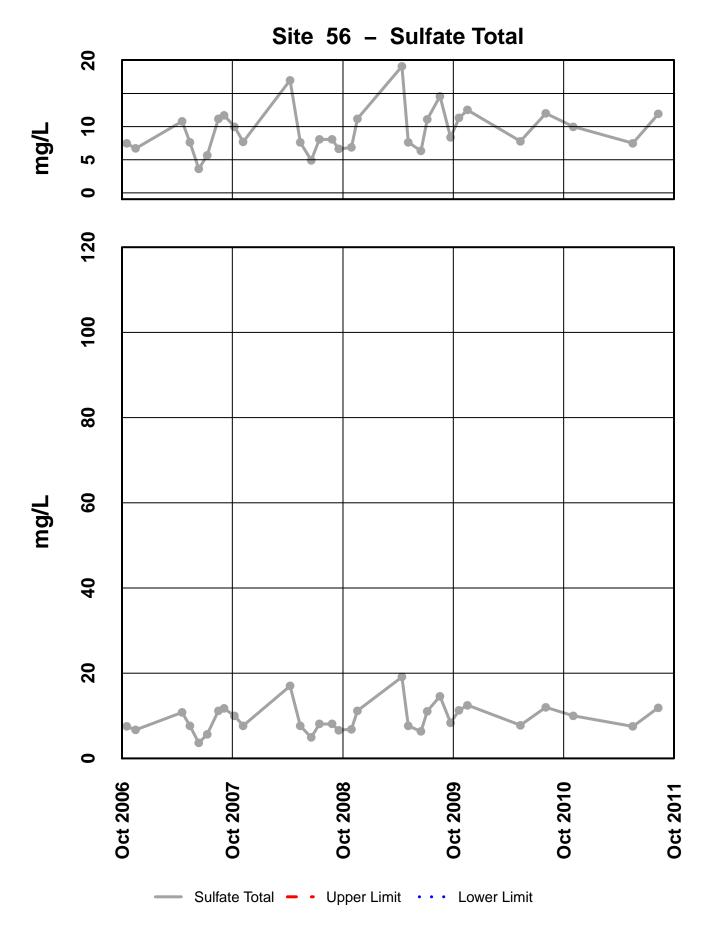




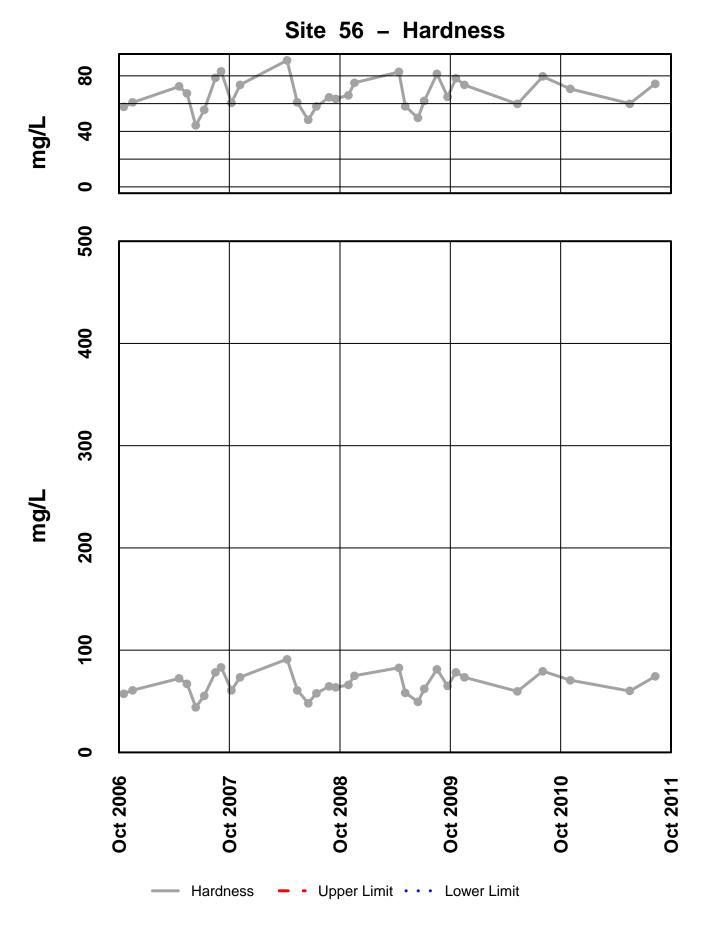




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

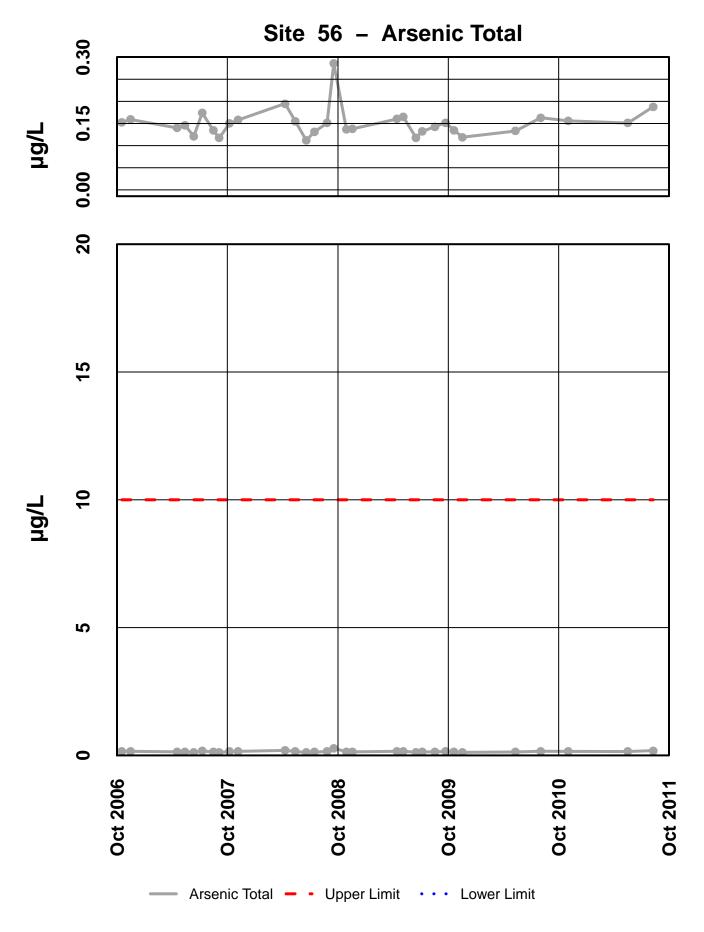
SU



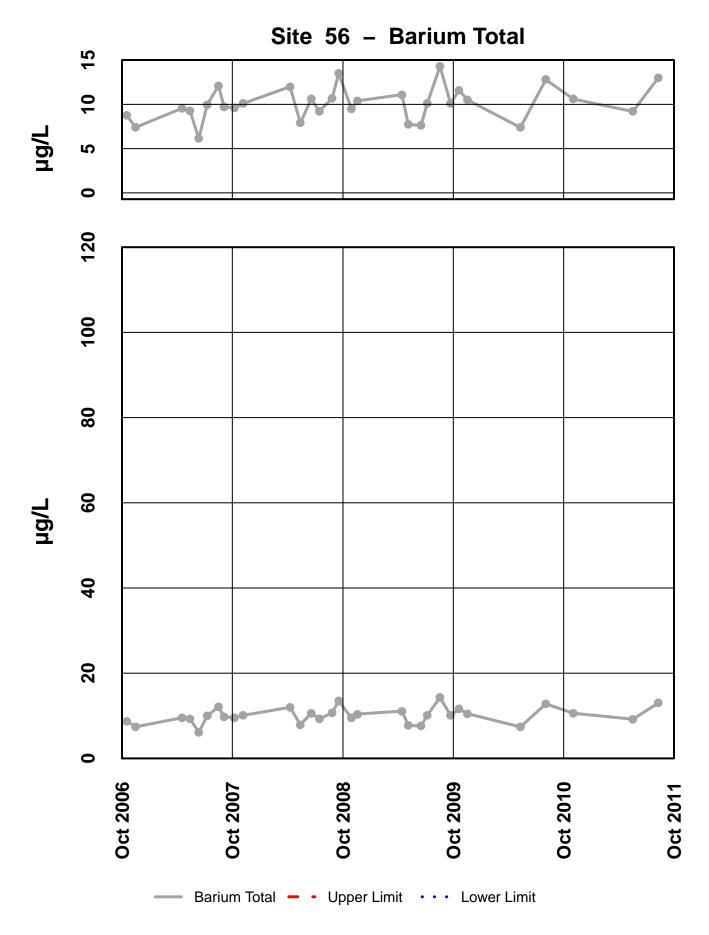

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

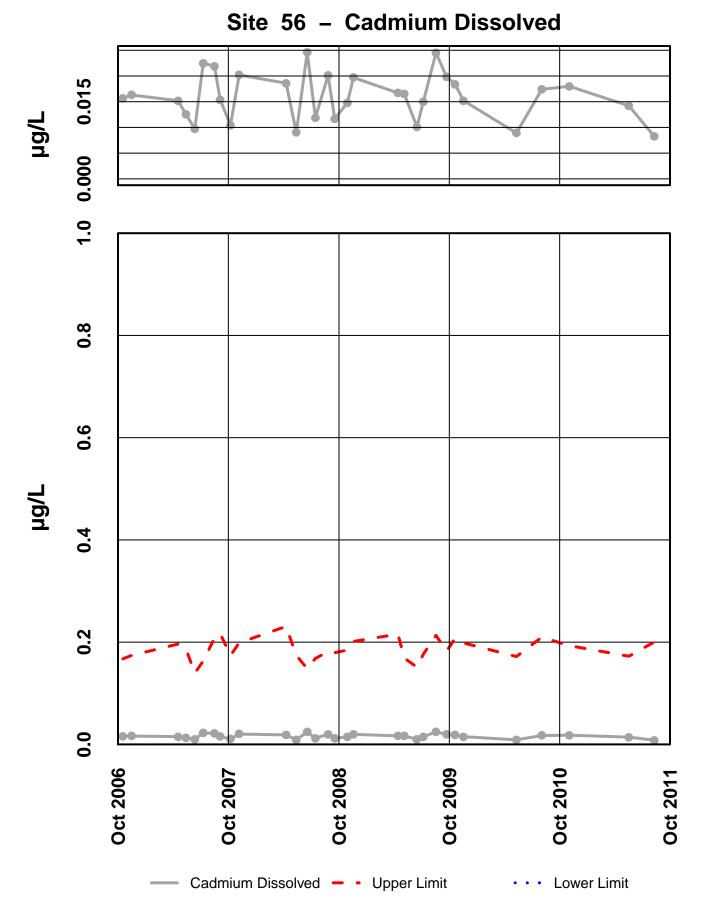



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

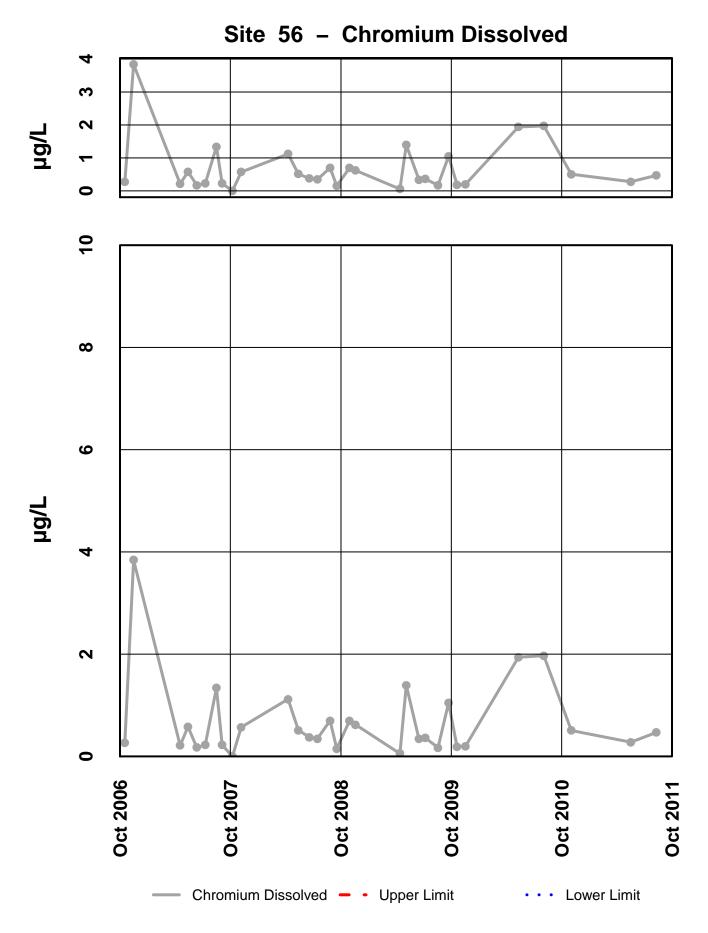


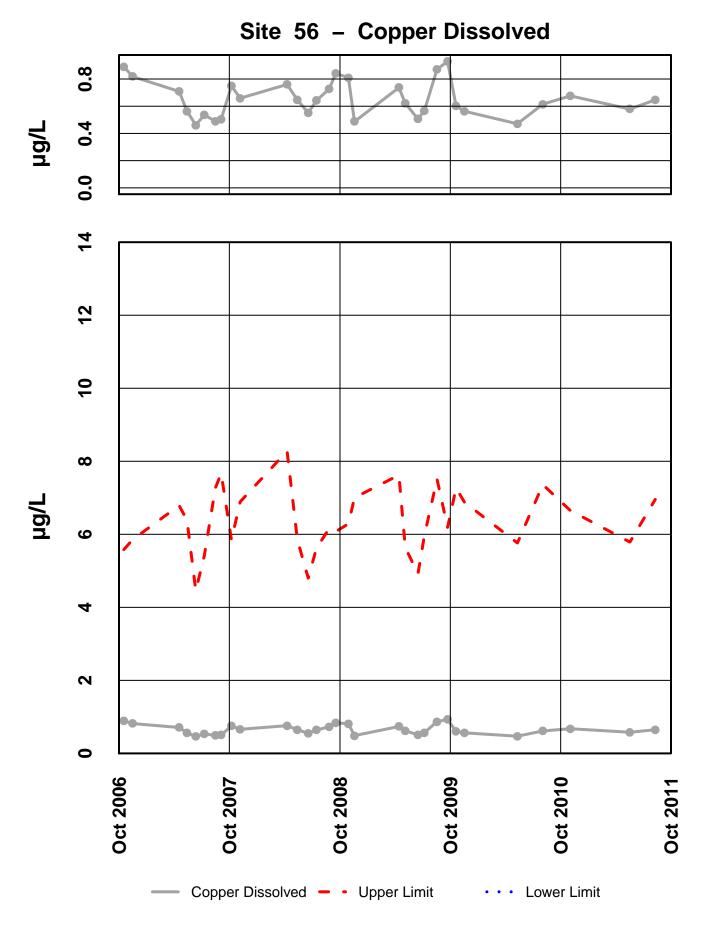

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



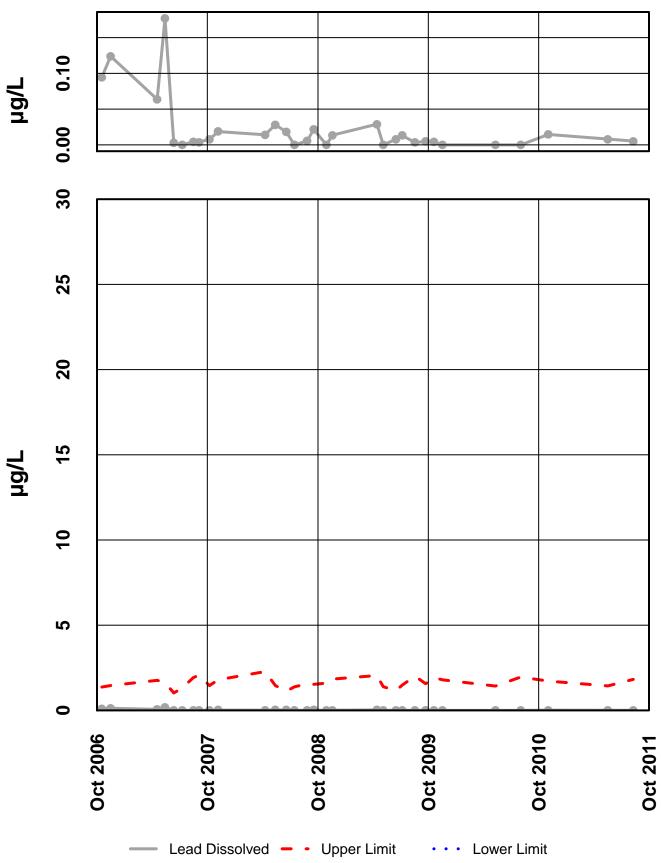

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



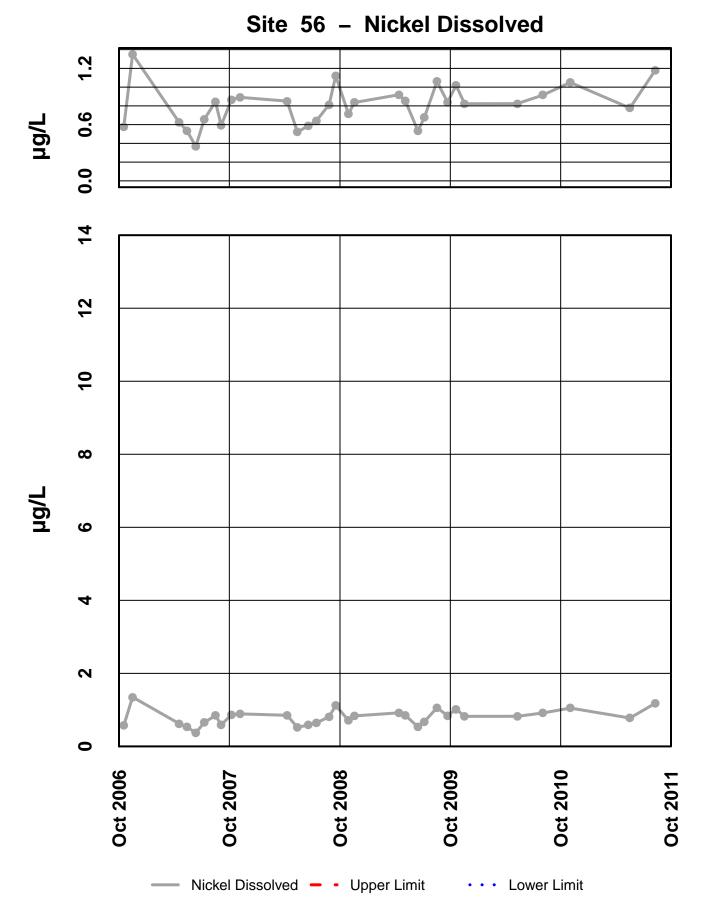

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



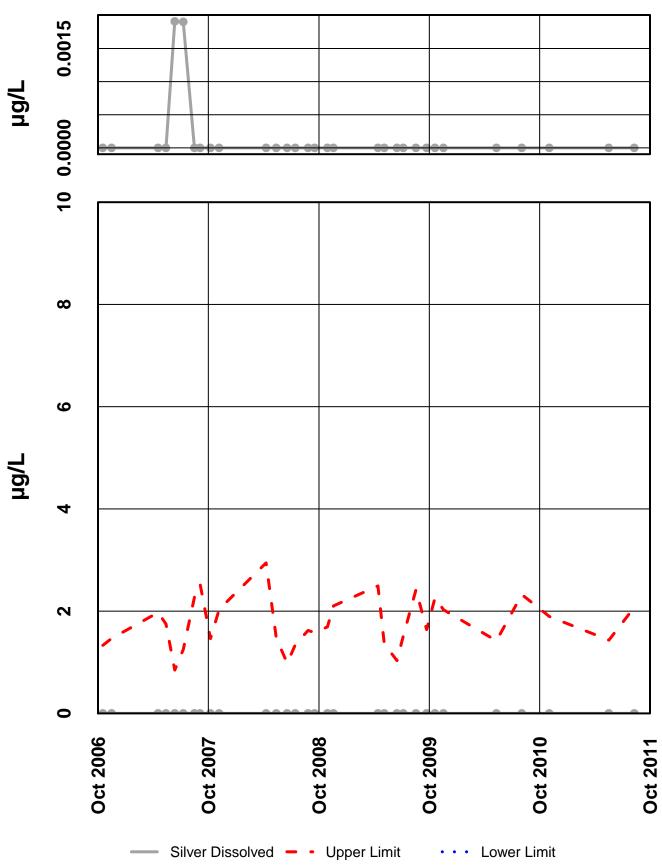

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



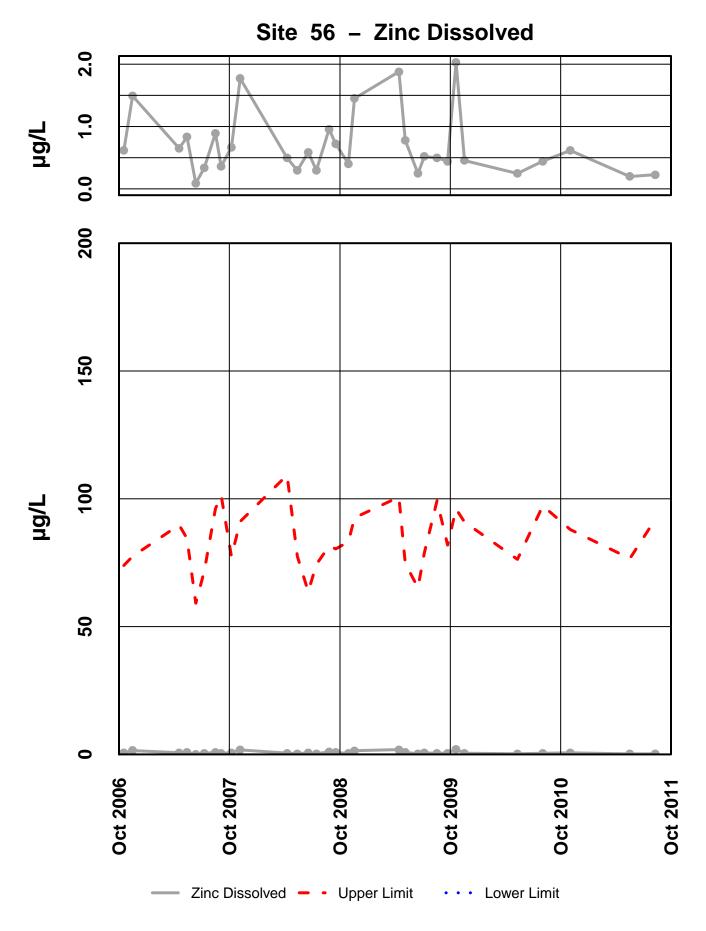

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



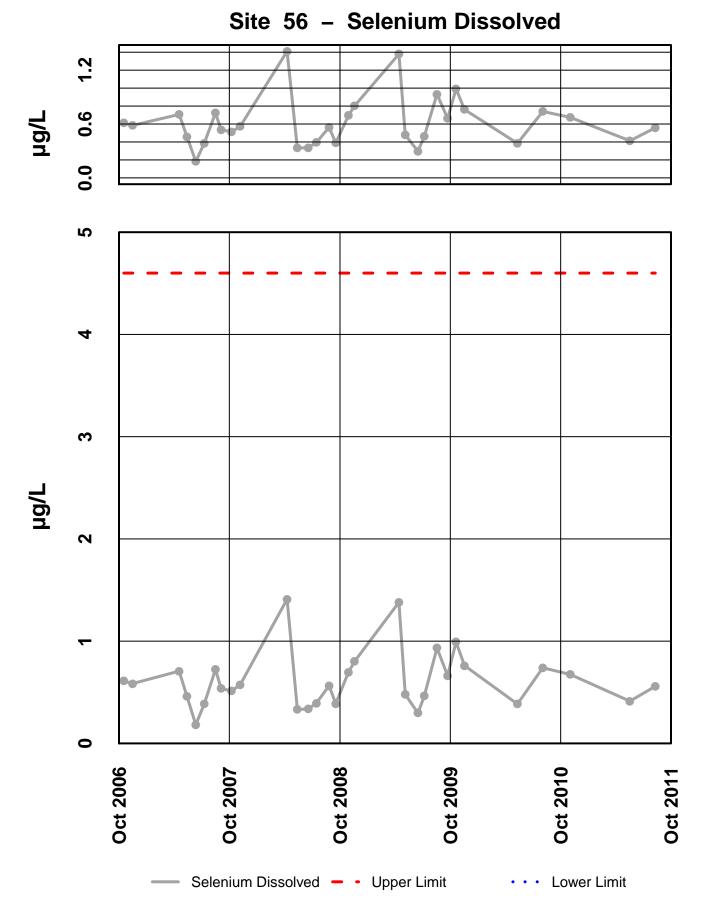




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

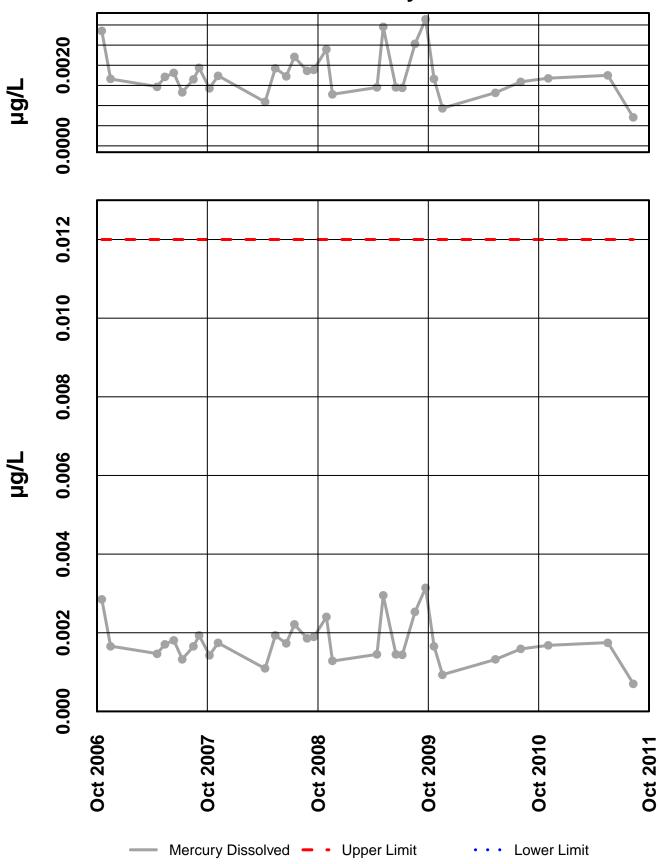



## Site 56 – Lead Dissolved




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



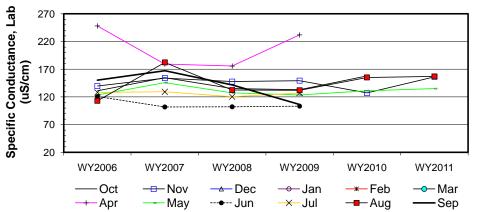

Site 56 – Silver Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

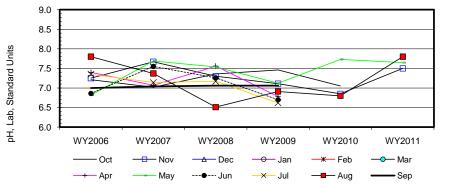



Site 56 – Mercury Dissolved

w label a b c	Water Year	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm) Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug											
b			Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
	WY2006	131.1	139.7					248	123.6	120.7	128.2	112.9	150.
C	WY2007	154.7	154					179.2	145.8	101.9	129.2	182.2	167.4
	WY2008	135	147.7					175.7	127.4	102.3	120.3	132.4	141.
d	WY2009	133.2	149.3					232	123.5	103.3	127	132	106.4
e f	WY2010 WY2011	157.9	127.3 156.2						131.2 135			155.1 157	
	n	5	6	0	0	0	0	4	6	4	4	6	
-	t1	5	6	0	0	0	0	4	6	4	4	6	
	t2	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t4	0	0	0	0	0	0	0	0	0	0	0	(
-	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
-	b-a	1	1					-1	1	-1	1	1	
	c-a	1	1					-1	1	-1	-1	1	-'
	d-a	1	1					-1	-1	-1	-1	1	-'
	e-a	1	-1						1			1	
	f-a		1						1			1	
	c-b	-1	-1					-1	-1	1	-1	-1	-
	d-b	-1	-1					1	-1	1	-1	-1	-'
	e-b	1	-1						-1			-1	
	f-b		1						-1			-1	
	d-c	-1	1					1	-1	1	1	-1	-
	e-c	1	-1						1			1	
	f-c		1						1			1	
	e-d	1	-1						1			1	
	f-d f-e		1						1			1	
ç	S _k	4	3	0	0	0	0	-2	3	0	-2	5	-4
<u>σ</u> ²	s=	16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
	s S _k /σ _s	0.98	0.56					-0.68	0.56	0.00	-0.68	0.94	-1.30
Z	2 k	0.96	0.32					0.46	0.32	0.00	0.46	0.88	1.8
	$\Sigma Z_k =$	0.33	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t _s			Σn	39
	$\Sigma Z_k^2 =$	5.25		Count	39	0	0	0	0			$\Sigma S_k$	7

Seasonal Kendall anal	ysis for Specific	c Conductance,	Lab (uS/cm)

$\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$	5.23	@α=5% χ ² _(K-1) = 14.07	Test for station homogeneity
q	0.632	· · · · · · · · · · · · · · · · · · ·	$\chi^2_h < \chi^2_{(K-1)}$ ACCEPT
$\Sigma VAR(S_k) Z_{calc}$	0.51	@α/2=2.5% Z= 1.96	H ₀ (No trend) ACCEPT
136.33 p	0.696		H _A (± trend) REJECT




Season	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-3.98		3.21
0.050	-2.74	0.70	1.98
0.100	-1.79	0.70	1.90
0.200	-0.40		1.72

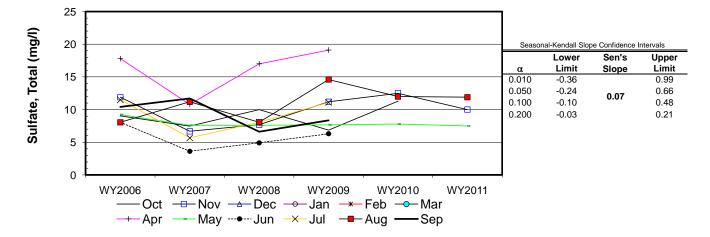
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	7.2	7.3					7.4	6.8	6.9	7.4	7.8	7.0
b	WY2007	7.0	7.7					7.1	7.7	7.6	7.1	7.4	7.0
С	WY2008	7.4	7.3					7.6	7.5	7.3	7.2	6.5	7.1
d	WY2009	7.5	7.1					6.8	7.1	6.7	6.6	6.9	7.1
е	WY2010	7.1	6.9						7.7			6.8	
f	WY2011		7.5						7.7			7.8	
	n	5	6	0	0	0	0	4	6	4	4	6	2
	t,	5	6	0	0	0	0	4	6	4	4	4	2
	t ₂	0	0	0	0	0	0	0	0	0	0	1	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a	-1	1					-1	1	1	-1	-1	
	c-a	1	1					1	1	1	-1	-1	
	d-a	1	-1					-1	1	-1	-1	-1	
	e-a	-1	-1						1			-1	
	f-a		1						1			0	
	c-b d-b	1	-1					1 -1	-1 -1	-1 -1	1 -1	-1 -1	-
	а-b e-b	1	-1 -1					-1	-1	-1	-1	-1 -1	
	е-b f-b	1	-1						-1			-1	
	d-c	1	-1					-1	-1	-1	-1	1	(
	e-c	-1	-1						1			1	
	f-c	•	1						1			1	
	e-d	-1	-1						1			-1	
	f-d		1						1			1	
	f-e		1						-1			1	
	S _k	2	-3	0	0	0	0	-2	5	-2	-4	-2	
σ	² s=	16.67	28.33					8.67	28.33	8.67	8.67	27.33	7.67
	S _k /\sigma _S	0.49	-0.56					-0.68	0.94	-0.68	-1.36	-0.38	1.8
	$Z^2_k$	0.24	0.32					0.46	0.88	0.46	1.85	0.15	3.20
4	ĸ	0.24	0.52					0.40	0.00	0.40	1.05	0.15	5.2
	$\Sigma Z_k =$	-0.43	Γ	Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	39
	$\Sigma Z_{k}^{2}$ =	7.62		Count	35	2	0	0	0			$\Sigma S_k$	-1

Seasonal	Kendall	analys	is for	pH.	Lab.	Standard	Units
----------	---------	--------	--------	-----	------	----------	-------

$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	7.59	@α=5% χ ² _(K-1) =	14.07	Test for station hom	ogeneity
	р	0.370			χ ² _h <χ ² _(K-1)	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	0.00	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
134.33	р	0.500			H _A (± trend)	REJECT



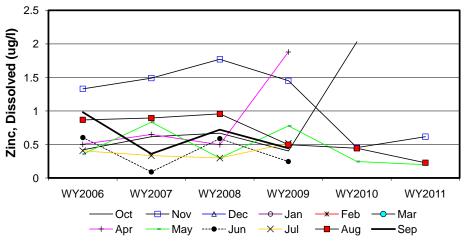
Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.19		0.07
0.050	-0.15	0.00	0.03
0.100	-0.10	0.00	0.02
0.200	-0.06		0.02


Site	#56
------	-----

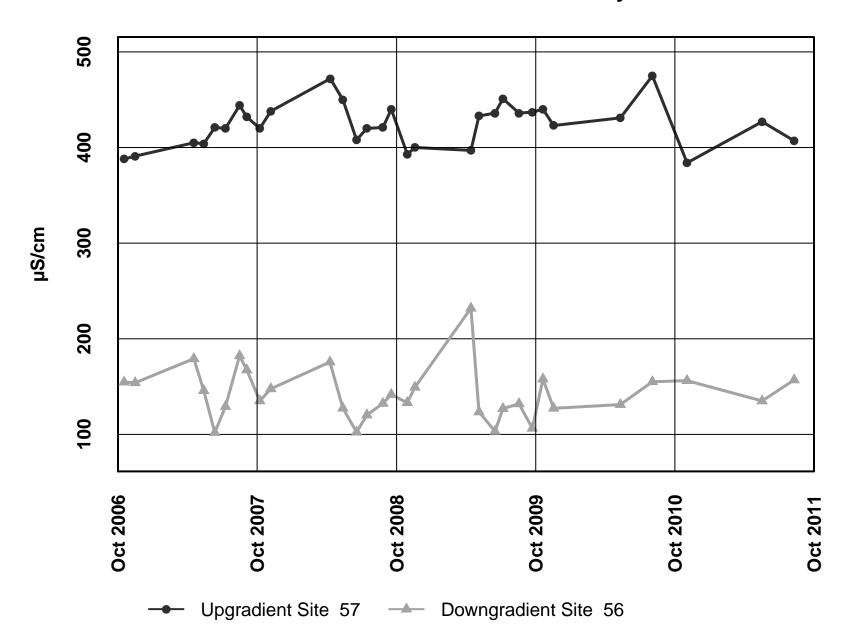
Seasonal Kendall analysis for Total Alk, (mg/l)

One								13 101 10	,	· · · ·			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	56.8	62.8	200	•			76.3	57.4	49.1	60.3	57.9	61.0
b	WY2007	51.2	61.3					52.1	53.5	42.3	45.8	66.3	66.3
c	WY2008	53.8	56.9					67.6	48.4	39.6	44.9	51.1	48.1
d	WY2009	48.0	57.0					80.9	46.4	45.6	51.3	63.0	56.1
е	WY2010	58.6	59.9						46.3			66.1	
f	WY2011		57.8						46.1			63.7	
	n	5	6	0	0	0	0	4	6	4	4	6	4
	t,	5	6	0	0	0	0	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	ů 0	0	0 0	0 0	0	0 0	0
	t₃												
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	ι5	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1					-1	-1	-1	-1	1	1
	c-a	-1	-1					-1	-1	-1	-1	-1	-1
	d-a	-1	-1					1	-1	-1	-1	1	-1
	e-a	1	-1						-1			1	
	f-a		-1						-1			1	
	c-b	1	-1					1	-1	-1	-1	-1	-1
	d-b	-1	-1					1	-1	1	1	-1	-1
	e-b	1	-1						-1			-1	
	f-b		-1						-1			-1	
	d-c	-1	1					1	-1	1	1	1	1
	e-c	1	1						-1			1	
	f-c	•	1						-1			1	
		4	-									1	
	e-d	1	1						-1			1	
	f-d		1						-1			1	
	f-e		-1						-1			-1	
	S _k	0	-5	0	0	0	0	2	-15	-2	-2	3	-2
	2												
	² s=	16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
Z _k =	$S_k/\sigma_S$	0.00	-0.94					0.68	-2.82	-0.68	-0.68	0.56	-0.68
	Z ² _k	0.00	0.88					0.46	7.94	0.46	0.46	0.32	0.46
			F										
	$\Sigma Z_{k} =$	-4.55		Tie Extent	t1	t ₂	t ₃	t4	t₅			Σn	39
	$\Sigma Z_{k}^{2}$ =	10.99		Count	39	0	-						
-		-0.57	L	Obunt			0	0	0			$\Sigma S_{i}$	-21
Ζ.	-bar=ΣZ _k /K=	-0.57				0	0	0	0			$\Sigma S_k$	-21
		0.07			33	0	0	0	0			$\Sigma S_k$	-21
		0.01				0	0	0	0			$\Sigma S_k$	-21
	$\gamma^2 = \Sigma 7^2 =$		8 40							tion homog	eneity	$\Sigma S_k$	-21
	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	8.40			6 χ ² (κ-1)=	0	T	est for sta	tion homog		$\Sigma S_k$	-21
	$\chi^2_h = \Sigma Z^2_k$ -I	K(Z-bar) ² = <b>p</b>	8.40 <b>0.299</b>					T			eneity ACCEPT	$\Sigma S_k$	-21
		K(Z-bar) ² = <b>p</b>	0.299		@α=5%	6 χ ² _(K-1) =		T	Test for star $\lambda_h^2 < \chi^2_{(K-1)}$		ACCEPT	$\Sigma S_k$	-21
	$\Sigma VAR(S_k)$	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%		14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend)	ACCEPT ACCEPT	$\Sigma S_k$	-21
		K(Z-bar) ² = <b>p</b>	0.299		@α=5%	6 χ ² _(K-1) =	14.07	T	Test for star $\lambda_h^2 < \chi^2_{(K-1)}$	trend)	ACCEPT	$\Sigma S_k$	-21
90 T	$\Sigma VAR(S_k)$	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend)	ACCEPT ACCEPT	$\Sigma S_k$	-21
	$\Sigma VAR(S_k)$	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend)	ACCEPT ACCEPT	$\Sigma S_k$	-21
80 -	$\Sigma VAR(S_k)$	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend)	ACCEPT ACCEPT	$\Sigma S_k$	-21
	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend) trend)	ACCEPT ACCEPT		
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	est for sta ² / _h <χ ² (K-1) <b>H</b> ₀ (No	trend) trend)	ACCEPT ACCEPT REJECT	o Confidence Ir	itervals
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	T	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) Seasona	ACCEPT ACCEPT REJECT	e Confidence Ir Sen's	itervals Upper
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) Seasona	ACCEPT ACCEPT REJECT	o Confidence Ir	itervals Upper Limit
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) Seasona α 0.010	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40	e Confidence Ir Sen's	itervals Upper Limit 0.35
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01	e Confidence Ir Sen's Slope	ttervals Upper Limit 0.35 -0.10
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's	tervals Upper Limit 0.35 -0.10 -0.20
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01	e Confidence Ir Sen's Slope	ttervals Upper Limit 0.35 -0.10
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<b>Total Alk, (mg/l)</b> - 08 - 09 - 06 - 08 - 09 - 08 - 09 - 00 - 0	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
80 - 70 -	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<ul> <li>40</li> <li>4</li></ul>	ΣVAR(S _k ) 136.33	K(Z-bar) ² = p Z _{calc}	<b>0.299</b> -1.71		@α=5%	6 χ ² _(K-1) =	14.07	τ χ	$\frac{1}{1} = \frac{1}{1} + \frac{1}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<b>Total Alk, (mg/l)</b> - 02 - 05 - 05 - 05 - 05	ΣVAR(S _k ) 136.33	K(Z-bar) ² = P Z _{calc} P	0.299 -1.71 0.043		@α=59 @α/2=	6 χ ² (κ-1)= 2.5% Z=	14.07	Τ χ	est for sta $_{h}^{2} \times \chi^{2}_{(K-1)}$ H ₀ (No H _A (± 1 ] - -	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<ul> <li>40</li> <li>4</li></ul>	ΣVAR(S _k ) 136.33	K(Z-bar) ² = P Z _{calc} P	<b>0.299</b> -1.71	UY2008	@α=5%	6 χ ² (κ-1)= 2.5% Z=	14.07	τ χ	est for sta $_{h}^{2} \times \chi^{2}_{(K-1)}$ H ₀ (No H _A (± 1 ] - -	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<ul> <li>40</li> <li>4</li></ul>	ΣVAR(S _k ) 136.33	K(Z-bar) ² = P Z _{calc} P	0.299 -1.71 0.043	UY2008	@α=59 @α/2=	6 χ ² (κ-1)= 2.5% Z=	14.07	Τ χ	est for sta $_{h}^{2} \times \chi^{2}_{(K-1)}$ H ₀ (No H _A (± 1 ] - -	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20
<ul> <li>80 -</li> <li>70 -</li> <li>70 -</li> <li>60 -</li> <li>60 -</li> <li>70 -</li> <li< td=""><td>ΣVAR(S_k) 136.33</td><td>K(Z-bar)²= P Z_{calc} P S WY2 t</td><td>0.299 -1.71 0.043</td><td></td><td>@α=59 @α/2=</td><td>6 χ²(κ-1)= 2.5% Z= 009 - Jan</td><td>14.07 1.96</td><td>Τ χ</td><td>eest for sta $_{h}^{2} \times \chi^{2}_{(K-1)}$ H₀ (No H_A (± 1) H₀ (No H_A (± 1)) H₀ (No H_A (± 1)) H₀ (No H_A (± 1)) H₀ (No H_A (± 1)) H₀ (No H₀ (No H_A (± 1)) H₀ (No (No (No (No (No (No (No (No (No (No</td><td>trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100</td><td>ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85</td><td>e Confidence Ir Sen's Slope</td><td>tervals Upper Limit 0.35 -0.10 -0.20</td></li<></ul>	ΣVAR(S _k ) 136.33	K(Z-bar) ² = P Z _{calc} P S WY2 t	0.299 -1.71 0.043		@α=59 @α/2=	6 χ ² (κ-1)= 2.5% Z= 009 - Jan	14.07 1.96	Τ χ	eest for sta $_{h}^{2} \times \chi^{2}_{(K-1)}$ H ₀ (No H _A (± 1) H ₀ (No H _A (± 1)) H ₀ (No H ₀ (No H _A (± 1)) H ₀ (No (No (No (No (No (No (No (No (No (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -2.40 -2.01 -1.85	e Confidence Ir Sen's Slope	tervals Upper Limit 0.35 -0.10 -0.20

Site	#56			S	easonal	Kendall	analysis	s for Sulf	ate, Tota	ıl (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	9.0	11.9					17.8	9.2	8.1	11.5	8.1	10.4
b	WY2007	7.5	6.7					10.8	7.6	3.6	5.7	11.2	11.7
С	WY2008	10.0	7.7					17.0	7.6	4.9	8.1	8.1	6.6
d	WY2009	6.9	11.2					19.1	7.7	6.3	11.1	14.6	8.4
е	WY2010	11.3	12.5						7.8			12.0	
f	WY2011		10.0						7.5			11.9	
	n	5	6	0	0	0	0	4	6	4	4	6	4
	t,	5	6	0	0	0	0	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
	t _s	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1	-1					-1	-1	-1	-1	1	1
	c-a	1	-1					-1	-1	-1	-1	1	-1
	d-a	-1	-1					1	-1	-1	-1	1	-1
	e-a	1	1						-1			1	
	f-a		-1						-1			1	
	c-b	1	1					1	1	1	1	-1	-1
	d-b	-1	1					1	1	1	1	1	-1
	e-b	1	1						1			1	
	f-b		1						-1			1	
	d-c	-1	1					1	1	1	1	1	1
	e-c	1	1						1			1	
	f-c e-d	1	1						-1			1 -1	
	e-u f-d	1	-1						-1			-1	
	f-e		-1						-1			-1	
	S _k	2	3	0	0	0	0	2	-3	0	0	7	-2
	² s=	40.07	00.00					0.07	00.00	0.07	0.07	00.00	0.07
		16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
	$S_k/\sigma_S$	0.49	0.56					0.68	-0.56	0.00	0.00	1.32	-0.68
Z	<u>z</u> ² _k	0.24	0.32					0.46	0.32	0.00	0.00	1.73	0.46
	$\Sigma Z_k =$	1.80	Г	Tie Extent	t,	t ₂	t ₃	t ₄	t _s			Σn	39
	$\Sigma Z_{k}^{2} =$	3.53		Count	39	0	0	0	0			$\Sigma S_k$	9
7	-bar=ΣZ _k /K=	0.23	L	Jount	00	0	v	0	0			<b>20</b> к	5

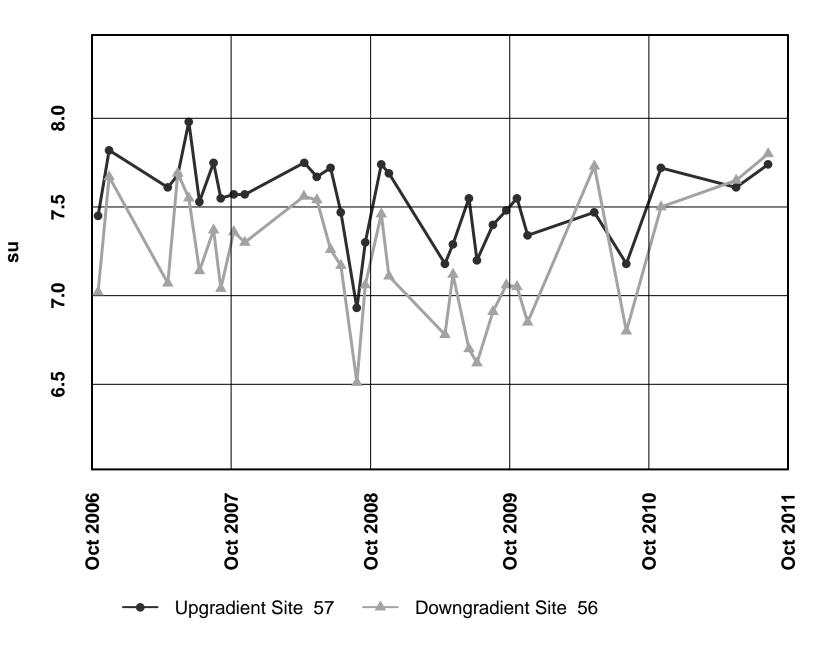

$\chi^2_h = \Sigma Z^2_k - K(z)$	Z-bar) ² =	3.12	@α=5% χ ² _(K-1) =	14.07	Test for station homogeneit	
	р	0.874			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	0.69	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
136.33	р	0.753			H _A (± trend)	REJECT

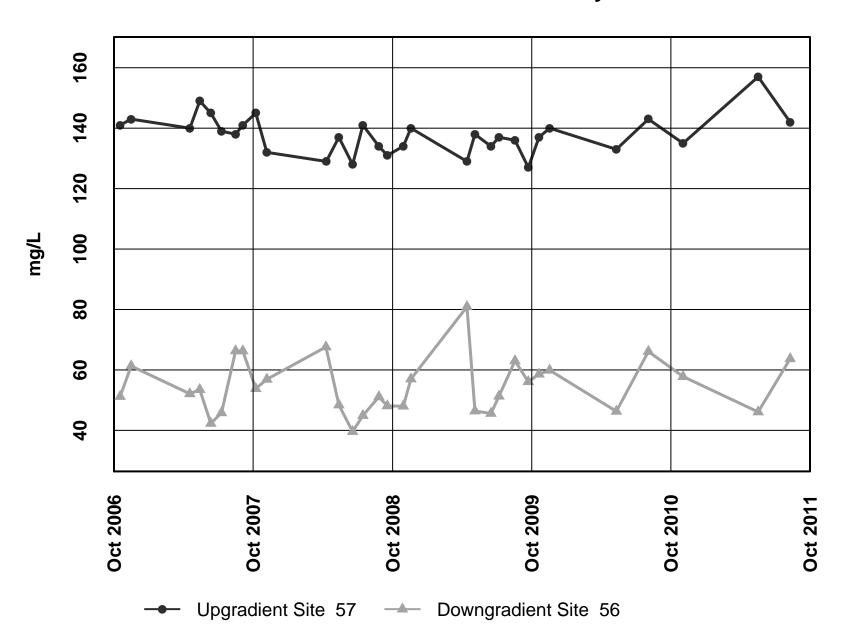



Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	0.4	1.3					0.5	0.4	0.6	0.4	0.9	1.0
b	WY2007	0.6	1.5					0.7	0.8	0.1	0.3	0.9	0.4
С	WY2008	0.7	1.8					0.5	0.3	0.6	0.3	1.0	0.7
d	WY2009	0.4	1.5					1.9	0.8	0.2	0.5	0.5	0.4
е	WY2010	2.0	0.5						0.2			0.4	
f	WY2011		0.6						0.2			0.2	
	n	5	6	0	0	0	0	4	6	4	4	6	4
	t,	5	6	0	0	0	0	4	6	4	4	6	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	1	1					1	1	-1	-1	1	-1
	c-a	1	1					-1	-1	-1	-1	1	-1
	d-a	-1	1					1	1	-1	1	-1	-1
	e-a	1	-1						-1			-1	
	f-a		-1						-1			-1	
	c-b	1	1					-1	-1	1	-1	1	1
	d-b	-1	-1					1	-1	1	1	-1	1
	e-b	1	-1						-1			-1	
	f-b		-1						-1			-1	
	d-c	-1	-1					1	1	-1	1	-1	-1
	e-c	1	-1						-1			-1	
	f-c		-1						-1			-1	
	e-d	1	-1						-1			-1	
	f-d		-1						-1			-1	
	f-e		1						-1			-1	
	S _k	4	-5	0	0	0	0	2	-9	-2	0	-9	-2
	5 ² s=	16.67	28.33					8.67	28.33	8.67	8.67	28.33	8.67
	S _k /σ _S	0.98	-0.94					0.68	-1.69	-0.68	0.00	-1.69	-0.68
	Z ² _k	0.96	0.88					0.46	2.86	0.46	0.00	2.86	0.46
	$\Sigma Z_k =$	-4.02	Г	Tie Extent	t₁	t ₂	t ₃	t₄	t₅			Σn	39
	$\Sigma Z_{k}^{2}$	8.94		Count	39	0	0	0	0			$\Sigma S_k$	-21
-			L	Count	00	U	U	0	U			20 _K	-71
Ζ	Z-bar=ΣZ _k /K=	-0.50											

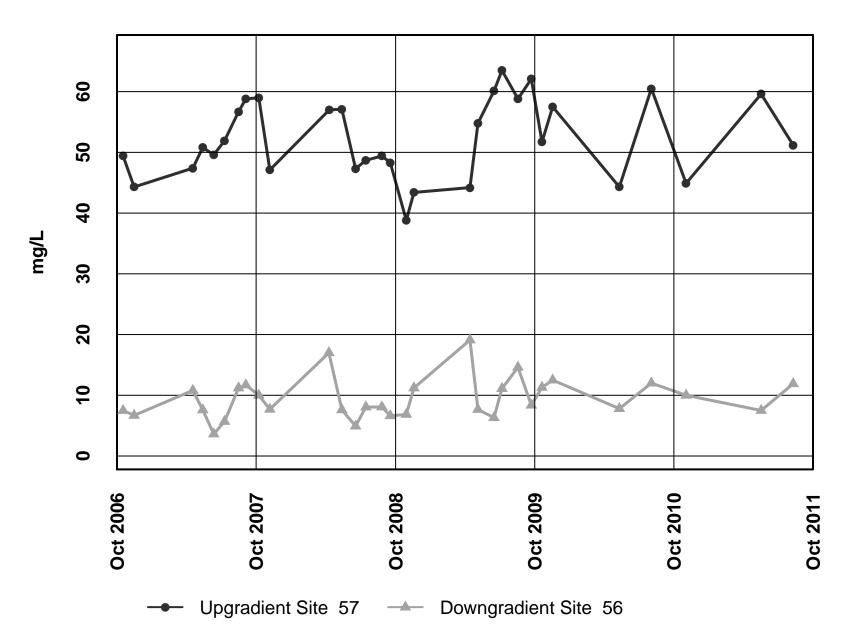
Γ	$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	6.92	@α=5% χ ² _(K-1) =	14.07	Test for station homo	geneity
Γ		р	0.437			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
	$\Sigma VAR(S_k)$	$Z_{calc}$	-1.71	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
	136.33	р	0.043			H _A (± trend)	REJECT

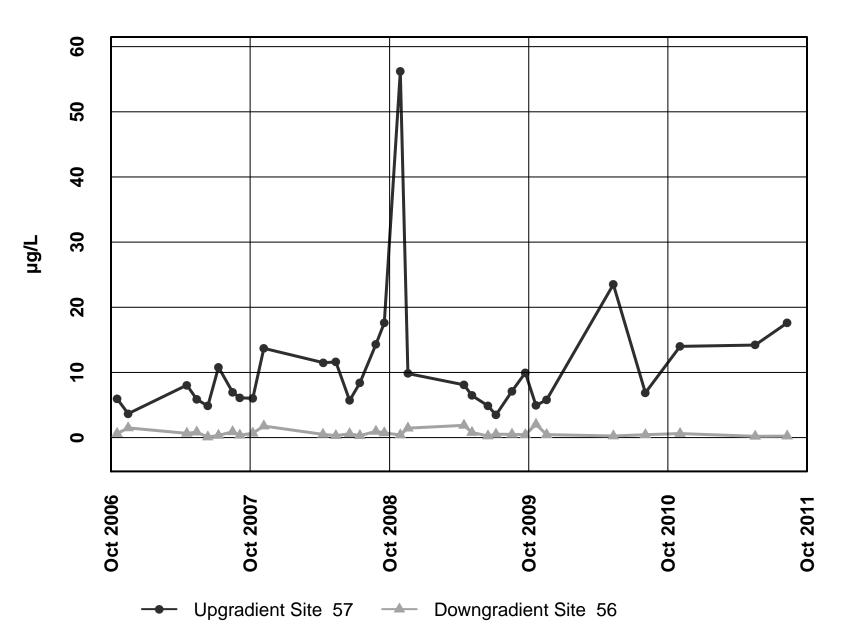




Seasonal-Kendall Slope Confidence Intervals									
	Lower	Sen's	Upper						
α	Limit	Slope	Limit						
0.010	-0.15		0.04						
0.050	-0.13	-0.04	-0.01						
0.100	-0.12	-0.04	-0.02						
0.200	-0.11		-0.03						



Site 57 vs. Site 56 – Conductivity Field


Site 57 vs. Site 56 - pH Field






Site 57 vs. Site 56 – Alkalinity Total

Site 57 vs. Site 56 – Sulfate Total





Site 57 vs. Site 56 – Zinc Dissolved

VVII		ned-ranks ⁻ Form	test						
Variable: Specific Conductance, Lab (uS/cm)									
X Y									
Site									
Year	WY2011	WY2011	D	D	Rank				
Oct									
Nov	384.0	156.2	227.8	227.8	1				
Dec									
Jan									
Feb									
Mar									
Apr	407.0	405.0	000.0	000.0					
May	427.0	135.0	292.0	292.0	3				
Jun									
Jul	407.0	157.0	250.0	250.0	2				
Aug Sep	407.0	157.0	250.0	250.0					
Median	407.0	156.2	250.0	250.0					
Median	407.0	150.2	200.0	230.0					
	n	m		N=	3				
	3	3		$\Sigma R =$	6				
		1	r	\A/+	1				
	α			W+=					
	5.0%			6					
	<b>W'</b> α,n			p-test					
	#N/A		l	6.000					
H ₀	median [D]	=0	ACCEPT		]				
H ₁	median [D]								

Wil		ned-ranks : Form	test					
Variable:	pH, Lab	o, Standarc	l Units					
X Y Site #57 #56 Differences								
Site Year								
	VVTZUTT	VVTZUTT	U	D	Rank			
Oct Nov	7 70	7 50	0.22	0.00	3			
Dec	7.72	7.50	0.22	0.22	3			
Jan								
Feb								
Mar								
Apr								
May	7.61	7.65	-0.04	0.04	-1			
Jun	7.01	7.00	-0.04	0.04				
Jul								
Aug	7.74	7.80	-0.06	0.06	-2			
Sep			0100	0.00				
Median	7.72	7.65	-0.04	0.06				
	n	m		N=				
	3	3		$\Sigma R =$	0			
	α	1	1	W+=	1			
	95.0%			3				
	<b>W'</b> α,n			p-test				
	#N/A			3.000				
	// <b>1 1/ / 1</b>	1	L	0.000	J			
H ₀	median [D]	=0	REJECT		]			
H ₁	median [D]>0		ACCEPT					

Wil	coxon-sign Exact		test		
Variable:		k, (mg/l) Y			
Site	#57	#56	Differ	ences	
Year	WY2011	WY2011	D	D	Rank
Oct					
Nov	135.0	57.8	77.2	77.2	1
Dec					
Jan					
Feb					
Mar					
Apr					
May	157.0	46.1	110.9	110.9	3
Jun					
Jul	142.0	63.7	78.3	78.3	2
Aug Sep	142.0	03.7	10.3	10.5	2
Median	142.0	57.8	78.3	78.3	
Median	142.0	07.0	70.0	70.0	
	n	m		N=	3
	3	3		$\Sigma R =$	6
	α			W+=	]
	95.0%			6	
	<b>W'</b> α,n			p-test	
	#N/A			6.000	
					-
H ₀	median [D]:	=0	REJECT		]
H ₁	median [D]:	<u>_</u> 0	ACCEPT		

Wi	coxon-sigi Exact	ned-ranks Form	test		
Variable:	Sulfate	, Total (mg	/I)		
Site	<b>X</b> #57	<b>Y</b> #56	Differe	ences	
Year	WY2011	WY2011	D	D	Rank
Oct					
Nov	44.9	10.0	34.9	34.9	1
Dec					
Jan					
Feb					
Mar					
Apr					
May	59.6	7.5	52.1	52.1	3
Jun					
Jul					
Aug	51.2	11.9	39.3	39.3	2
Sep					
Median	51.2	10.0	39.3	39.3	
	n	m		N=	3
	3	3		$\Sigma R=$	6
	α	1		W+=	]
	5.0%			6	
	<b>W'</b> α,n			p-test	
	#N/A			6.000	
					1
H ₀	median [D]	=0	ACCEPT		
H ₁	median [D]	<0			

•••	coxon-sign Exact							
Variable: Zinc, Dissolved (ug/l)								
Site Year	#57 WY2011	#56 WY2011	Diller	Differences				
Oct	VV12011	VV12011		וטן	Rank			
Nov	14.00	0.62	13.38	13.38	1			
Dec	14.00	0.02	15.50	13.30				
Jan								
Feb								
Mar								
Apr								
May	14.20	0.20	14.00	14.00	2			
Jun		•-=•			_			
Jul								
Aug	17.60	0.23	17.37	17.37	3			
Sep								
Median	14.20	0.23	14.00	14.00				
	n	m		N=	3			
	3	3		$\Sigma R =$				
	3	3		211-	0			
	α			W+=	1			
	5.0%			6				
	<b>W'</b> α,n			p-test				
	#N/A			6.000	J			
H ₀	median [D]=	=0	ACCEPT		]			
H ₁	median [D]<	-0						

### INTERPRETIVE REPORT SITE 13 "MINE ADIT DISCHARGE EAST"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes				
No outliers have been identified by HGCMC for the period of October 2006 through September 2011.								

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Two results exceeding these criteria have been identified, as listed in the table below. The data are for total sulfate from the May-2011 and Aug-2011 samplings with values of 256 mg/L and 317 mg/L respectively. Over several years waste rock material has been removed from the 1350 Area. It was not until 2011 that any material was removed from the Eastern Lobe, the area that contributes to the Site 13 drainage; however the material removed was not in the direct drain path for Site 13. It is expected that during the 2012 construction season that the majority of the remaining material (East Lobe) will be removed. When this removal is completed, water quality at this site is expected to improve.

#### **Table of Exceedance for Water Year 2011**

			Lir	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
18-May-11	Sulfate Total	256 mg/L	0	250	0 mg/L
10-Aug-11	Sulfate Total	317 mg/L	0	250	0 mg/L

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. As with the other sites in the 920 Area, there was a substantial decrease in the dissolved chromium concentration at Site 13, after last year's abrupt increase.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following

table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). For datasets with a statistically significant trend a Seasonal-Sen's Slope estimate statistic has also been calculated.

	Mann-Kei	ndall test st	atistics	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)	
Conductivity Field	6	0.14				
pH Field	6	0.12				
Alkalinity, Total	6	0.17				
Sulfate, Total	6	0.23				
Zinc, Dissolved	6	0.50				

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

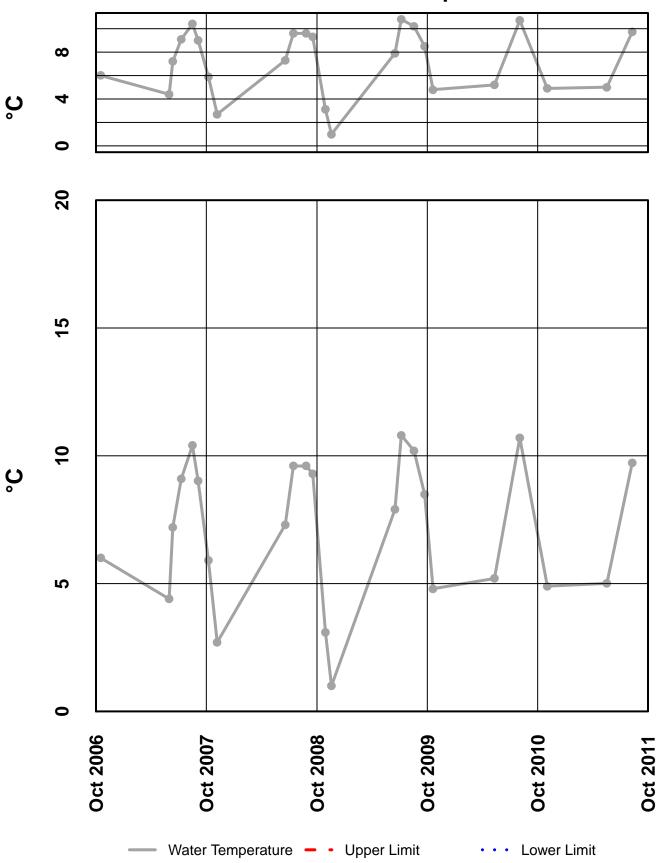
There were no statistically significant trends ( $\alpha/2=2.5\%$ ) for Site 13 during the 2011 water year. HGCMC feels the current FWMP program is sufficient to monitor any future increases at Site 13 before any water quality values are impaired.

Sile UTSEWIS - TSSU East Drainaye													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		4.9						5			9.7		5.0
Conductivity-Field(µmho)		357						744			877		744.0
Conductivity-Lab (µmho)		341						751			902		751
pH Lab (standard units)		6.96						7.8			7.81		7.80
pH Field (standard units)		7.69						7.68			7.75		7.69
Total Alkalinity (mg/L)		58						114			215		114.0
Total Sulfate (mg/L)		101						256			317		256.0
Hardness (mg/L)		195						420			511		420.0
Dissolved As (ug/L)		0.108						0.12			0.131		0.120
Dissolved Ba (ug/L)		13.6						19.6			24.4		19.6
Dissolved Cd (ug/L)		0.074						0.0267			0.0038		0.0267
Dissolved Cr (ug/L)		0.386						0.225			0.598		0.386
Dissolved Cu (ug/L)		1.77						0.506			1.2		1.200
Dissolved Pb (ug/L)		0.122						0.0195			0.0067		0.0195
Dissolved Ni (ug/L)		1.91						2.72			3.76		2.720
Dissolved Ag (ug/L)		0.004						0.002			0.002		0.002
Dissolved Zn (ug/L)		58.6						10.6			6.2		10.60
Dissolved Se (ug/L)		0.114						0.362			0.451		0.362
Dissolved Hg (ug/L)		0.00318						0.000642			0.000718		0.000718

#### Site 013FMS - '1350 East Drainage'

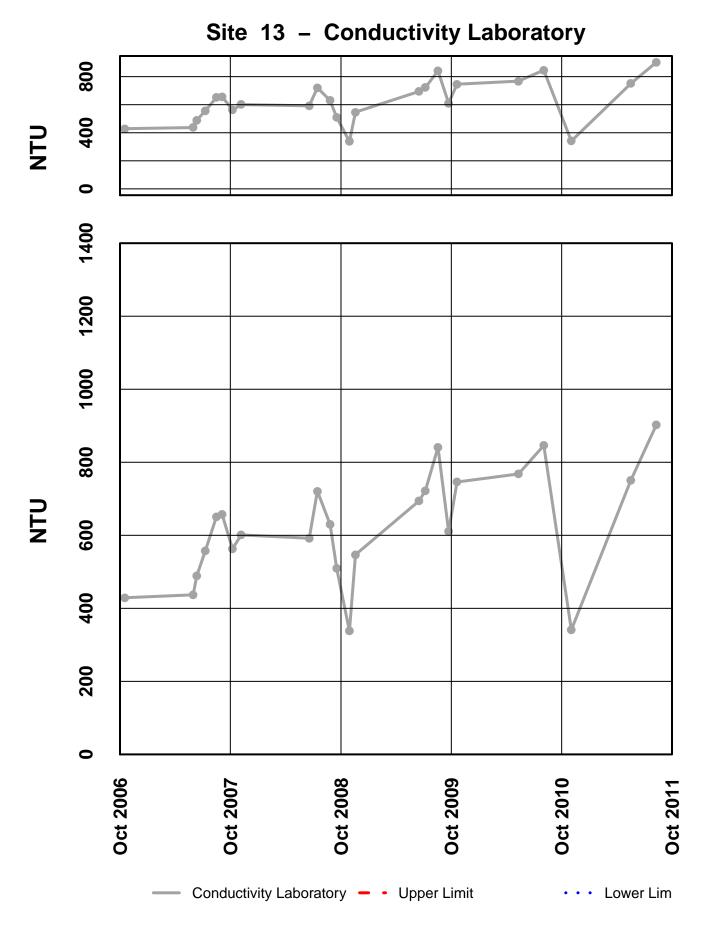
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

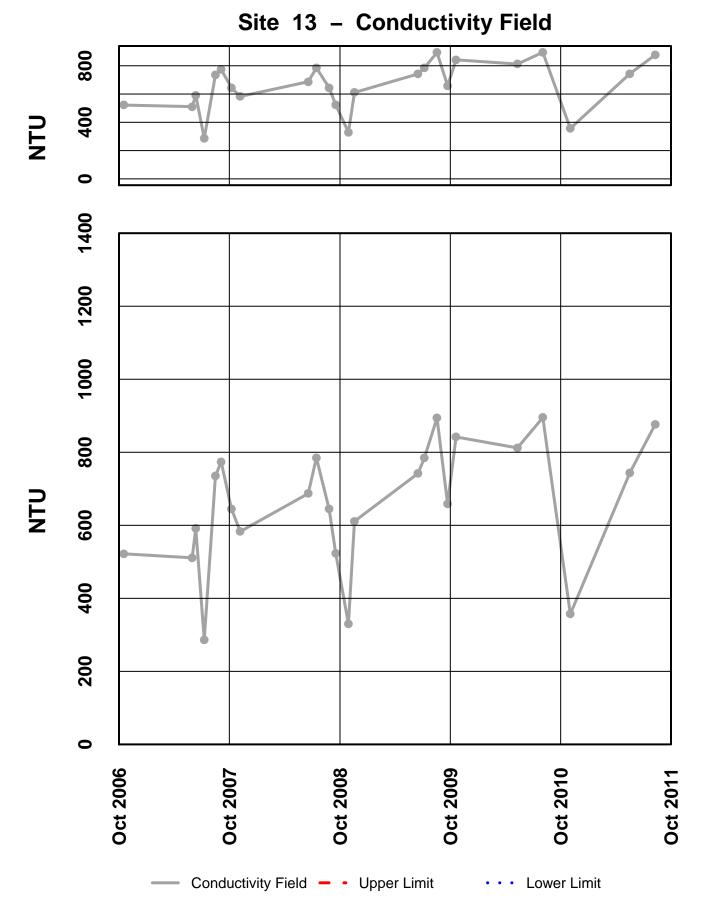

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

## Qualified Data by QA Reviewer

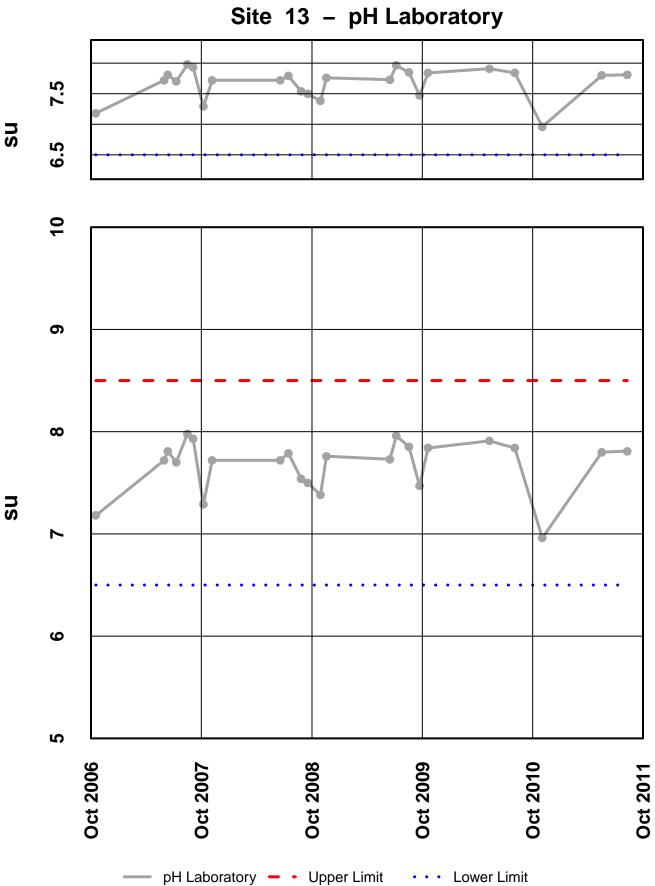
### Date Range: 10/01/2010 to 09/30/2011


Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
13	5/18/2011	12:00 AM				
			SO4 Tot, mg/l	256	J	Sample Reciept Temperature
			pH Lab, su	7.8	J	Hold Time Violation
			Cd diss, µg/l	0.0267	U	Trip Blank Contamination
			Pb diss, µg/l	0.0195	U	Field Blank Contamination
13	8/10/2011	12:00 AM				
			SO4 Tot, mg/l	317	J	Sample Receipt Temperature
			Cd diss, µg/l	0.0038	J	Below Quantitative Range
			Pb diss, µg/l	0.00674	J	Below Quantitative Range
			pH Lab, su	7.81	J	Hold Time Violation
			Hg diss, µg/l	0.000718	U	Field Blank Contamination

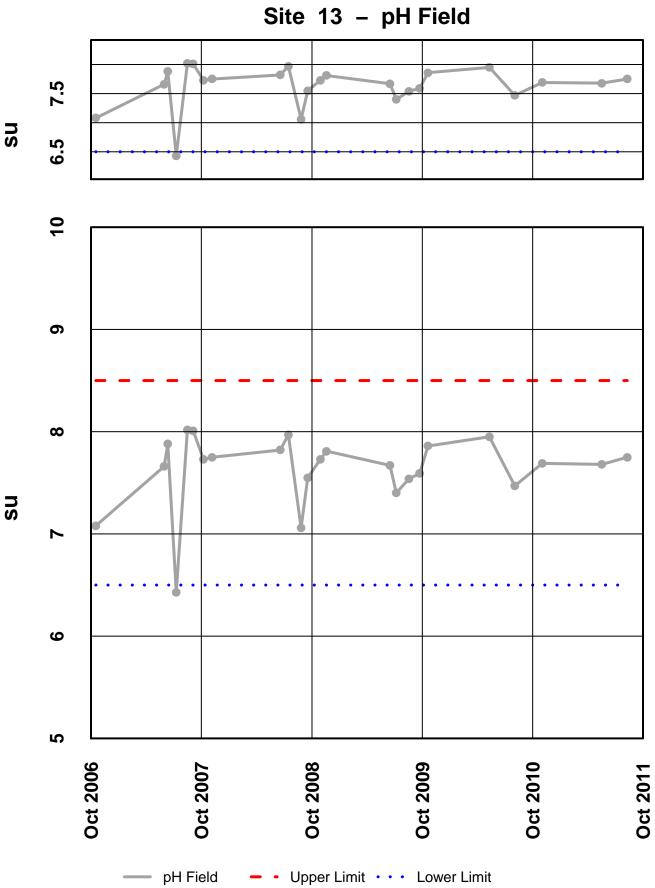
Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit




Site 13 – Water Temperature

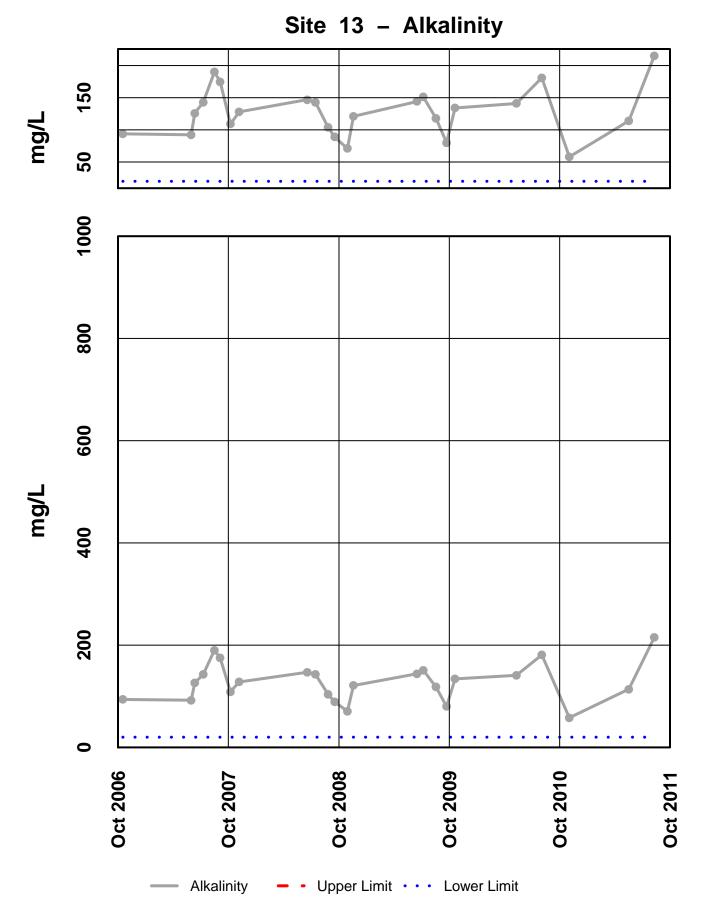

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



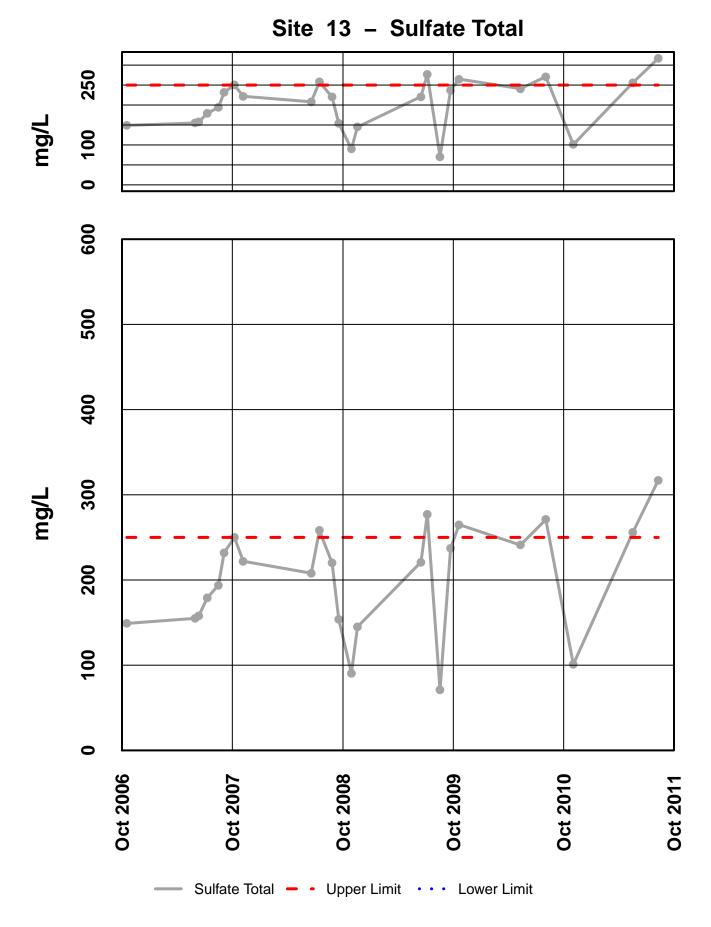

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



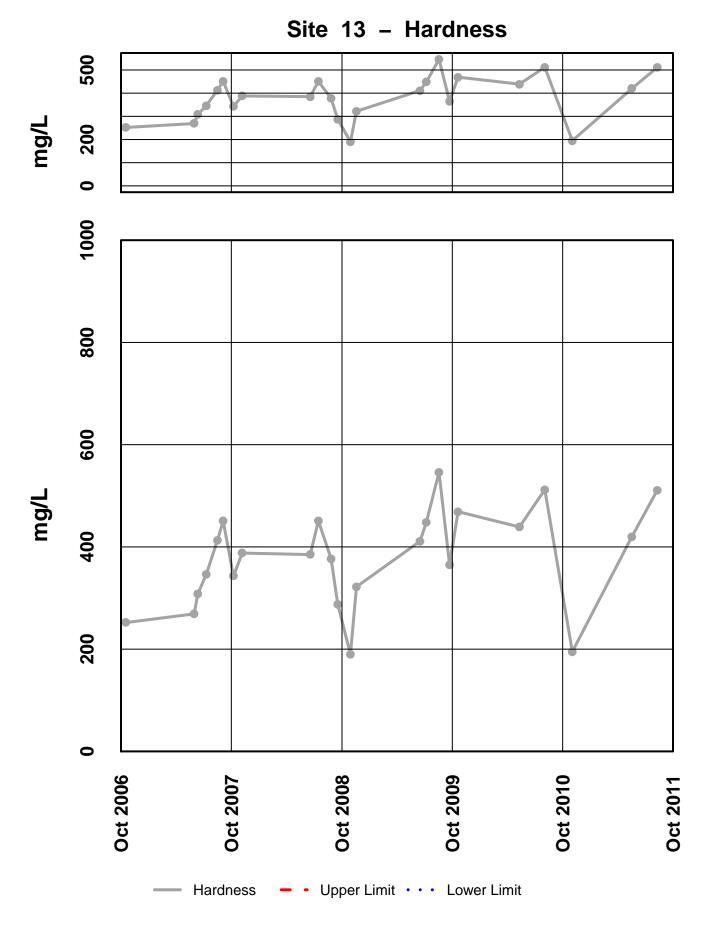
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



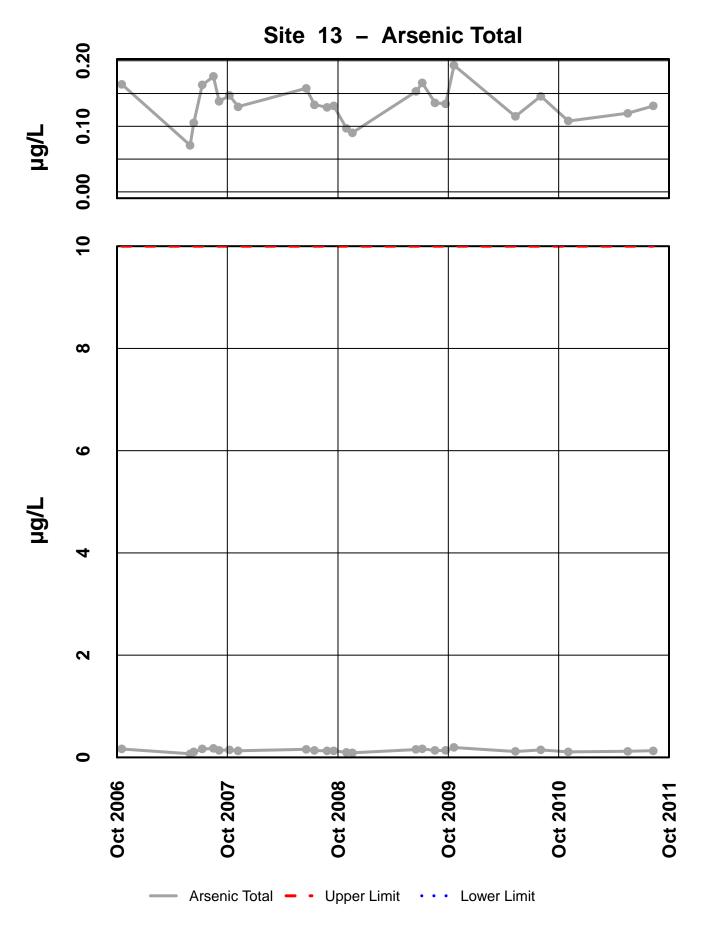

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



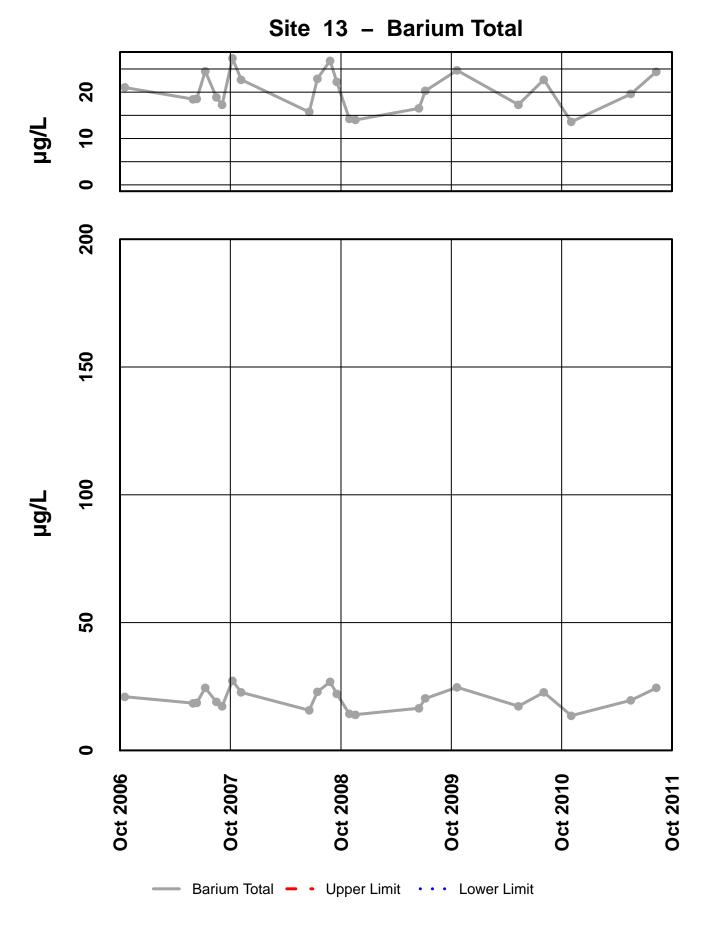

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

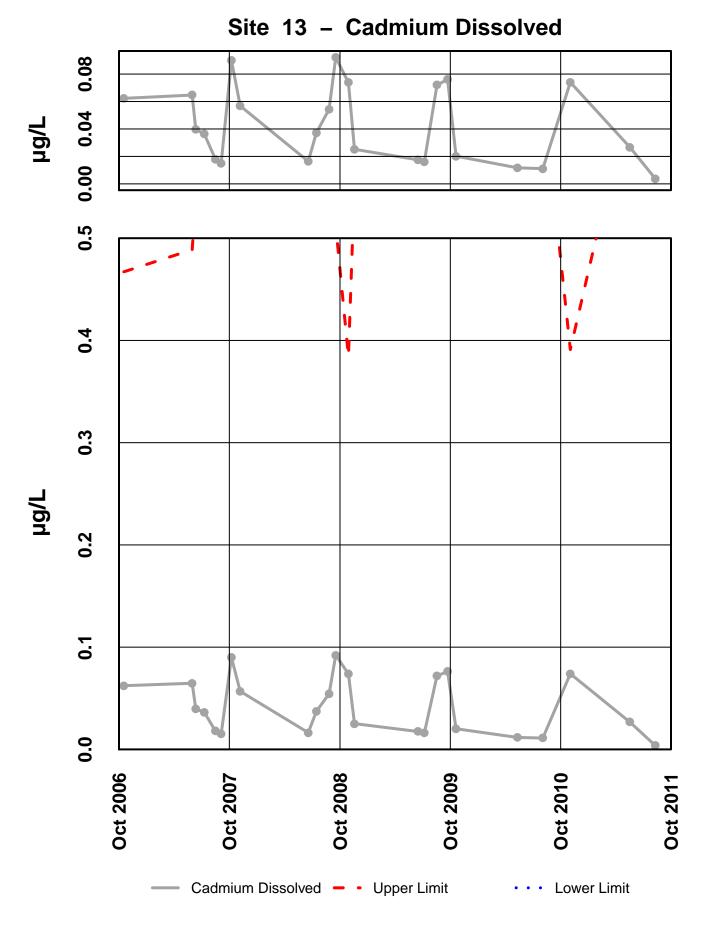



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

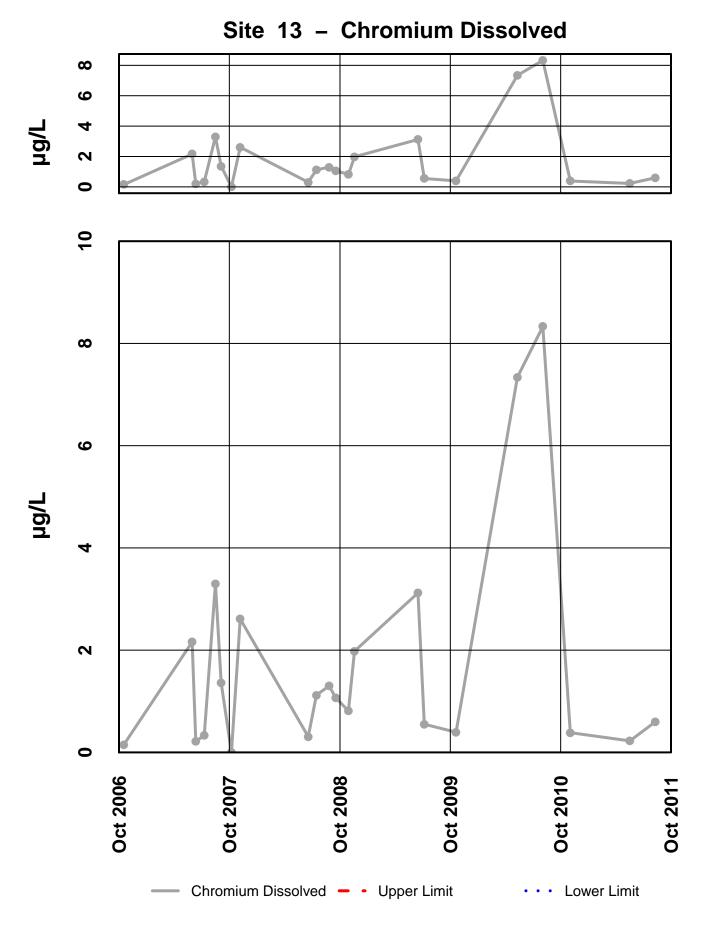



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

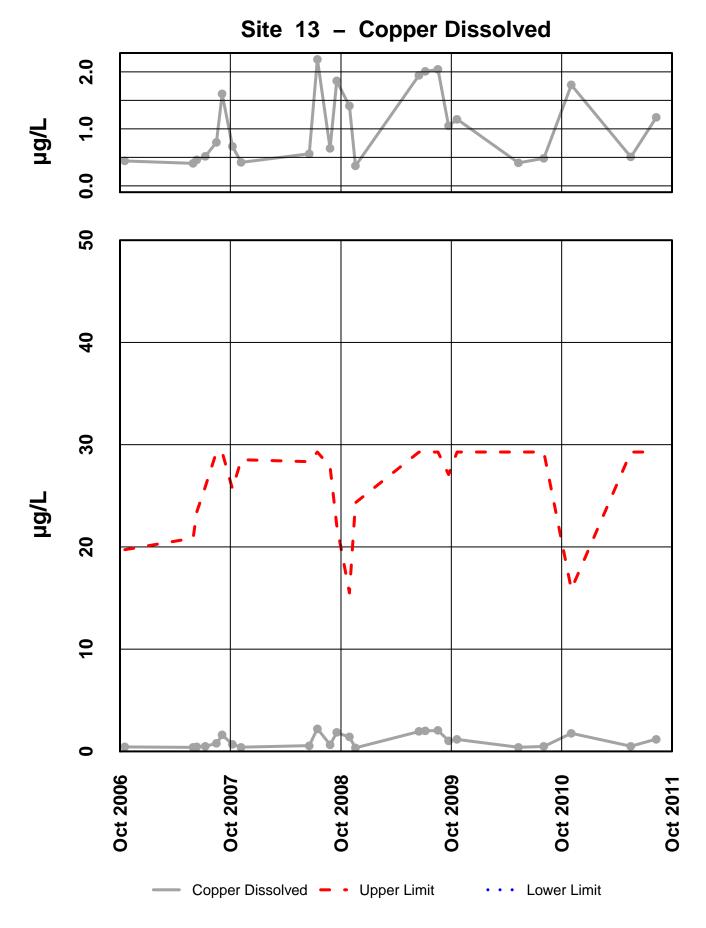



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

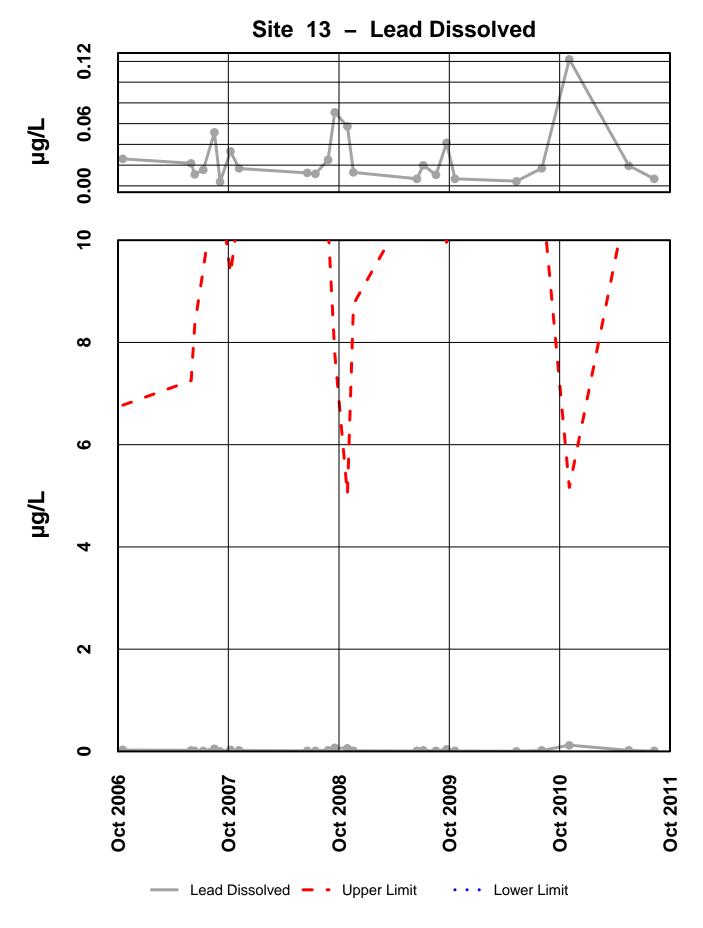



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

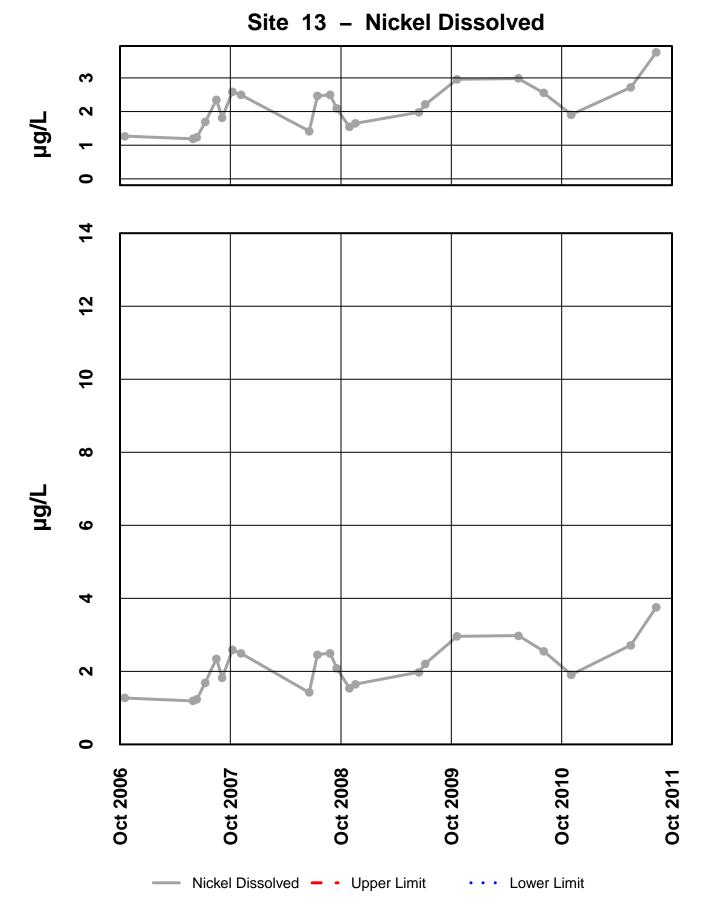



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

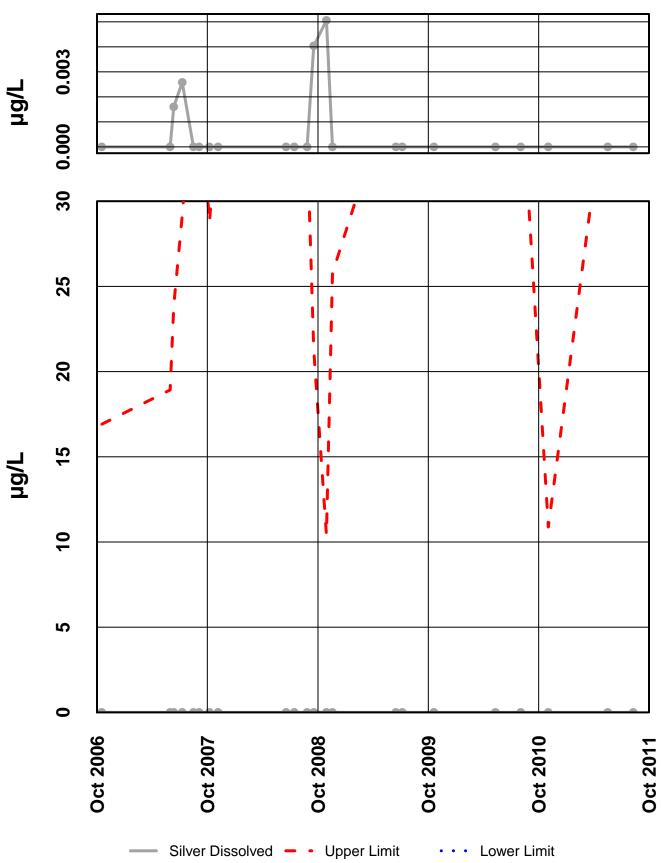



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



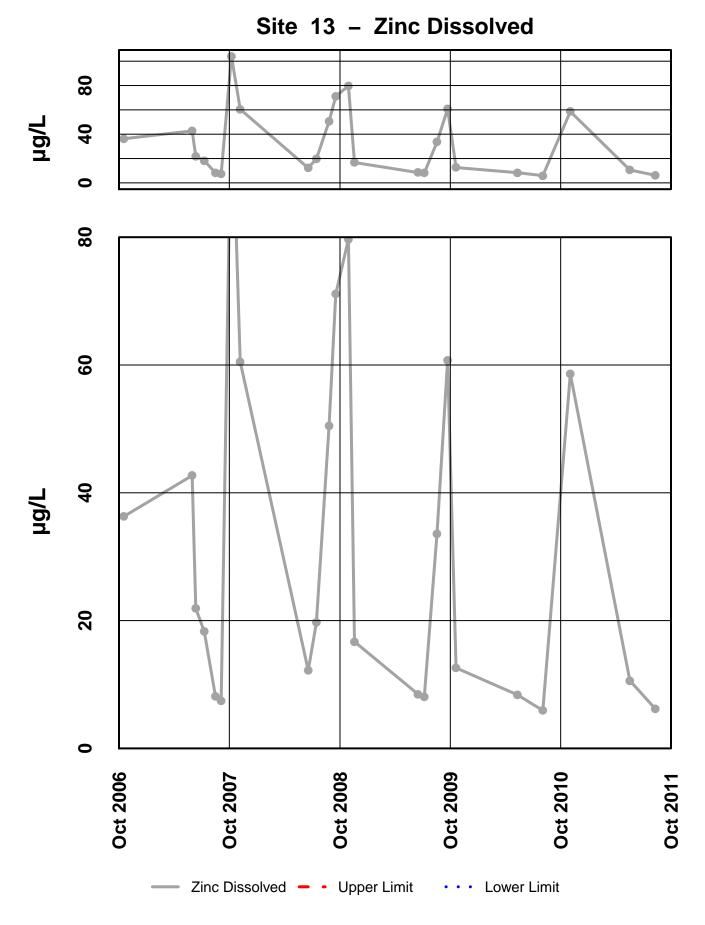

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



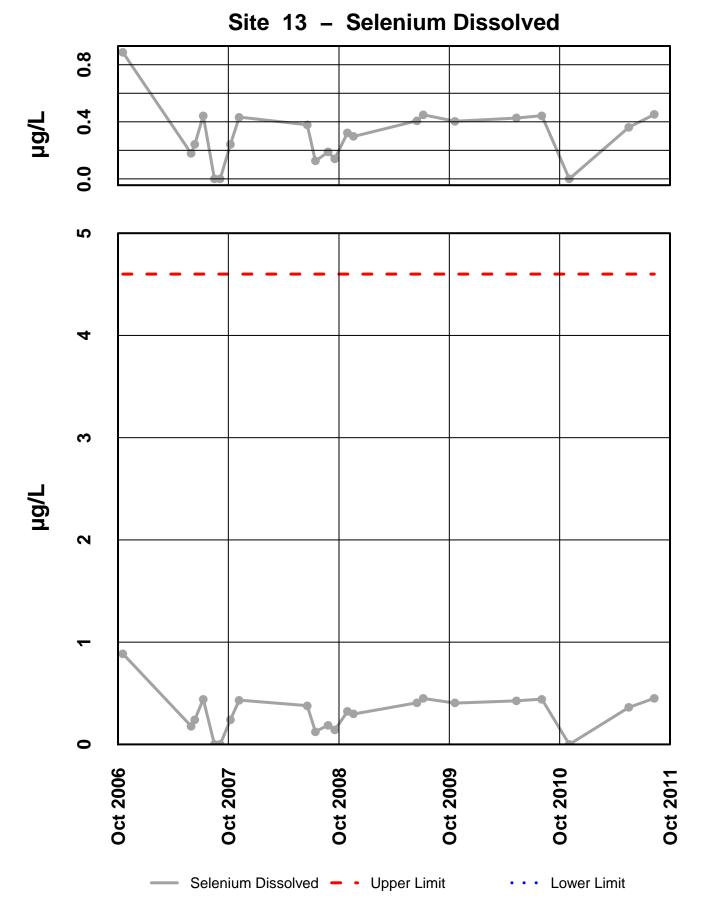

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



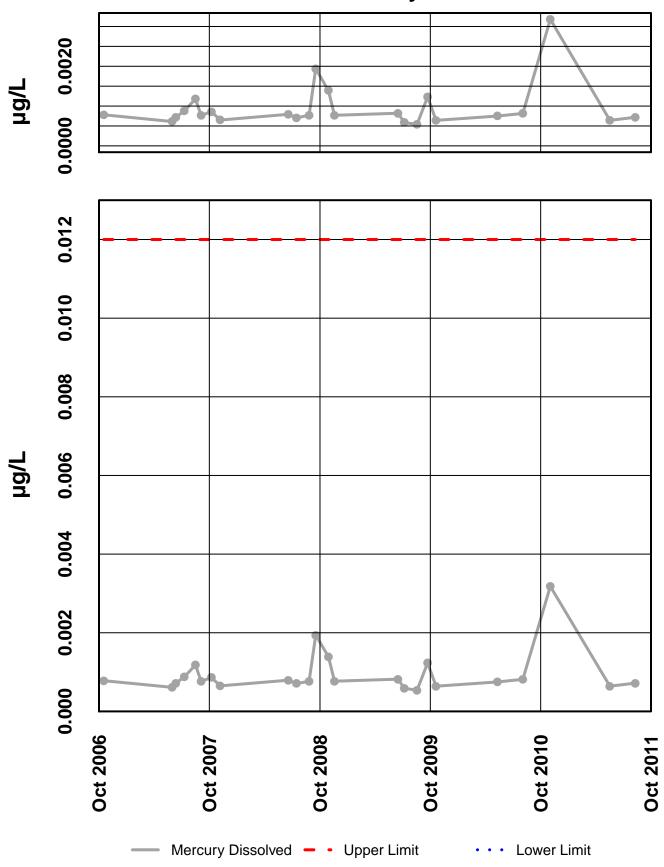
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

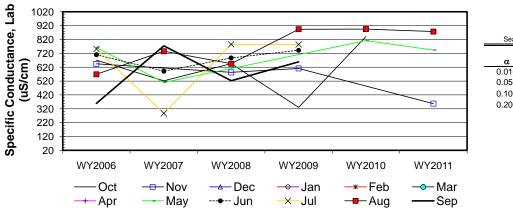

## Site 13 – Silver Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

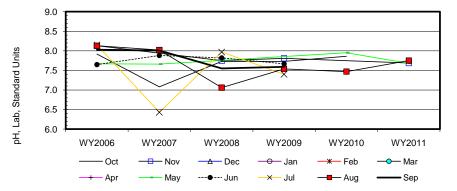



# Site 13 – Mercury Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

a         WY2006         671         644         762         710         752         569         33           b         WY2007         522         511         591         287         735         7           c         WY2008         645         583         742         784         893         51           d         WY2010         842         744         735         7         7         7           n         5         4         0         0         0         0         4         4         4         6           t,         5         4         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th>w label</th> <th>Water Year</th> <th>Oct</th> <th>Nov</th> <th>Dec</th> <th>Jan</th> <th>Feb</th> <th>Mar</th> <th>Apr</th> <th>Мау</th> <th>Jun</th> <th>Jul</th> <th>Aug</th> <th>Sep</th>	w label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					200	Van	100	ma	Api	762			569	359
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														774
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		WY2008		583										523
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	d	WY2009	330	611							742	784	894	659
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	е		842										895	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f	WY2011												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		n	5	4	0	0	0	0	0	4	4	4	6	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-													4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t ₂												(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t ₃												(
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		t₅	0	0	0	0	0	0	0	0	0	0	0	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	b-a								-1			1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		d-a	-1	-1							1	1	1	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1										1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1						-1			-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	1		-*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1							1			1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-								1			1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1							1	-1	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1										1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-1									1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1										1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	f-e												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sk	0	-4	0	0	0	0	0	0	2	2	9	2
$Z_k^2$ 0.00       1.85       0.00       0.46       0.46       2.86       0.00 $\Sigma Z_k =$ 2.37       Tie Extent $t_1$ $t_2$ $t_3$ $t_4$ $t_5$ $\Sigma n$ 31	σ	² _s =	16.67	8.67						8.67	8.67	8.67	28.33	8.67
$Z_k^2$ 0.00     1.85     0.00     0.46     0.46     2.86     0.00 $\Sigma Z_k =$ 2.37     Tie Extent $t_1$ $t_2$ $t_3$ $t_4$ $t_5$ $\Sigma n$ 31	Z _k =	$S_k/\sigma_S$	0.00	-1.36						0.00	0.68	0.68	1.69	0.68
			0.00	1.85						0.00	0.46	0.46	2.86	0.46
		<b>57</b>	0.07	Г	Tie Futert	+	+	•	•	+			Σn	24
$\Sigma Z_{k}^{-} = 6.09$ Count 31 0 0 0 0 $\Sigma S_{k}$ 11														
Z-bar∋∑z _/ /K= 0.34					Count	31	0	0	0	0			$\Sigma S_k$	11

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	5.29	@ $\alpha$ =5% $\chi^2_{(K-1)}$ = 12.59 Test for station homogeneity	
	р	0.508	$\chi^2 h^{<} \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.06	@a/2=2.5% Z= 1.96 H ₀ (No trend)	ACCEPT
88.33	р	0.856	H _A (± trend)	REJECT




Season	Seasonal-Kendall Slope Confidence Intervals								
	Lower	Sen's	Upper						
α	Limit	Slope	Limit						
0.010	-15.16		80.36						
0.050	-9.07	28.00	64.79						
0.100	-2.36	20.00	56.70						
0.200	6.27		47.57						

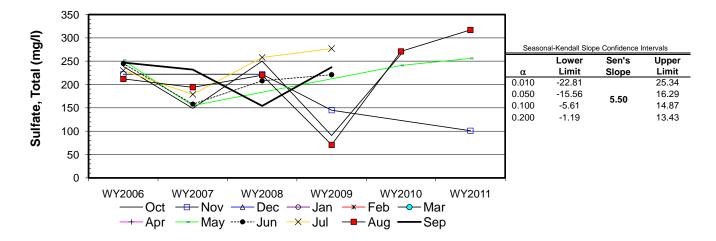
Site	#13			Sea	asonal k	Cendall a	nalysis f	or pH, L	ab, Stand	dard Unit	S		
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006	7.9	8.1						7.7	7.7	8.2	8.1	8.0
b	WY2007	7.1							7.7	7.9	6.4	8.0	8.0
С	WY2008	7.7	7.8							7.8	8.0	7.1	7.6
d	WY2009	7.7	7.8							7.7	7.4	7.5	7.6
е	WY2010	7.9							8.0			7.5	
f	WY2011		7.7						7.7			7.8	
	n	5	4	0	0	0	0	0	4	4	4	6	4
	t,	3	4	0	0	0	0	0	4	4	4	6	4
	t ₂	1	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1							-1	1	-1	-1	-1
	c-a	-1	-1							1	-1	-1	-1
	d-a	-1	-1							1	-1	-1	-1
	e-a	-1							1			-1	
	f-a		-1						1			-1	
	c-b	1								-1	1	-1	-1
	d-b	1								-1	1	-1	-1
	e-b	1							1			-1	
	f-b								1			-1	
	d-c	0	1							-1	-1	1	1
	e-c	1										1	
	f-c		-1									1	
	e-d	1										-1	
	f-d		-1									1	
	f-e S _k	1	-4	0	0	0	0	0	-1 2	0	-2	-5	-4
	UK	1	-4	0	0	0	0	0	Z	0	-2	-0	-4
	² s=	15.67	8.67						8.67	8.67	8.67	28.33	8.67
$Z_k =$	Sk/OS	0.25	-1.36						0.68	0.00	-0.68	-0.94	-1.36
;	Z ² _k	0.06	1.85						0.46	0.00	0.46	0.88	1.85
	$\Sigma Z_{k} =$	-3.40		Tie Extent	t,	t ₂	t ₃	t₄	t ₅			Σn	31
	$\Sigma Z_{k}^{2}$	5.56		Count	29	1	0	0	0			$\Sigma S_k$	-12
_	$\Delta z_{k} =$	5.50	L	Count	29	I	U	U	U			20k	-12

Z-bar= $\Sigma Z_k/K$ = -0.49

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	3.91		@α=5% χ ² _(K-1) =	12.59	Test for station home	ogeneity
	р	0.689				$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.18		@α/2=2.5% Z=	1.96	H₀ (No trend)	ACCEPT
87.33	р	0.120	_			H _A (± trend)	REJECT



Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.15		0.05
0.050	-0.11	-0.06	0.00
0.100	-0.09	-0.00	-0.01
0.200	-0.08		-0.02


Site #13
----------

Seasonal Kendall analysis for Total Alk, (mg/l)

									, (				
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2006	132.0	134.0						162.0	171.0	174.0	120.0	160.0
b	WY2007	93.8							92.3	126.0	143.0	190.0	175.0
С	WY2008	109.0	128.0							147.0	143.0	104.0	88.8
d	WY2009	70.9	121.0							144.0	151.0	118.0	80.0
е	WY2010	134.0							141.0			181.0	
f	WY2011		58.0						114.0			215.0	
	n	5	4	0	0	0	0	0	4	4	4	6	4
	t ₁	5	4	0	0	0	0	0	4	4	2	6	4
	t ₂	0	0	0	0	0	0	0	0	0	1	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	ha	4							-1	-1	4	4	
	b-a c-a	-1 -1	-1						-1	-1	-1 -1	1 -1	1 -1
	d-a	-1	-1							-1	-1	-1	-1
	e-a	1							-1			1	
	f-a	i.	-1						-1			1	
		4	-1						-1	4	0		4
	c-b	1								1	0	-1	-1
	d-b	-1								1	1	-1	-1
	e-b	1							1			-1	
	f-b								1			1	
	d-c	-1	-1							-1	1	1	-1
	e-c	1										1	
	f-c		-1									1	
	e-d	1										1	
	f-d		-1									1	
	f-e								-1			1	
	S _k	0	-6	0	0	0	0	0	-2	-2	-1	5	-4
	2	10.07											
	² _s =	16.67	8.67						8.67	8.67	7.67	28.33	8.67
Z _k =	$S_k/\sigma_S$	0.00	-2.04						-0.68	-0.68	-0.36	0.94	-1.36
Z	$\frac{Z^2}{k}$	0.00	4.15						0.46	0.46	0.13	0.88	1.85
	ĸ												
	$\Sigma Z_k =$	-4.18	Γ	Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	31
	$\Sigma Z_{k}^{2}$	7.94					0					$\Sigma S_k$	
-	$-bar = \Sigma Z_k/K =$	-0.60	L	Count	29	1	0	0	0			$20_{\rm k}$	-10
	$\chi^2_h = \Sigma Z^2_k$ -I	K(Z-bar) ² =	5.44		@α=5%	6 χ ² _(K-1) =	12.59	Te	st for stati	on homoge	neity		
		р	0.488	·				χ ² ι	n<χ ² (K-1)	A	CCEPT		
	$\Sigma VAR(S_k)$	Z _{calc}	-0.96		@α/2=	2.5% Z=	1.96		H₀ (No t		CCEPT		
	87.33	p	0.168	L					H _A (± tr		REJECT		
io T	-										<u> </u>		
0	- - -												
	- - V						_		=	Seasonal-	Kendall Slope		
io ‡							/				Lower	Sen's	Upper
~ F		· · · · · · · · · · · · · · · · · · ·	$\checkmark$	****	¥				_	α	Limit	Slope	Limit
F			······							0.010	-15.31		8.37
0 I	<b></b> `						/			0.050	-11.46	-4.33	4.26
~ F	-				_	$\succ$				0.100	-9.29		0.24
ļ	-							_		0.200	-8.35		-1.99
60 0 60					$\sim$	-							
	- - -												
10 +	WY2006	WY2	2007	WY2008	WY2	009	WY2010	WY20	<b>!</b> )11				
	—— Oc	+	– Nov	— <u>→</u> Dec	-0-	- Ian	<del>—*  </del> Feb	<b></b>	Mar				
	—— Oc —+— Ap		-May	• Jun	 				Sep				
	, Ap	-	iviay	- Juli	$\wedge$	Jui	- Aug		oep				

Site	#13			S	easonal	Kendall	analysis	s for Sulf	fate, Tota	ıl (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2006	239.0	222.0						252.0	245.0	230.0	212.0	247.0
b	WY2007	149.0							155.0	158.0	179.0	194.0	232.0
С	WY2008	250.0	222.0							208.0	258.0	220.0	154.0
d	WY2009	90.6	145.0							221.0	277.0	70.8	237.0
e	WY2010	265.0							241.0			271.0	
f	WY2011		101.0						256.0			317.0	
	n	5	4	0	0	0	0	0	4	4	4	6	4
	t,	5	2	0	0	0	0	0	4	4	4	6	4
	t ₂	0	1	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t _s	0	0	0	0	0	0	0	0	0	0	0	0
	b-a	-1							-1	-1	-1	-1	-1
	c-a	1	0							-1	1	1	-1
	d-a	-1	-1							-1	1	-1	-1
	e-a	1							-1			1	
	f-a		-1						1			1	
	c-b	1								1	1	1	-1
	d-b	-1								1	1	-1	1
	e-b	1							1			1	
	f-b	4	4						1	1	4	1	4
	d-c	-1 1	-1							1	1	-1	1
	e-c f-c	1	-1									1	
	e-d	1	-1									1	
	f-d		-1									1	
	f-e								1			1	
	S _k	2	-5	0	0	0	0	0	2	0	4	7	-2
	5 ² s=	16.67	7.67						8.67	8.67	8.67	28.33	8.67
	s S _k /σ _s	0.49	-1.81						0.68	0.00	1.36	1.32	-0.68
	Z ² _k	0.24	3.26						0.46	0.00	1.85	1.73	0.46
	$\Sigma Z_k =$	1.36	ļ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	31
	$\Sigma Z_k^2 =$	8.00		Count	29	1	0	0	0			$\Sigma S_k$	8
Z	Z-bar=ΣZ _k /K=	0.19											

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	7.74	@α=5% χ ² _(K-1) =	12.59	Test for station home	ogeneity
	р	0.258			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	0.75	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
87.33	р	0.773			H _A (± trend)	REJECT



Row label										ed (ug/l)		-	
а	Water Year WY2006	Oct 18.5	Nov 12.7	Dec	Jan	Feb	Mar	Apr	May 10.3	Jun 1.2	<b>Jul</b> 5.8	Aug 27.4	<b>Sep</b> 9.0
a b	WY2007	36.3	12.7						42.7	21.9	18.3	8.2	9. 7.
С	WY2008	104.0	60.5							12.2	19.7	50.5	71.
d	WY2009	79.7	16.7							8.5	8.1	33.6	60.
e f	WY2010 WY2011	12.6	58.6						8.4 10.6			5.9 6.2	
1	n	5	4	0	0	0	0	0	4	4	4	6	4
	t,	5	4	0	0	0	0	0	4	4	4	6	
	t ₂	0	4	0	0	0	0	0	4	4	4	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
·	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a	1							1	1	1	-1	-
	c-a	1	1							1	1	1	
	d-a	1 -1	1						1	1	1	1 -1	
	e-a f-a	-1	1						-1 1			-1	
	c-b	1							•	-1	1	1	
	d-b	1								-1	-1	1	
	e-b	-1							-1			-1	
	f-b d-c	-1	-1						-1	-1	-1	-1 -1	
	e-c	-1										-1	
	f-c		-1									-1	
	e-d	-1										-1	
	f-d f-e		1						1			-1 1	
=	S _k	0	2	0	0	0	0	0	0	0	2	-5	2
•													
	² s=	16.67	8.67						8.67	8.67	8.67	28.33	8.67
	S _k /σ _S	0.00	0.68						0.00	0.00	0.68	-0.94	0.68
	<b>7</b> 2 k	0.00	0.46						0.00	0.00	0.46	0.88	0.46
	$\Sigma Z_k =$	1.10	ſ	Tie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	31
				Count	31	0	0	0	0			$\Sigma S_k$	1
	$\Sigma Z_{k}^{2}$	2.27		Count	•••			0	0				
Z	$\Sigma Z_{k}^{2}$ = -bar= $\Sigma Z_{k}/K$ =	2.27 0.16	ļ	Count	0.	-		0	0			- K	
Z			L	Count				0	0			- K	
Z	-bar=ΣZ _k /K=	0.16	L	Count								- K	
z		0.16 K(Z-bar) ² =	2.09	Count		% χ ² _(K-1) =	12.59	T	est for stati	on homoger		- K	
z	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 - H$	$0.16$ $\langle (Z-bar)^2 = \mathbf{p}$	0.911		@α=59	% χ ² _(K-1) =	12.59	T	test for stati	A	CCEPT	ĸ	
z	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59			T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A	CCEPT CCEPT	- K	
z	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 - H$	$0.16$ $\langle (Z-bar)^2 = \mathbf{p}$	0.911		@α=59	% χ ² _(K-1) =	12.59	T	test for stati	A rend) A	CCEPT	ĸ	
	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A	CCEPT CCEPT	ĸ	
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A	CCEPT CCEPT	ĸ	
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A	CCEPT CCEPT	ĸ	
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A rend) R	CCEPT CCEPT EJECT	<u>Confidence In</u>	
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rrend) A rend) R Seasonal-I	CCEPT CCEPT EJECT	Confidence In Sen's	Upper
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A rend) R	CCEPT CCEPT EJECT	<u>Confidence In</u>	Upper Limit 10.20
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A end) R Seasonal-1 <u>α</u> 0.010 0.050	CCEPT CCEPT EJECT Kendall Slope Lower Limit -7.22 -4.44	Confidence In Sen's Slope	Upper Limit 10.20 3.14
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A rend) R Seasonal-I <u>α</u> 0.010 0.050 0.100	CCEPT CCEPT EJECT CCEPT EJECT Comment Limit -7.22 -4.44 -2.70	Confidence In Sen's	Upper Limit 10.20 3.14 2.15
120	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A end) R Seasonal-1 <u>α</u> 0.010 0.050	CCEPT CCEPT EJECT Kendall Slope Lower Limit -7.22 -4.44	Confidence In Sen's Slope	Upper Limit 10.20 3.14
120 100 80 60	-bar= $\Sigma Z_k/K$ = $\chi^2_h = \Sigma Z_k^2 + \Sigma Z_k^2 + \Sigma VAR(S_k)$	0.16 $\langle (Z-bar)^2 = \frac{\mathbf{p}}{Z_{calc}}$	<b>0.911</b> 0.00		@α=59	% χ ² _(K-1) =	12.59	T	est for stati ² _h <χ ² _(K-1) <b>H</b> ₀ (No t	A rend) A rend) R Seasonal-I <u>α</u> 0.010 0.050 0.100	CCEPT CCEPT EJECT CCEPT EJECT Comment Limit -7.22 -4.44 -2.70	Confidence In Sen's Slope	Upper Limit 10.20 3.14 2.15

0 WY2006 WY2007 WY2008 WY2009 WY2010 WY2011 ----Oct -⊟-Nov -▲- Dec -∞-Jan -≭-Feb -∞-Mar -+-Apr ----May ---●---Jun -X-Jul -■-Aug ----Sep

α	Limit	Slope	Li
0.010	-7.22		10
0.050	-4.44	0.06	3
0.100	-2.70	0.00	2
0.200	-1.08		1

## INTERPRETIVE REPORT SITE 58 "MONITORING WELL T-00-01C"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in May-2002. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri-	od of Octobe	r 2006 through September	2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Six values exceeding these criteria have been identified, as listed in the table below. Four of these values were for field pH. Values for field pH from other wells completed into organic rich peat sediments similar to Site 58 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 27, 29, and 32). Likewise, total alkalinity for organic, peat rich completions are typically at or below the 20 mg/L AWQS.

### **Table of Exceedance for Water Year 2011**

			Lin	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
9-Nov-10	Alkalinity	18.6 mg/L	20		
9-Nov-10	pH Field	6.3 su	6.5	8.50	
19-May-11	pH Field	6.22 su	6.5	8.50	
12-Jul-11	pH Field	5.25 su	6.5	8.50	
12-Sep-11	pH Field	5.76 su	6.5	8.50	

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Visually dissolved manganese appears to be increasing over the past few years. Though it appears to be increasing the values are still ~1/2 the AWQS (200  $\mu$ g/L). As noted in last year's report there was a moderate increase in the dissolved mercury concentration measured at the end of the of the 2010 water year. This increase was thought to be a result of the preparatory work for the East Ridge Expansion project which started in the spring of 2010. During the 2011 water year the dissolved mercury values returned to within historical values. A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Ke	ndall test sta	tistics	Sen's slope	estimate
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.15			
pH Field	6	0.09			
Alkalinity, Total	6	0.40			
Sulfate, Total	6	0.07			
Zinc, Dissolved	6	< 0.01	+	0.32	46.1

### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

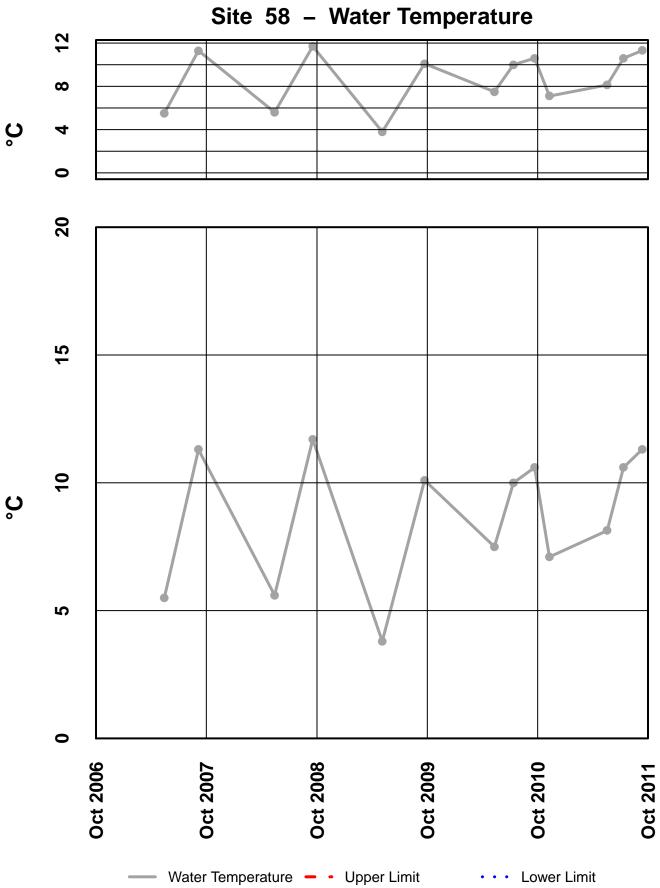
There was one statistically significant (p<0.01) increasing trend with dissolved zinc identified at site 58 for the current water year. The Sen's slope estimate was 0.32  $\mu$ g/L/yr or 46.1% increase over the period. As with the spike in mercury last year, it is thought that this trend is also a result of the activities concerning the building of the East Ridge Expansion during the spring and summer of 2011. Currently, HGCMC believes the current FWMP program is sufficient to monitor future changes at Site 58 before water quality values are impaired.

			Site	e 058FM	G - 'Mor	nitoring	Well -T	-00-01C'					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		7.1						8.1		10.6		11.3	9.4
Conductivity-Field(µmho)		62.5						86		114.4		98	92.0
Conductivity-Lab (µmho)		59						79		92		115	86
pH Lab (standard units)		5.69						6.1		5.84		5.99	5.92
pH Field (standard units)		6.3						6.22		5.25		5.76	5.99
Total Alkalinity (mg/L)		18.6						23.5		32.1		30.5	27.0
Total Sulfate (mg/L)		1.1						5		1.5		2.5	2.0
Hardness (mg/L)		24.9						26.7		35		39.5	30.9
Dissolved As (ug/L)		0.28						0.33		0.241		0.306	0.293
Dissolved Ba (ug/L)		17.7						22.1		32.4		33.6	27.3
Dissolved Cd (ug/L)		0.004						0.059		0.0018		0.0047	0.0044
Dissolved Cr (ug/L)		0.694						0.79		0.891		1.22	0.841
Dissolved Cu (ug/L)		0.185						0.484		0.287		0.36	0.324
Dissolved Pb (ug/L)		0.0362						0.214		0.267		0.462	0.2405
Dissolved Ni (ug/L)		0.477						0.769		0.679		1.81	0.724
Dissolved Ag (ug/L)		0.004						0.002		0.002		0.002	0.002
Dissolved Zn (ug/L)		0.11						15.7		2.79		2.56	2.68
Dissolved Se (ug/L)		0.114						0.442		0.057		0.416	0.265
Dissolved Hg (ug/L)		0.00113						0.00101		0.000632		0.000892	0.000951

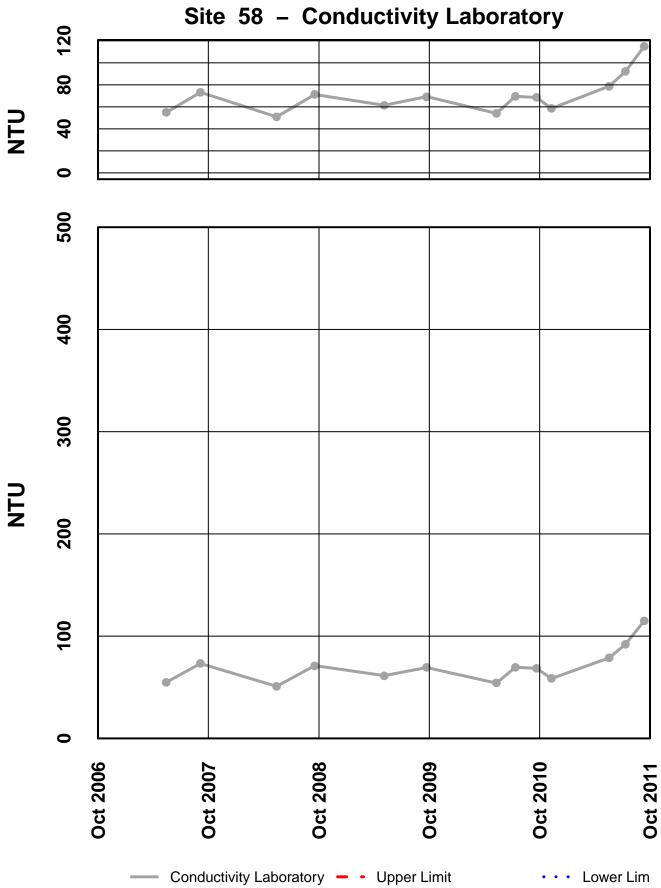
#### 

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

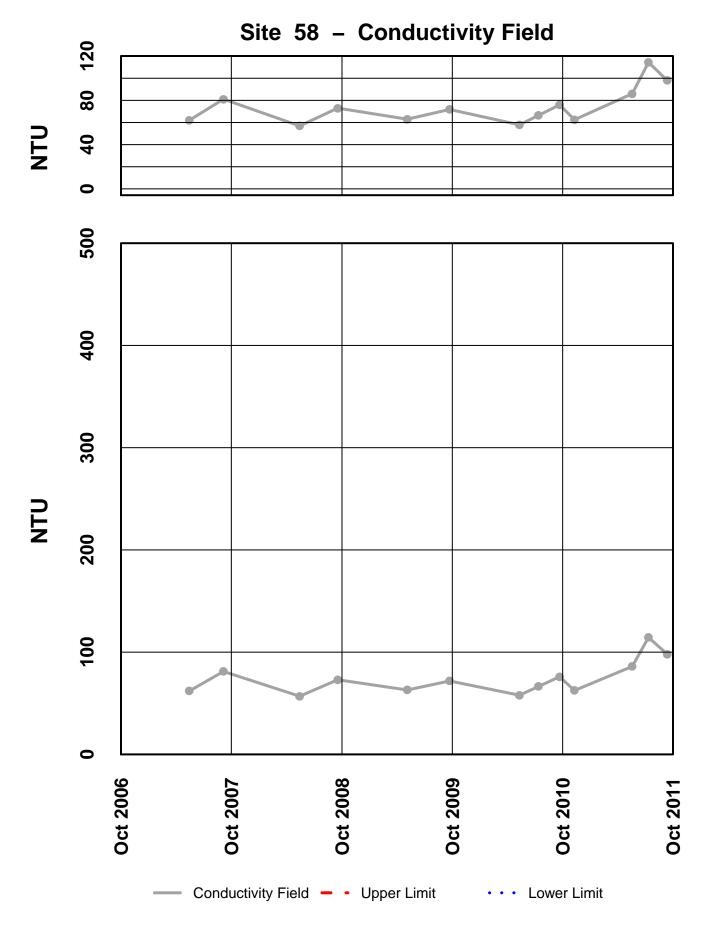
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

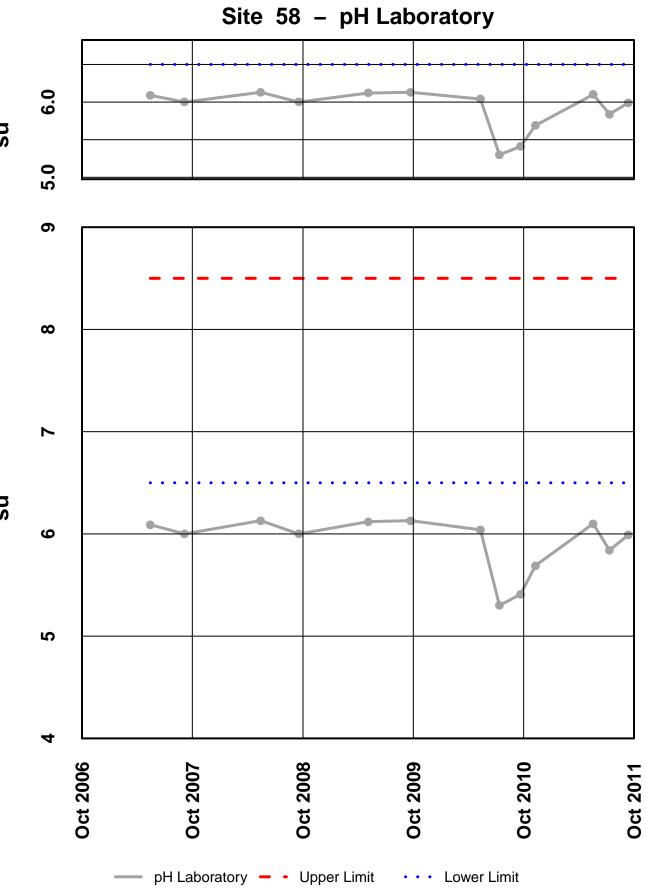
# Qualified Data by QA Reviewer


### Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
58	11/9/2010	12:00 AM				
			Zn diss, µg/l	0.105	J	Below Quantitative Range
			SO4 Tot, mg/l	1.1	J	Below Quantitative Range
58	4/12/2011	12:00 AM				
			Hg diss, µg/l	0.00121	U	Field Blank Contamination
58	5/19/2011	12:00 AM				
			pH Lab, su	6.1	J	Hold Time Violation
			SO4 Tot, mg/l	-10	R	Sample Reciept Temperature
			Ni diss, µg/l	0.769	U	Field Blank Contamination
58	7/12/2011	12:00 AM				
			SO4 Tot, mg/l	-3	R	Sample Reciept Temperature
			Ni diss, µg/l	0.67	U	Field Blank Contamination
			Zn diss, µg/l	2.79	U	Field Blank Contamination
			Ag diss, µg/l	0.00401	J	Below Quantitative Range
58	9/12/2011	12:00 AM				
			Cd diss, µg/l	0.00468	J	Below Quantitative Range
			Hg diss, µg/l	0.000892	U	Field Blank Contamination
			SO4 Tot, mg/l	0	UJ	Sample Receipt Temperature


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

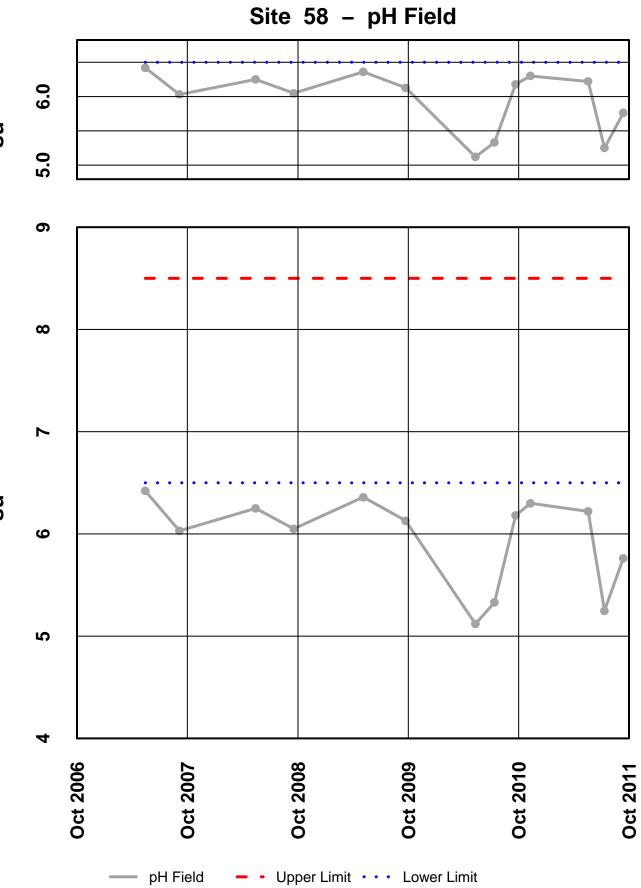



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

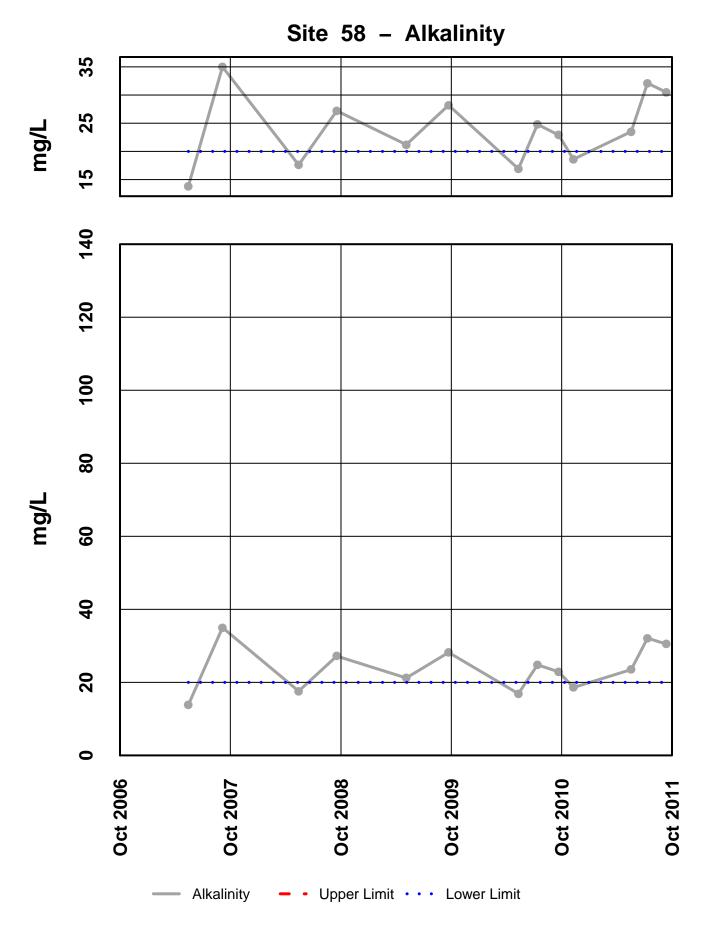



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

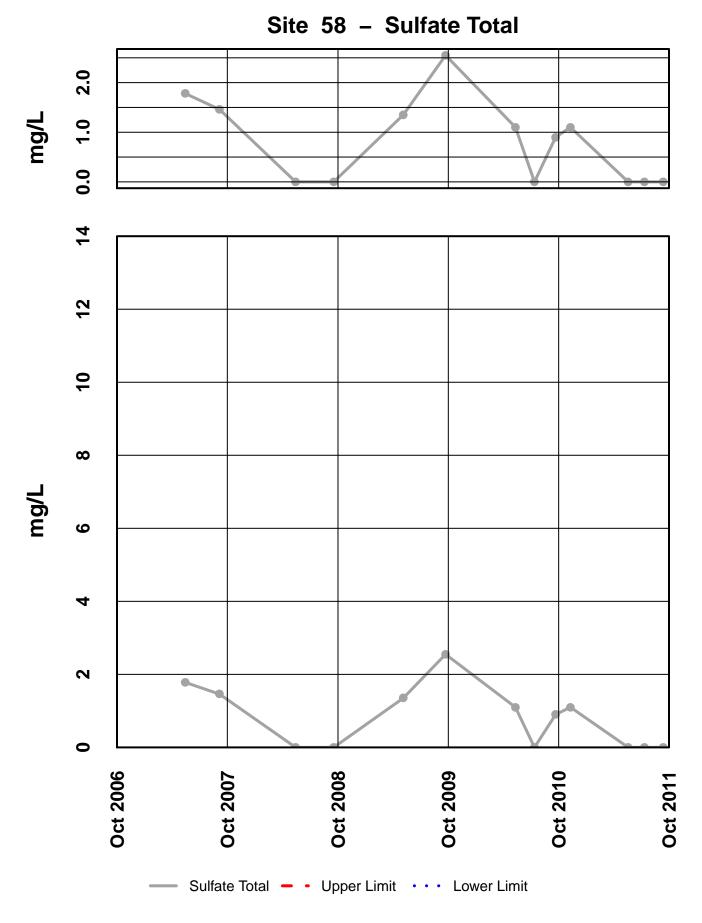


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

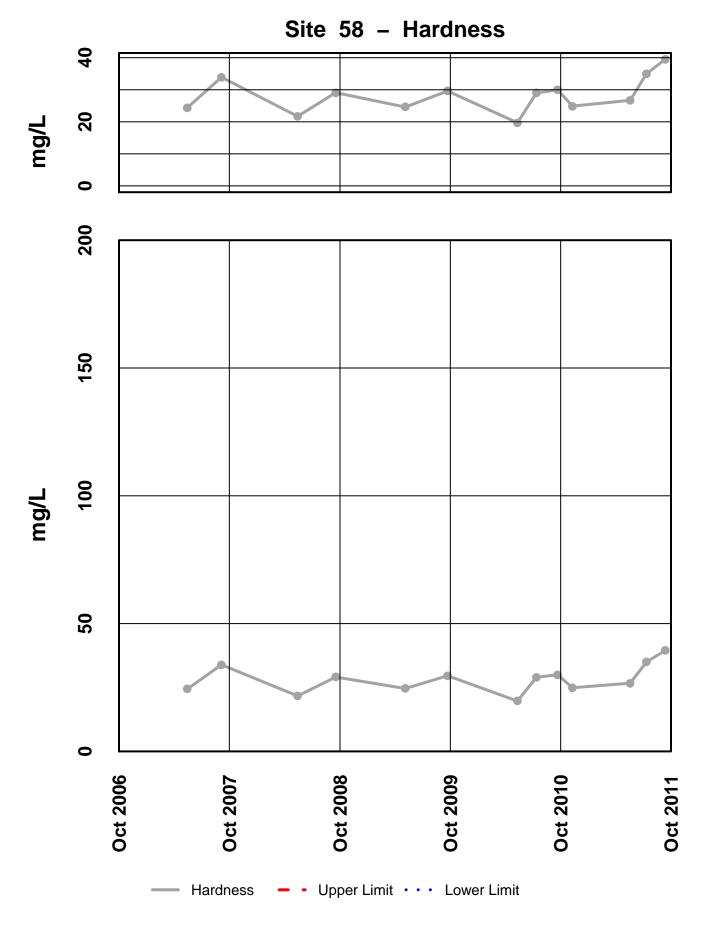
SU


SU

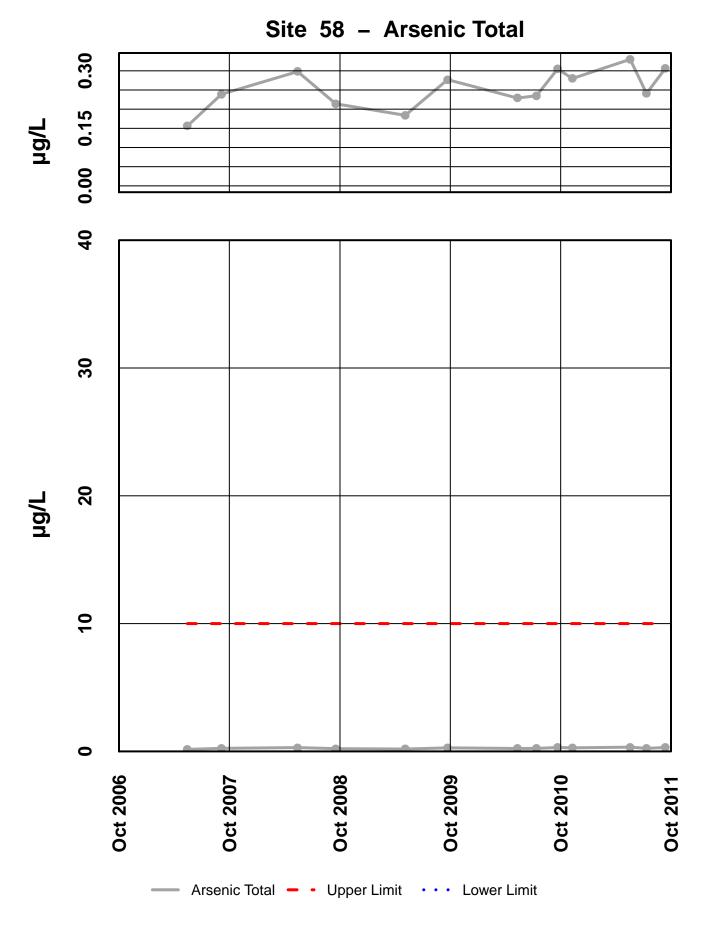



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

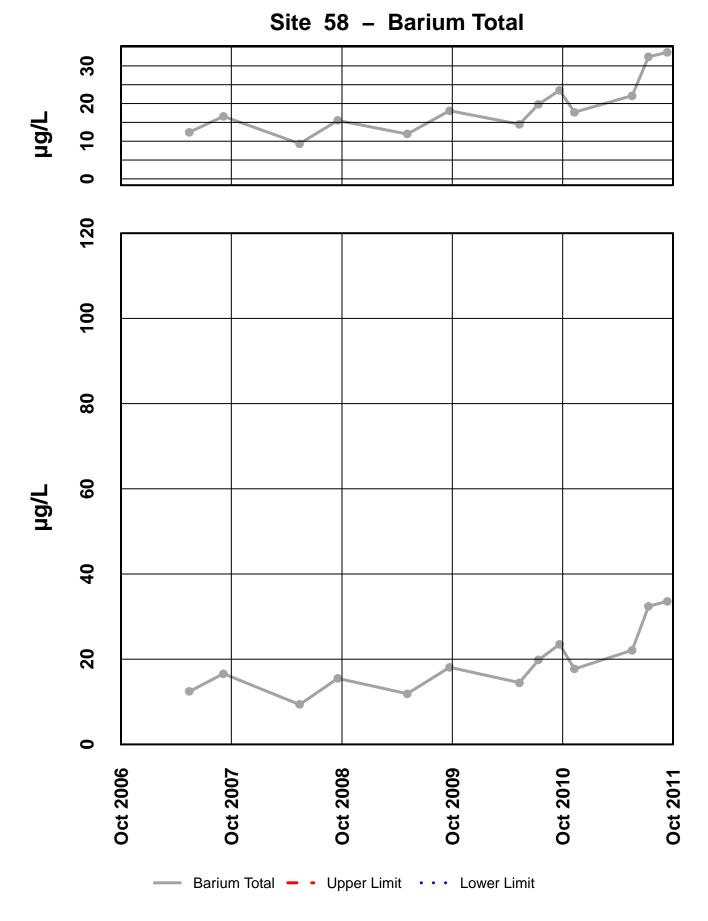
Su


su

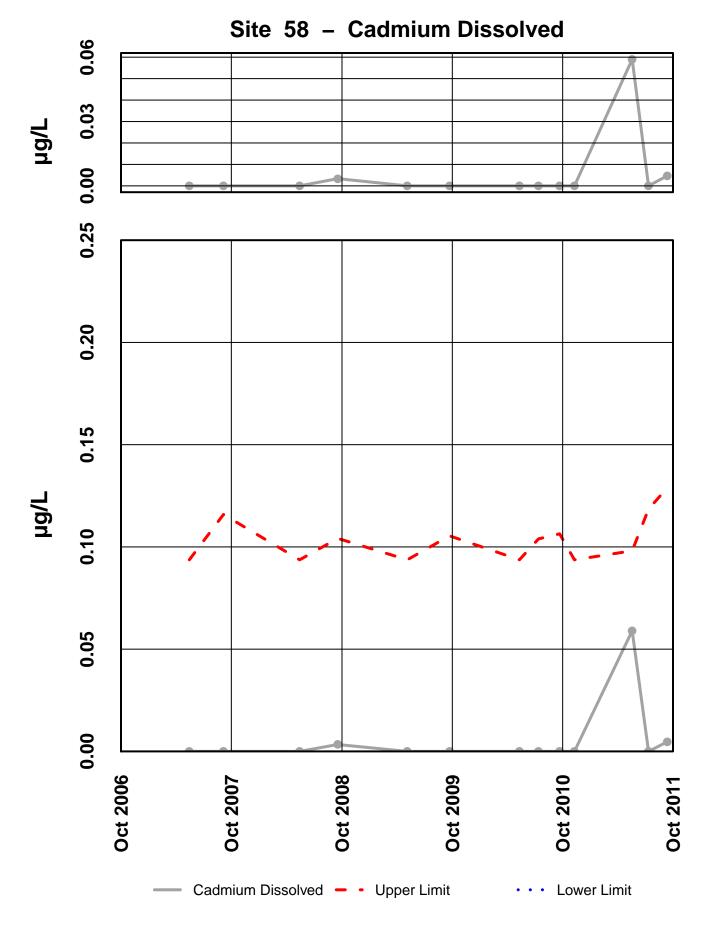



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

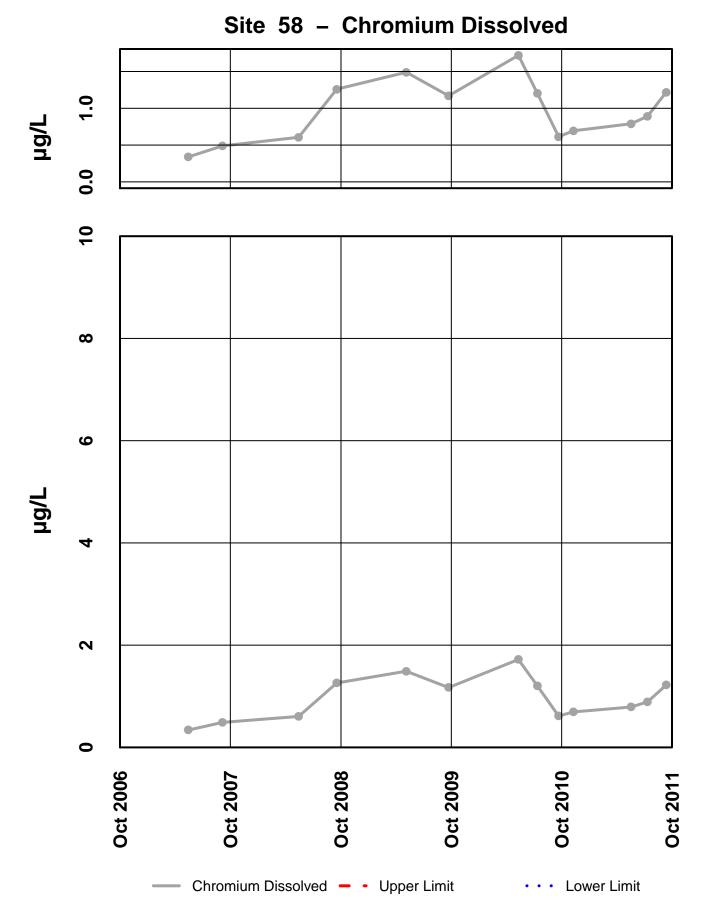



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



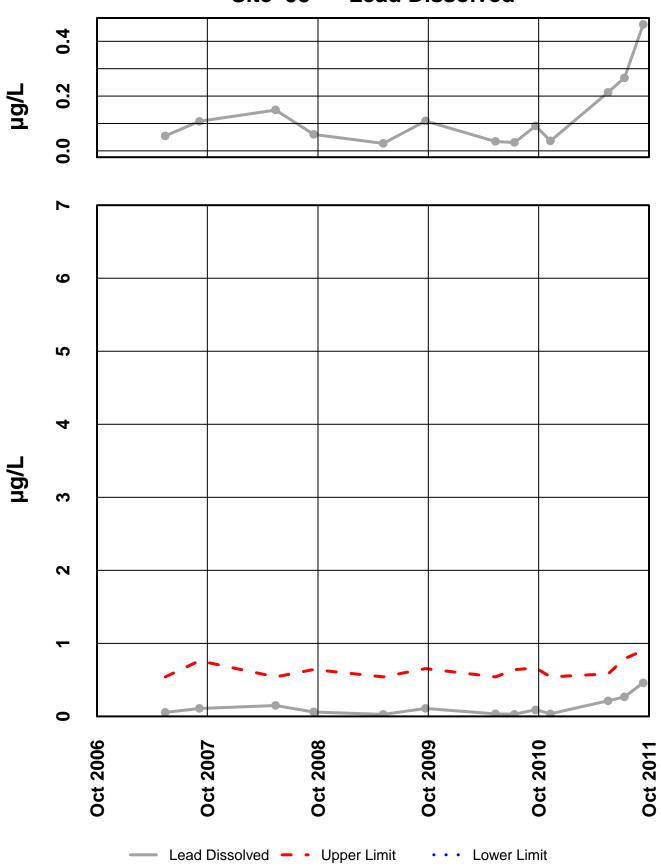

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

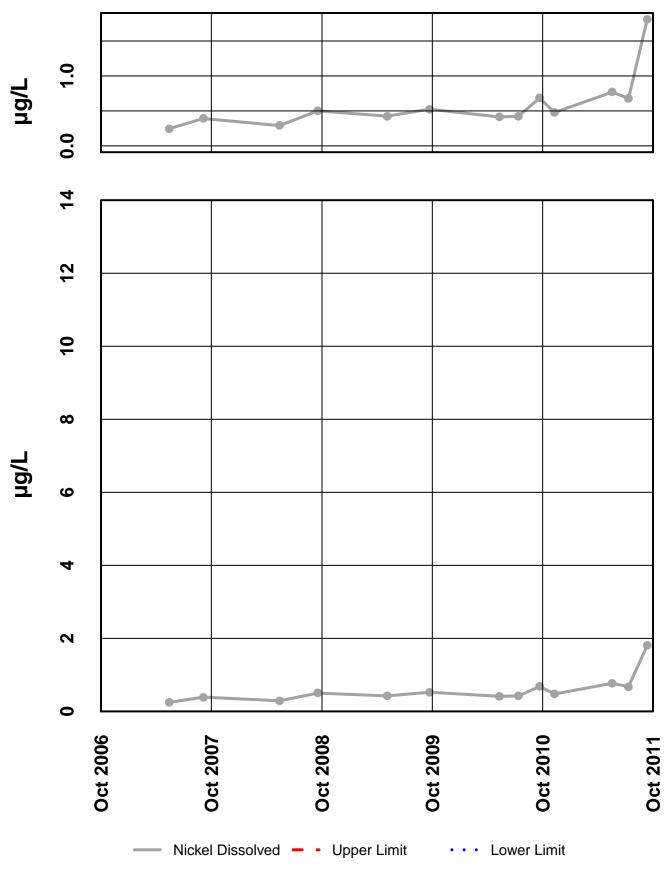



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

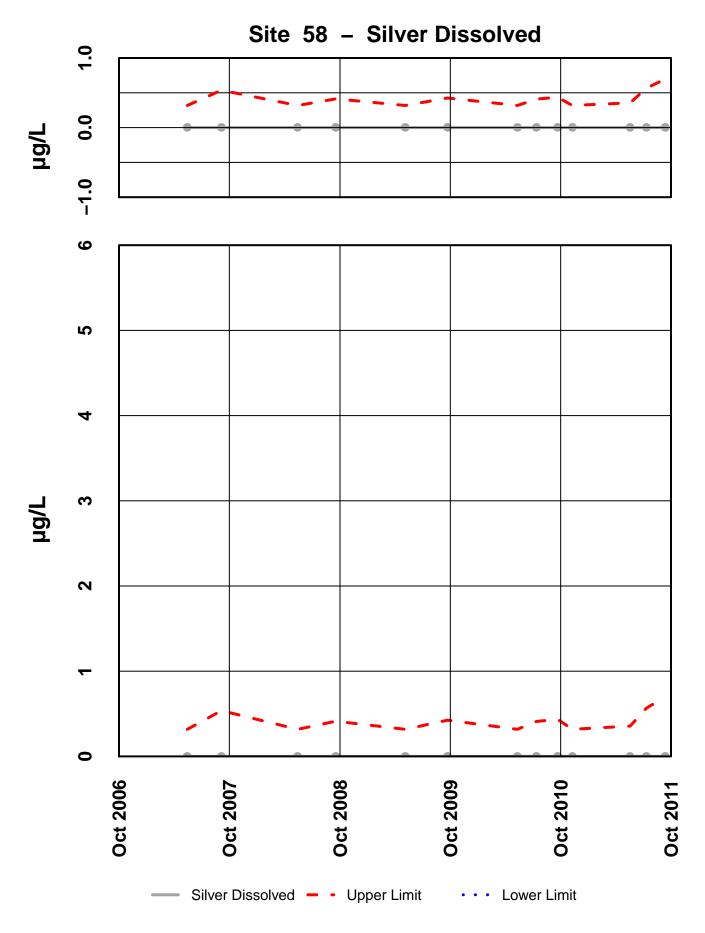



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

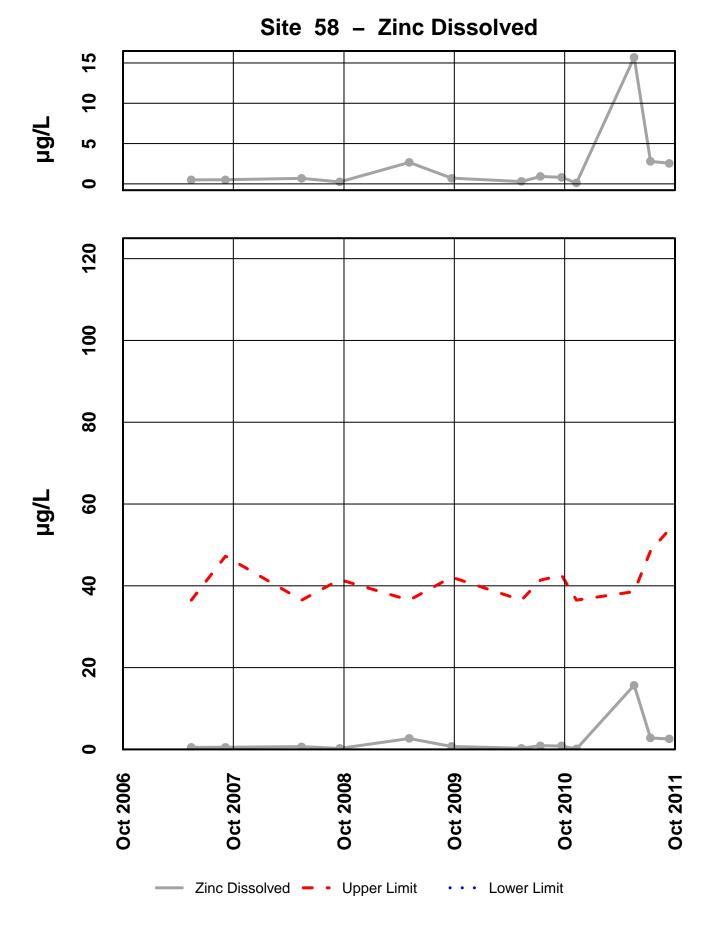



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

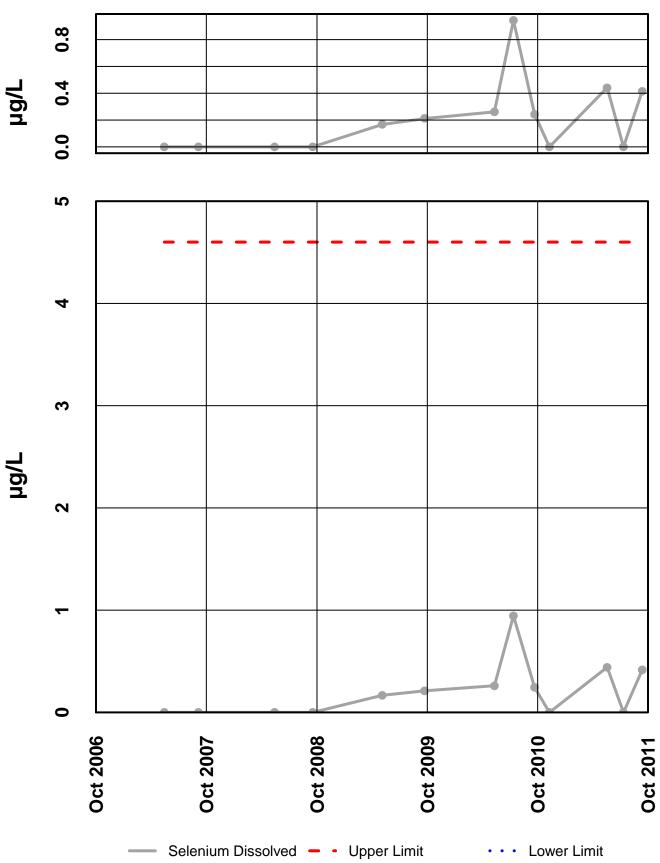




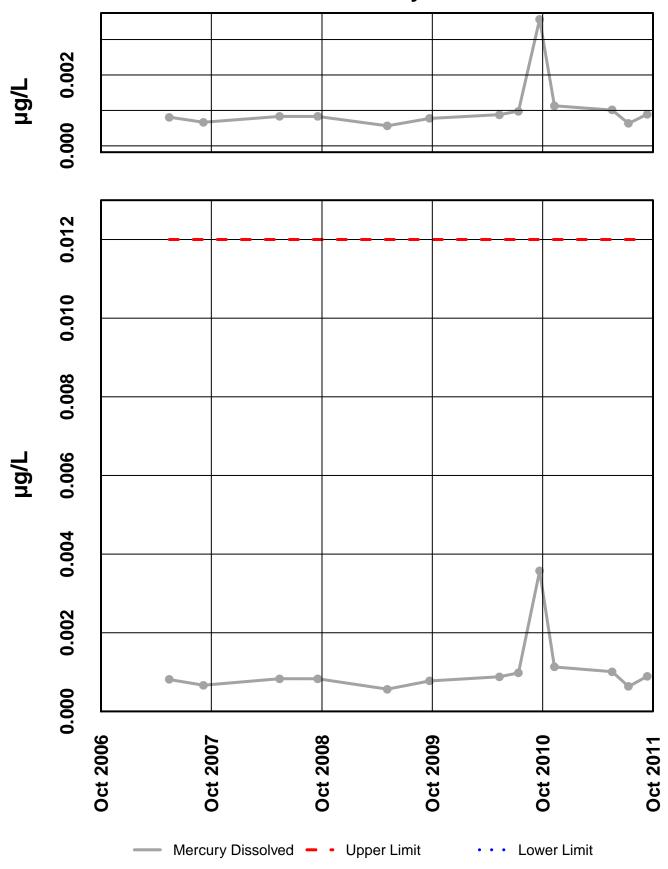

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


# Site 58 – Lead Dissolved




Site 58 – Nickel Dissolved

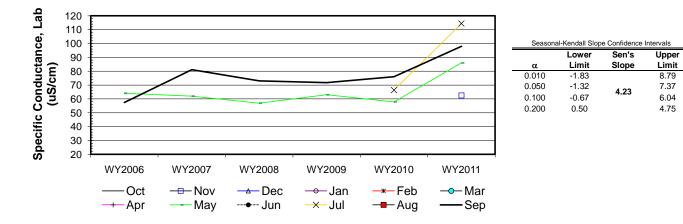



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



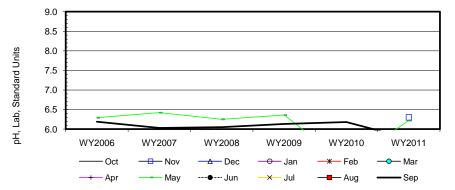
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 58 – Selenium Dissolved



Site 58 – Mercury Dissolved


Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	UCI	NUV	Dec	Jan	ren	Wai	Арі	64.1	Jun	Jui	Aug	<u> </u>
b	WY2007								62				81.1
C	WY2008								56.9				73
d	WY2009								63				71.8
е	WY2010								57.9		66.4		76
f	WY2011		62.5						86		114.4		98
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t1	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t4	0	0	0	0	0	0	0	0	0	0	0	C
i	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								-1				1
	c-a								-1				1
	d-a								-1				1
	e-a								-1				1
	f-a								1				1
	c-b								-1				-1
	d-b								1				-1
	e-b								-1				-1
	f-b								1				1
	d-c								1				-1
	e-c								1				1
	f-c								1				1
	e-d								-1				1
	f-d								1				1
	f-e								1		1		1
i	S _k	0	0	0	0	0	0	0	1	0	1	0	7
σ	² s=								28.33		1.00		28.33
	S _k /\sigma _s								0.19		1.00		1.32
	Z ² _k								0.04		1.00		1.73
	$\Sigma Z_k =$	2.50	 Г	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2} =$	2.76		Count	15	0	0	0	0			$\Sigma S_k$	9
	∠∠_ _k – Z-bar=∑Z _k /K=	0.83	L	Coull	13	U	U	U	U			ΔOK	Э

$\chi^2_h = \Sigma Z^2_k - k$	K(Z-bar) ² =	0.68		@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.713	_			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.05		@α/2=2.5% <b>Z</b> =	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.854				H _A (± trend)	REJECT



	#58		NI.				nalysis f	-					0.0
Row label a	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 6.3	Jun	Jul	Aug	Sep 6.2
a b	WY2007								6.4				6.
c	WY2008								6.3				6.1
d	WY2009								6.4				6.
e	WY2010								5.1		5.3		6.2
f	WY2011		6.3						6.2		5.3		5.8
	n	0	1	0	0	0	0	0	6	0	2	0	(
	t,	0	1	0	0	0	0	0	6	0	2	0	(
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1				-1
	c-a								-1 1				 
	d-a												
	e-a f-a								-1 -1				 
	c-b								-1				-
	d-b								-1				
	e-b								-1				
	f-b								-1				-*
	d-c								1				
	e-c								-1				
	f-c								-1				-*
	e-d								-1				
	f-d								-1				-'
	f-e S _k	0		0	0			0	1	0	-1		
	S _k	0	0	0	0	0	0	0	-7	0	-1	0	-<
σ	² s=								28.33		1.00		28.3
<b>Z</b> _k =	S _k /\sigma _S								-1.32		-1.00		-0.56
	Z ² _k								1.73		1.00		0.32
	$\Sigma Z_k =$	-2.88	Γ-	Tie Extent	t,	t ₂	t ₃	t₄	t5			Σn	15
	$\Sigma Z_{k}^{2}$												
	ΣΖ _k = 2-bar=ΣΖ _k /K=	3.05		Count	15	0	0	0	0			$\Sigma S_k$	-11

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.28		@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.867	-			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.32		@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.094				H _A (± trend)	REJECT



Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.17		0.05
0.050	-0.09	-0.03	0.01
0.100	-0.08	-0.03	-0.01
0.200	-0.07		-0.02

Water Year WY2006 WY2007	Oct	Nov	Dec	lon				Maria	1	11	A.u.a	Sep
WY2008 WY2009 WY2010				Jan	Feb	Mar	Apr	May 24.5 13.8 17.6 21.2 16.9	Jun	<b>Jul</b> 24.8	Aug	25.0 35.0 27.2 28.2 22.9
WY2011 n	0	18.6 1	0	0	0	0	0	23.5 6	0	32.1 2	0	30.5 6
t ₂	0	0	0	0	0	0	0	0	0	0	0	6 0
t₃ t₄	0	0 0	0	0	0 0	0	0	0	0	0 0	0	0 0
t ₅	0	0	0	0	0	0	0	0	0	0	0	0
b-a c-a								-1 -1				1
d-a								-1				1
f-a								-1				-1 1
c-b d-b								1 1				-1 -1
e-b f-b								1 1				-1 -1
d-c								1				1
e-c f-c								-1 1				-1 1
e-d f-d								-1 1				-1 1
f-e								1		1		1
	0	0	0	0	0	0	0	1	U	1	0	1
								28.33 0.19		1.00 1.00		28.33 0.19
2 - k								0.04		1.00		0.04
$\Sigma Z_k =$	1.38	[]	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	15
$\Sigma Z_{k}^{2} =$	1.07		Count	15	0	0	0	0			$\Sigma S_k$	3
-Dai=22 _k /n=	0.46											
22 -	<u></u>				. 2	1						
χ [−] h=ΣΖ [−] k [−] ł			L	@α=5%	ο χ- _(K-1) =	5.99						
$\Sigma VAR(S_k)$		0.26		@α/2=2	2.5% Z=	1.96	,	<b>H</b> ₀ (No t	rend) A	CCEPT		
57.67	р	0.604						H _A (± tr	rend) R	REJECT		
		$\overline{\ }$						×  _	Seasonal-	Kendall Slope		
/									α	Lower Limit	Sen's Slope	Upper Limit
						$\checkmark$		~	0.010	-3.42		2.82 1.15
	<u> </u>					-			0.100	-1.11	1.03	1.12
	$\sim$						Γ C		0.200	-0.47		1.10
	~	/										
				1			1					
	$\begin{array}{c} t_{s} \\ t_{s} \\ t_{s} \\ \hline \\ t_{s} \\ t_{s} \\ \hline \\ t_{s} \\ t_{s} \\ \hline \\ t_{s} \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _z 0 0 0 0 t _s 0 0 0 t _s 0 0 0 t _s 0 0 0 t _s 0 0 0 b-a c-a d-a e-a f-a c-b d-b e-b f-b d-c e-c f-c e-d f-d f-e S _k 0 0 0 0 <b>2</b> = S _k /σ _S $Z_{k}^{2}$ 1.38 $\Sigma Z_{k}^{2}$ 1.38 $\Sigma Z_{k}^{2}$ 1.07 bar=ΣZ_{k}/K= 0.46 <b>1</b> ie Extent Count <b>2</b> Count <b>2</b> ST S _k /σ _S $Z_{k}^{2}$ 0.44 <b>2</b> Out <b>2</b> ST <b>3</b> Out <b>3</b> Out <b>4</b> Out <b>4</b> Out <b>4</b> Out <b>5</b> Out <b>5</b> Out <b>5</b> Out <b>5</b> Out <b>1</b> Out	t ₂ 0 0 0 0 0 t ₃ 0 0 0 0 t ₄ 0 0 0 0 0 b-a c-a d-a e-a f-a c-b d-b e-b f-b d-b e-b f-b f-b d-c e-c f-c f-c e-d f-d f-d f-e steel t t ₁ S _k 0 0 0 0 0 0 0 s ² s ⁼ S _k /σ _S 2 ² k $\Sigma Z_{k} = 1.38 Tie Extent t_{1} Count 15 - bar = ΣZ_{k}/K = 0.44 @α=59 p 0.803 - 2VAR(S_{k}) Z_{calc} 0.26 @α/2=1 57.67 p 0.604 - 57.67 p 0.604 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.67 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57.57 - 57$	t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Dow John	#58 Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мач	Jun	Jul	Aug	Sep
Row label a b c d e f	Water Year WY2006 WY2007 WY2008 WY2009 WY2010 WY2011	Oct	<u>Nov</u> 1.1	Dec	Jan	FeD	<u>Mar</u>	Apr	May 1.5 1.8 0.0 1.4 1.1 0.0	Jun	0.0 0.0	Aug	<b>Sep</b> 1. 1. 0. 2. 0. 0.
	n	0	1.1	0	0	0	0	0	6	0	2	0	0.
	t,	0	1	0	0	0	0	0	4	0	0	0	
	t ₂ t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	1 0	0 0	
	t4	0	0	0	0	0	0	0	0	0	0	0	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a c-a								1 -1				
	d-a								-1				
	e-a f-a								-1 -1				
	c-b d-b								-1 -1				
	e-b								-1				
	f-b d-c								-1 1				
	e-c f-c								1 0				
	e-d								-1				
	f-d f-e								-1 -1		0		
	S _k	0	0	0	0	0	0	0	-8	0	0	0	
(	σ² _s =								27.33		0.00		27.3
	= S _k / $\sigma_{s}$								-1.53		#DIV/0!		-0.7
	Z ² _k								2.34		#DIV/0!		0.5
		#DIV/0! #DIV/0!	Γ	Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	15
	Z-z _k = Z-bar=ΣZ _k /K=		L	Count	9	3	0	0	0			$\Sigma S_k$	-12
	$\alpha^2 \nabla 7^2$	K(Z-bar) ² =	#DIV/0!		@aE	% χ ² _(K-1) =	5.99		Fest for stati	on homog	anoit (		
	<u></u> λ h=Δ <b>z</b> k ^{-r}	r(z-bai) = p	#DIV/0!		@α=5	⁷ ₀ χ _(K-1) =	5.99		$\chi^2_h < \chi^2_{(K-1)}$	on nomoge	#DIV/0!		
	$\Sigma VAR(S_k)$	$Z_{calc}$	-1.49		@(	α=5% <b>Z</b> =	1.64		<b>H</b> ₀ (No t		ACCEPT		
	54.67	р	0.068						H _A (± tr	end)	#DIV/0!		
	3												
(l/b	2.5					$\wedge$				Seasona	al-Kendall Slope	Confidence In	tervals
<u>د</u>	2					/					Lower	Sen's	Upper
ota							<b>`</b>			α 0.010	Limit -0.76	Slope	Limit 0.25
Ц Ц	1.5				—/-	<i>~</i>	$\overline{)}$			0.050 0.100	-0.54 -0.38	-0.22	0.00 -0.04
	1			<b></b>						0.200	-0.28		-0.09
fate	'				1/							#DIV/0!	
Sulfate	F				H / -								
Sulfate, Total (mg/l)	0.5			N /	/								
Sulfate	0	1					×		<b>&gt;</b>				
Sultate	0 WY:		WY2007	WY200		/Y2009	WY201		/Y2011				

ow label	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	<b>May</b> 0.2	Jun	Jul	Aug	<b>Sep</b> 0.3
a b c d e	WY2007 WY2008 WY2009 WY2010								0.2 0.5 0.7 2.7 0.3		0.9		0.3 0.5 0.2 0.7 0.8
f	WY2011	0	0.1	0	0	0	0	0	15.7	0	2.8	0	2.6
	n		1	0		0	0	0	6		2		6
	t₁ t₂	0 0	1 0	0 0	0 0	0 0	0 0	0 0	6 0	0 0	2 0	0 0	6 0
	t ₃ t ₄	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								1				1
	c-a d-a								1 1				-1 1
	e-a f-a								1 1				1 1
	c-b								1				-1
	d-b e-b								1 -1				1 1
	f-b d-c								1 1				1 1
	e-c								-1 1				1
	f-c e-d								1 -1				1
	f-d f-e								1 1		1		1 1
	S _k	0	0	0	0	0	0	0	9	0	1	0	11
	σ² _s =								28.33		1.00		28.33
Z _k	$= S_k / \sigma_S$								1.69		1.00		2.07
	$Z^2_k$								2.86		1.00		4.27
	$\Sigma Z_k = \Sigma Z_k^2 =$	4.76	٦	Fie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	15
	Z-bar= $\Sigma Z_k/K=$	8.13 1.59	L	Count	15	0	0	0	0			$\Sigma S_k$	21
	$\chi^2_h = \Sigma Z^2_k$ -	$(7-har)^2 =$	0.59		@a=5%	6 χ ² _(K-1) =	5.99		Fest for stat	ion homog	eneity		
	λ n-24 κ	( <u>2 bul)</u> =	0.746	L	ea- <b>c</b> ,	ο χ (κ-1)-	0.00		$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	$Z_{calc}$	2.63		@α/2=	2.5% Z=	1.96		H ₀ (No t		REJECT		
	57.67	р	0.996						H _A (± ti	rend)	ACCEPT		
18													
16									,				
<b>5</b> 14										Seasona	-Kendall Slope	e Confidence Ir Sen's	utervals Upper
<b>1</b> 2									_	α	Limit	Slope	Limit
10 8										0.010 0.050	0.07 0.11	0.32	1.79 0.90
										0.100 0.200	0.15 0.21	0.52	0.79 0.50
10, 14 12 10, 10, 12 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,							7			0.200	0.21	46 40/	0.00
							/_	X	(			46.1%	
0		1					X						
	WY200	6 WY	2007	WY2008	WY2	009	WY2010	WY2	011				
		— Oct -		<u>—</u> Deo	c — J	an <del>*</del>	-Feb —	⊃— Mar					

# INTERPRETIVE REPORT SITE 27 "MONITORING WELL 2S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes			
No outliers have been identified by HGCMC for the period of October 2006 through September 2011.							

The data for water year2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Five samples exceeding these criteria have been identified, as listed in the table below. Four of these exceedances were for field pH values which are below the lower limit of 6.5 su listed in the AWQS. Values for field and laboratory pH from other wells completed into organic rich peat sediments similar to Site 27 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 29, and 32). The other exceedance was for the May sampling of dissolved zinc which had a value of 54.5  $\mu$ g/L, exceeding the upper limit of 45.8  $\mu$ g/L by 8.7  $\mu$ g/L; prior to this dissolved zinc had not been in exceedance since the May 2007 sampling. By the July 2011 sampling the dissolved zinc (4.3 $\mu$ g/L) had dropped well below upper limit value. All of the other analytes were within AWQS for the current water year.

### **Table of Exceedance for Water Year 2011**

		Limits							
Sample Date	Parameter	Value	Lower	Upper	Hardness				
9-Nov-10	pH Field	6.21 su	6.5	8.50					
19-May-11	pH Field	6.16 su	6.5	8.50					
12-Jul-11	pH Field	5.28 su	6.5	8.50					
12-Sep-11	pH Field	6.19 su	6.5	8.50					
19-May-11	Zinc Dissolved	54.5 µg/L		45.82	32.70 mg/l				

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Visually the increasing trend in total sulfate values, which started in 2008, has since 'leveled' off. The maximum value recorded was  $34.8\mu$ g/L in June 2011, which is slightly more than an order of magnitude of increase from the 2006 through 2008 water years. This trend is supported by the non-parametric statistical analyses that were performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The below table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Ke	ndall test sta	Sen's slope estimate			
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)	
Conductivity Field	6	0.09				
pH Field	6	0.12				
Alkalinity, Total	6	0.45				
Sulfate, Total	6	< 0.01	+	3.68	28.28	
Zinc, Dissolved	6	0.30				

### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

For datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. The dataset for total sulfate has a statistically significant (p<0.01) trend with a slope estimate of 3.68mg/L/yr or a 28.3% increase over the last 6 years. These values are similar to those calculated for the 2010 report of 3.52 mg/L/yr or an increase of 35.2%. The percent increase over time should decrease as the site reaches a new equilibrium. Sulfate results at this site prior to 1996 are highly variable and typically ranged between 1 to 10 mg/L. WY2009 – WY2011 results indicate a substantial increase in sulfate concentration at Site 27 over the previous five years. Though total sulfate has increased at site 27 it is still ~1/8 of the AWQS of 250mg/L. With the changes that were made to the FWMP monitoring schedule (*i.e.* increase sampling frequency), HGCMC feels that the FWMP program is sufficient to monitor further changes, before the AWQS are exceeded.

Additional X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 27 and Site 58, the upgradient control site, to aid in the comparison between those two sites. Total alkalinity and field pH are both approximately within the same range for both sites. Total sulfate and field conductivity are generally higher at the downgradient site. Dissolved zinc values typically have a similar range at both sites.

In general the waters for these two different sites are characterized by significantly different hydrological and geological conditions. Site 58 is located in close proximity to the large bedrock ridge, which defines the eastern geologic and hydrologic boundary of the tails area. The upslope portion of the ridge acts as the major recharge zone to the area aquifer. Along this ridge it is likely that groundwater flow is dominated by shallow or near surface flows due to the steep gradient and thin mineral soil. Thus, the groundwater at Site 58 is typically a mixture of surficial recharge from the immediate area with a component of relatively juvenile groundwater originating from the ridge to the east. In contrast, Site 27 is located in an area of gently sloping muskeg that forms part of the upper Tributary Creek drainage area. The area's groundwater is characterized by diffuse flow through the peat/sand strata that make up the upper portion of the unconsolidated sediment fill in the Tributary Creek valley. Additionally, Site 27 is located in an area identified as a groundwater discharge site into Tributary Creek. Thus, Site 27 samples

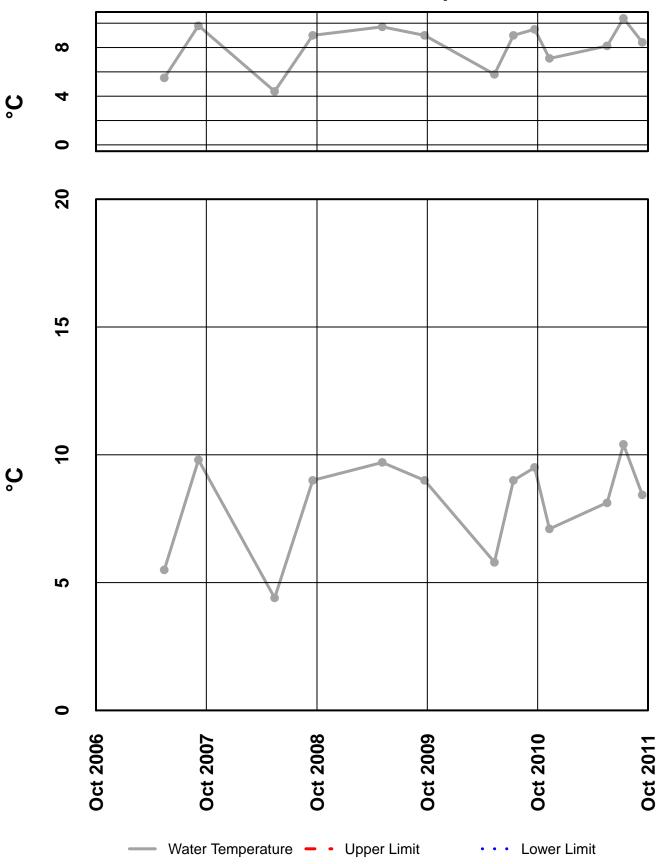
groundwater that is relatively mature in comparison to Site 58 and may have a higher component of groundwater that has been in contact with a larger variety of strata for a longer period of time. Therefore, the groundwater would be expected to have a higher dissolved load. The lower pH would be due to the greater interaction with organic matter in the muskeg and would promote greater solubility for naturally occurring dissolved metals sampled at this site.

Site 02/1 MG - Monitoring Wen - 20													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		7.1						8.1		10.4		8.4	8.3
Conductivity-Field(µmho)		108.8						155		186.8		96	131.9
Conductivity-Lab (µmho)		101						128		155		107	118
pH Lab (standard units)		5.57						5.98		5.73		5.72	5.73
pH Field (standard units)		6.21						6.16		5.28		6.19	6.18
Total Alkalinity (mg/L)		22						22		34.8		26.1	24.1
Total Sulfate (mg/L)		16.4						25		15		13	15.7
Hardness (mg/L)		35.9						32.7		46.7		34.1	35.0
Dissolved As (ug/L)		3.42						3.84		2.18		3.08	3.250
Dissolved Ba (ug/L)		36.7						41.2		48.2		45.2	43.2
Dissolved Cd (ug/L)		0.004						0.0131		0.0018		0.0018	0.0029
Dissolved Cr (ug/L)		0.824						0.368		0.608		0.574	0.591
Dissolved Cu (ug/L)		0.253						1.49		0.288		0.199	0.271
Dissolved Pb (ug/L)		0.188						0.17		0.141		0.224	0.1790
Dissolved Ni (ug/L)		1.11						1.23		1.23		1.63	1.230
Dissolved Ag (ug/L)		0.004						0.002		0.002		0.002	0.002
Dissolved Zn (ug/L)		1.13						54.5		4.25		2.45	3.35
Dissolved Se (ug/L)		0.297						0.154		0.127		0.343	0.226
Dissolved Hg (ug/L)		0.00306						0.000594		0.00164		0.00134	0.001490

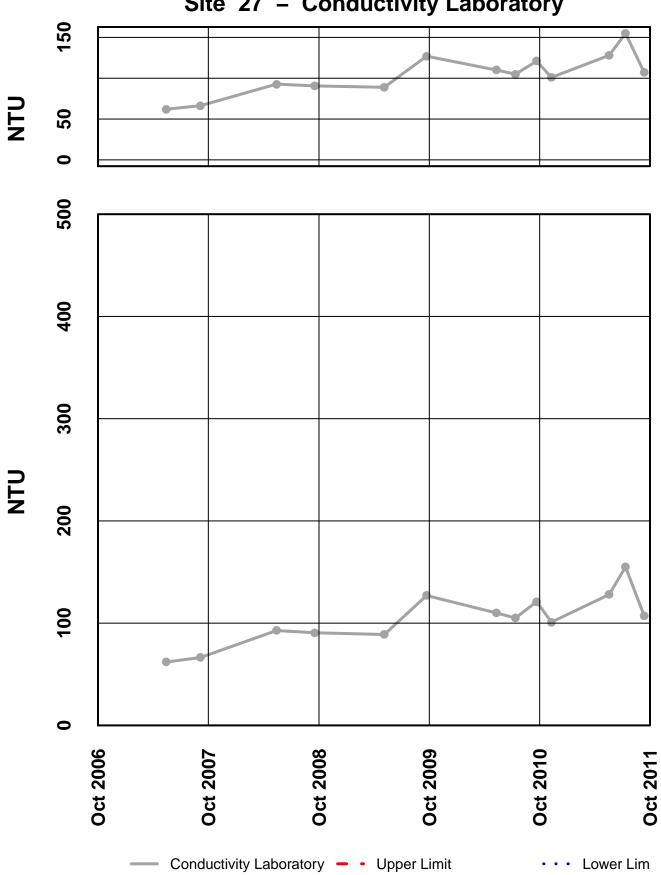
### Site 027FMG - 'Monitoring Well - 2S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

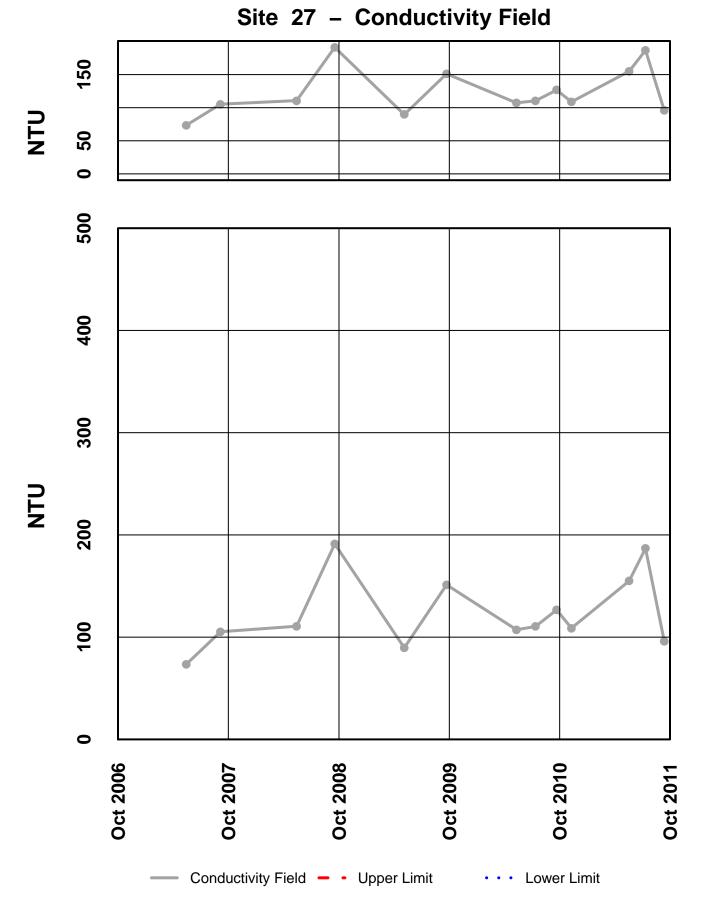

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

## Qualified Data by QA Reviewer

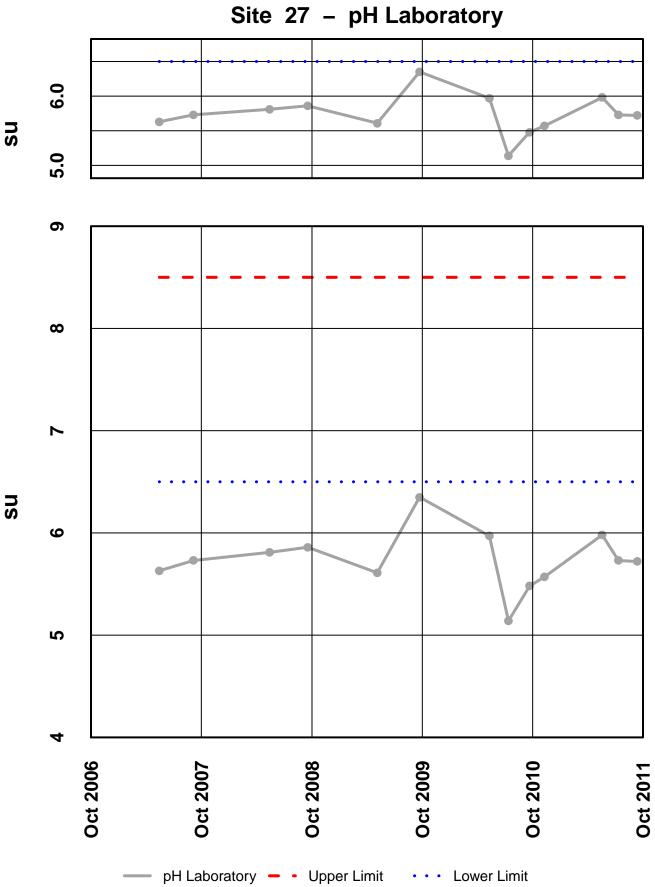

### Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
27	11/9/2010	12:00 AM				
			Se diss, µg/l	0.297	J	Below Quantitative Range
27	5/19/2011	12:00 AM				
			SO4 Tot, mg/l	25	J	Sample Reciept Temperature
			Se diss, µg/l	0.154	J	Below Quantitative Range
			pH Lab, su	5.98	J	Hold Time Violation
			Cd diss, µg/l	0.0131	U	Trip Blank Contamination
27	7/12/2011	12:00 AM				
			Se diss, µg/l	0.12	J	Below Quantitative Range
			SO4 Tot, mg/l	-30	R	Sample Reciept Temperature
27	9/12/2011	12:00 AM				
			SO4 Tot, mg/l	13	J	Below Quantitative Range

Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

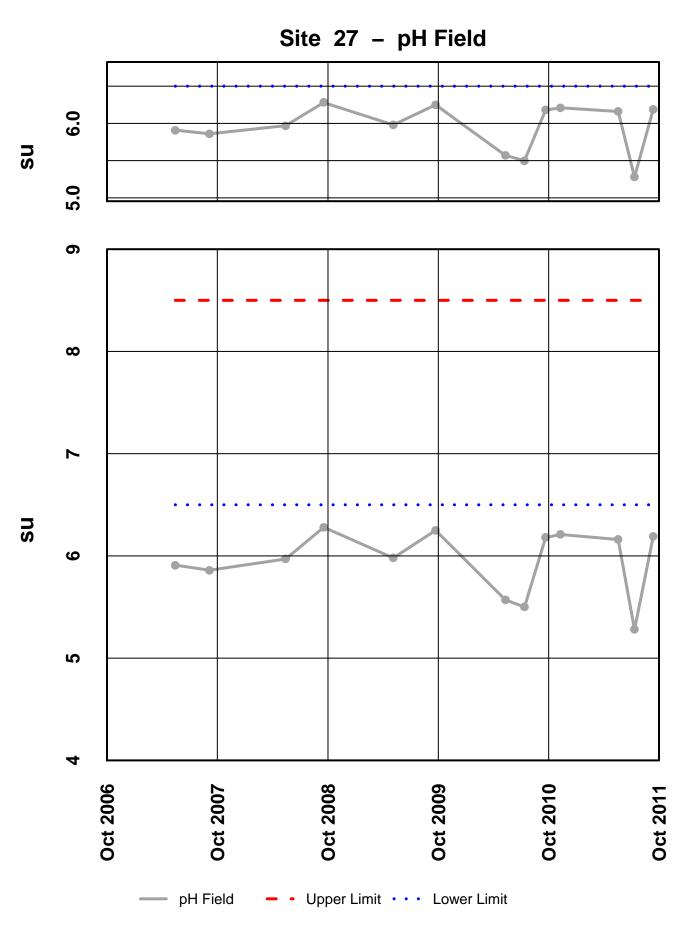



## Site 27 – Water Temperature

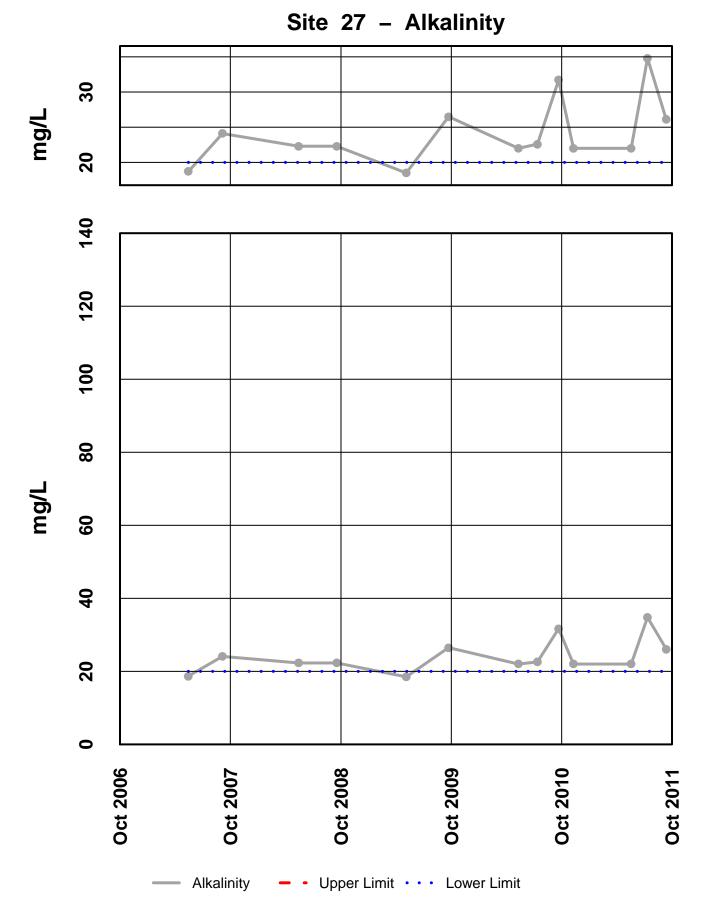



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

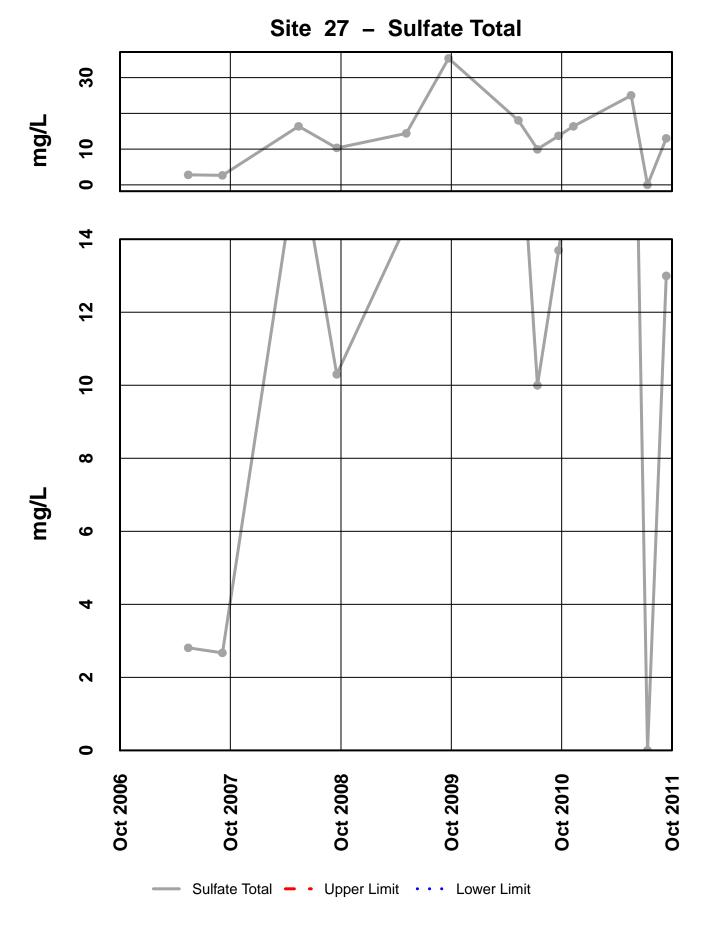
Site 27 – Conductivity Laboratory



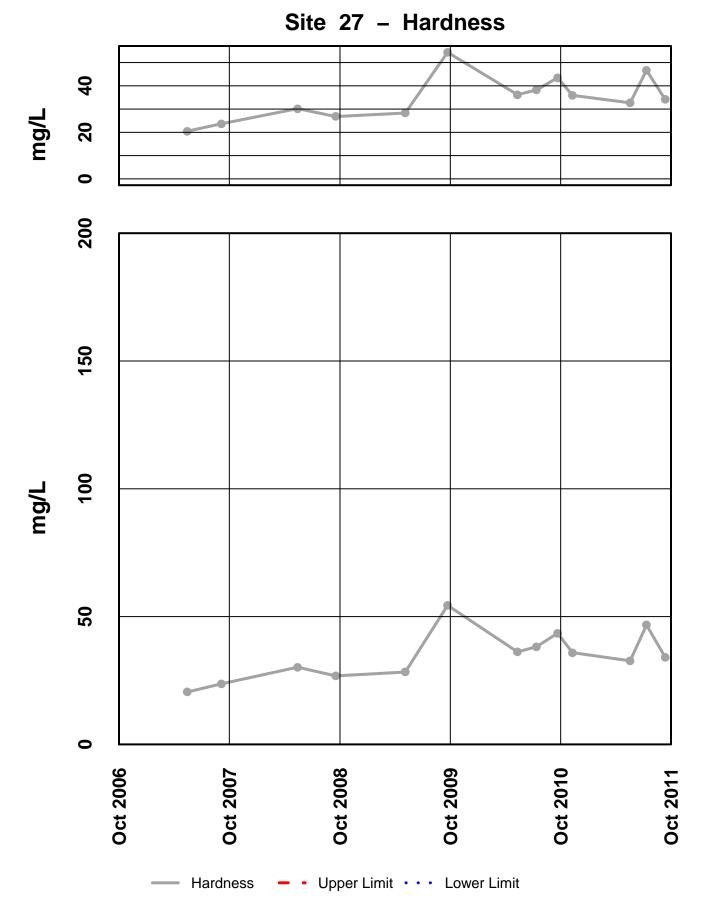

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



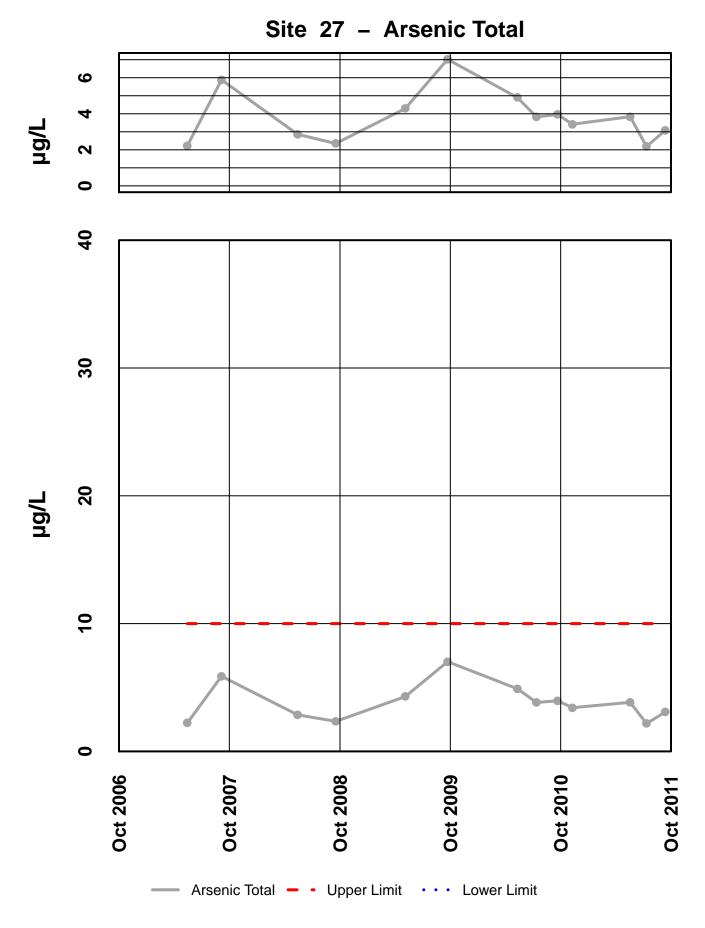

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


SU

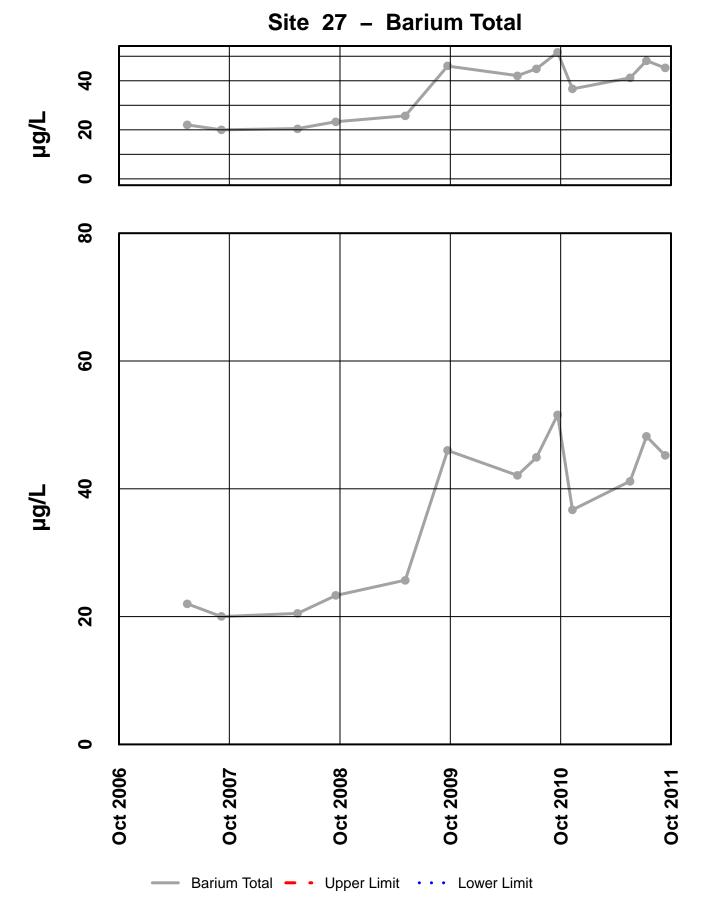



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

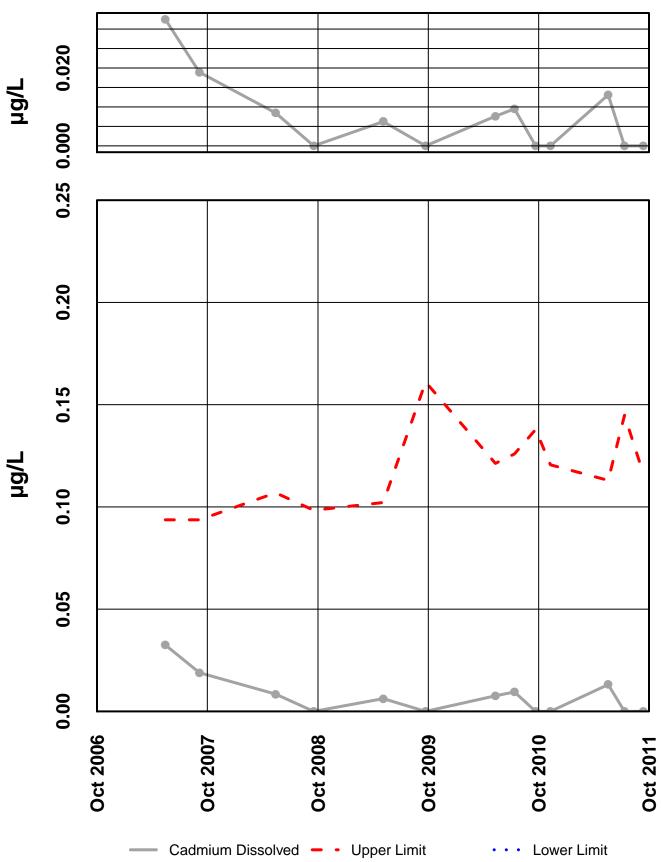



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



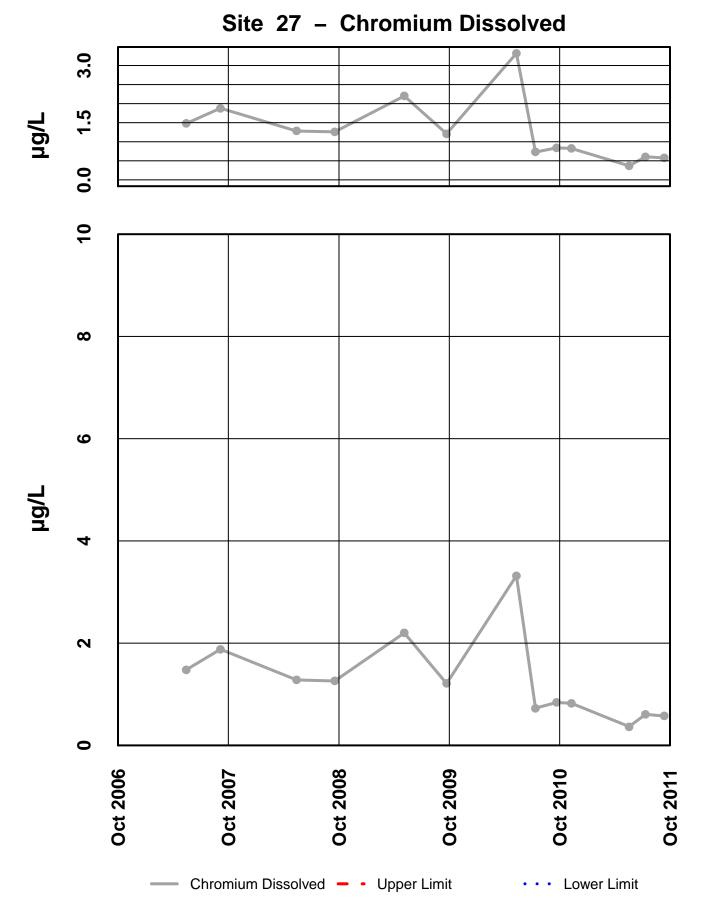

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



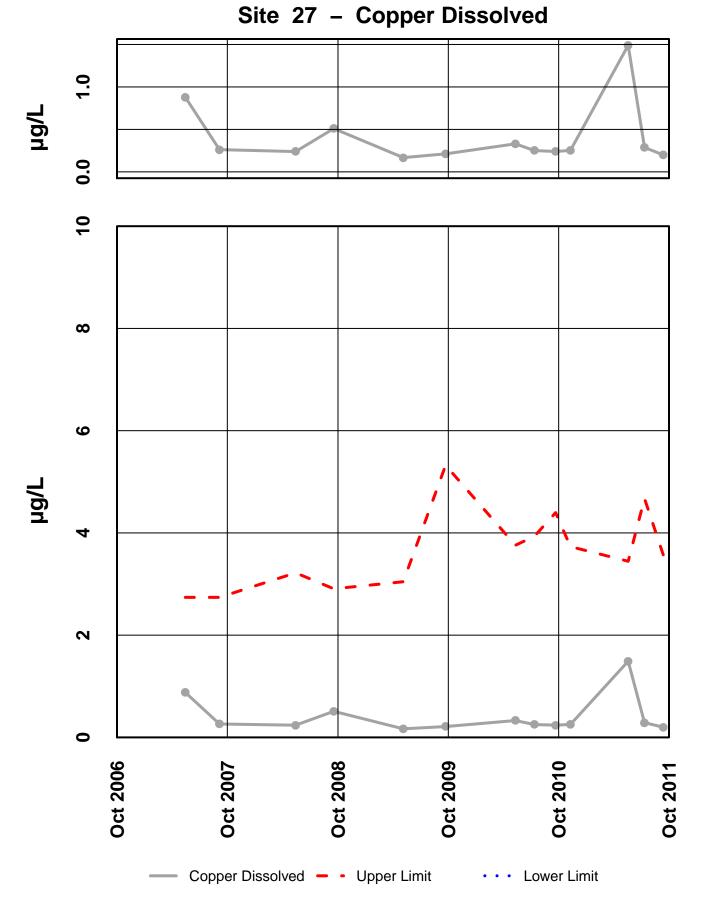

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



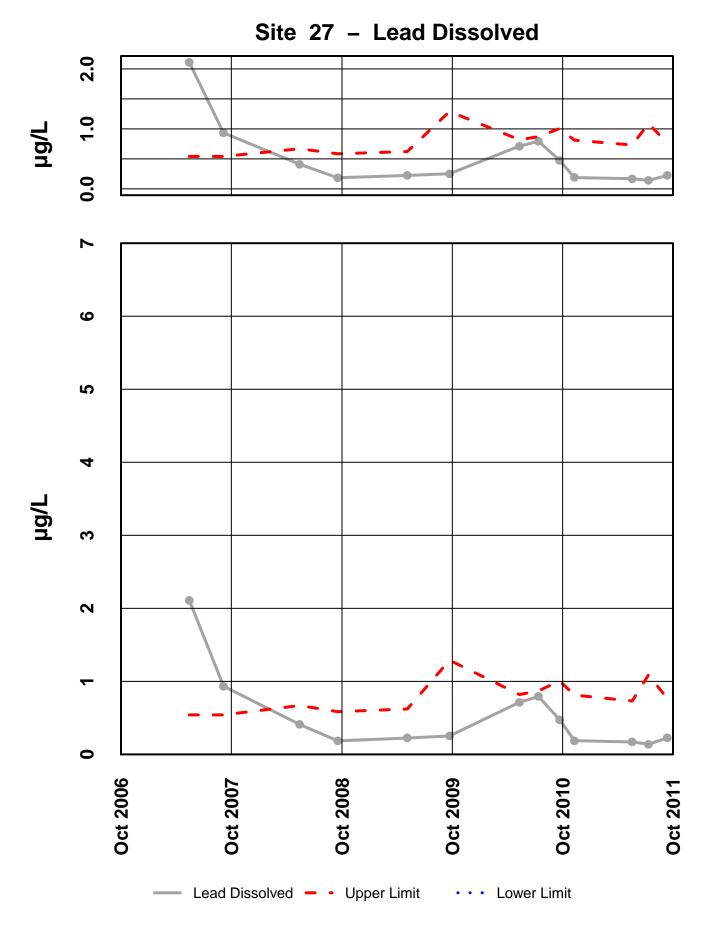
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



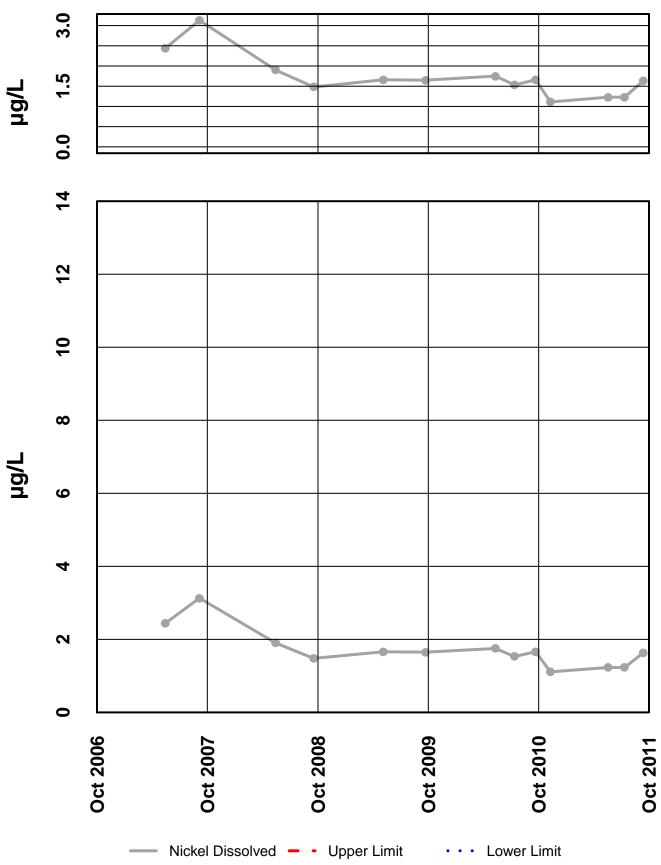

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



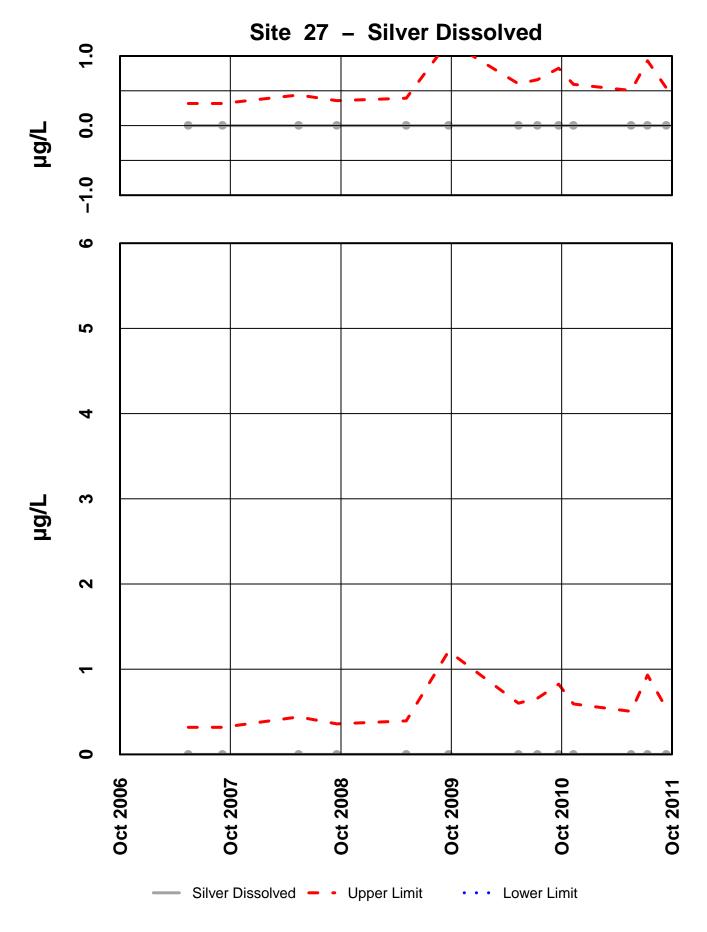

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


### Site 27 – Cadmium Dissolved

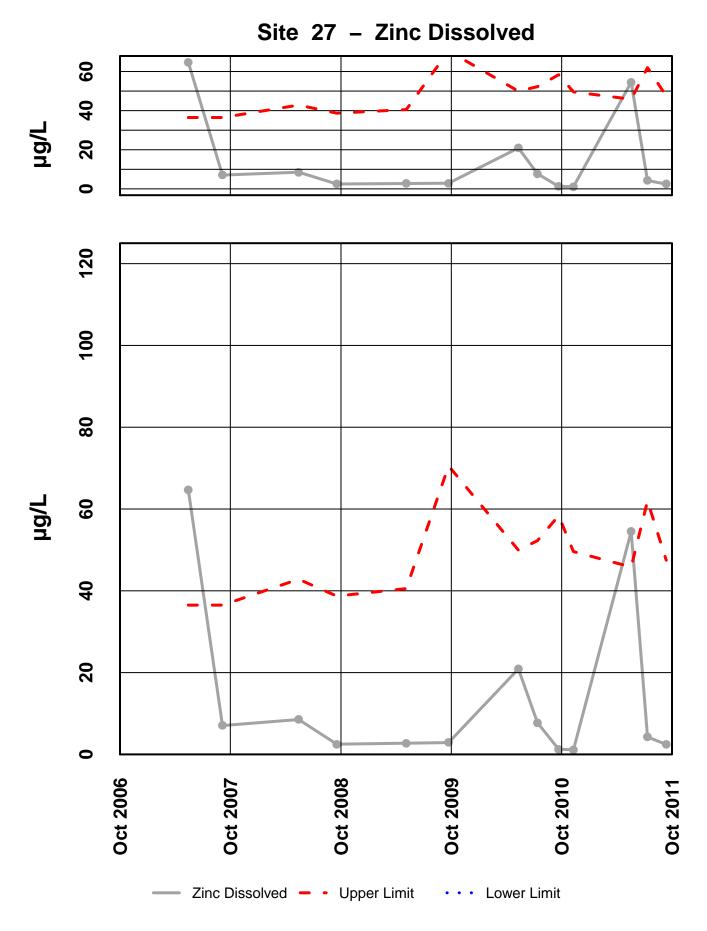



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

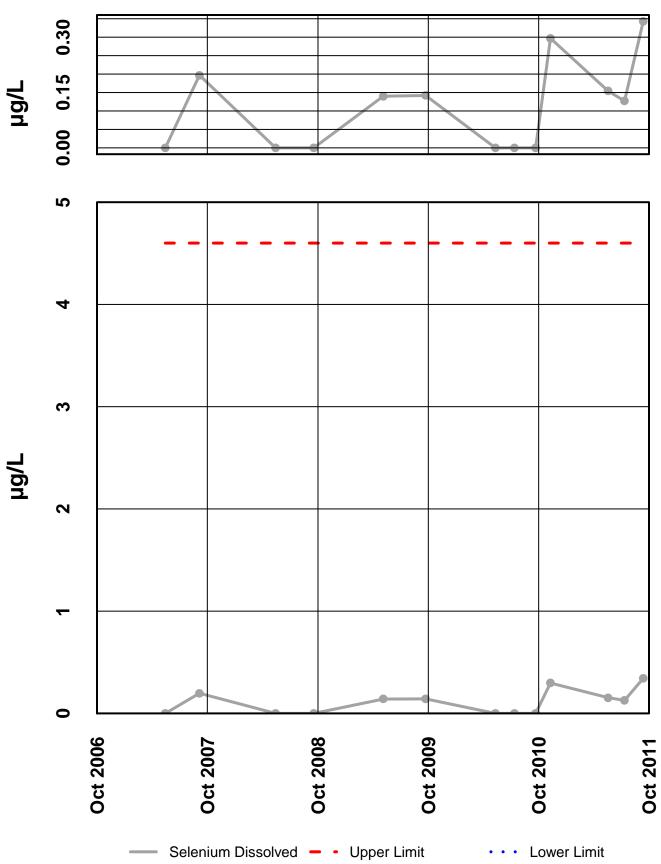



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

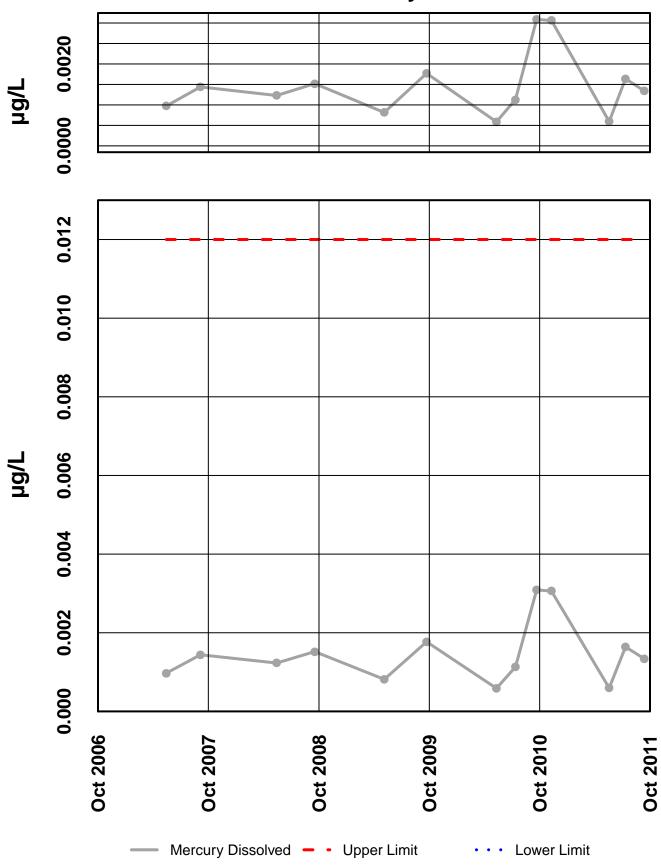



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 27 – Nickel Dissolved

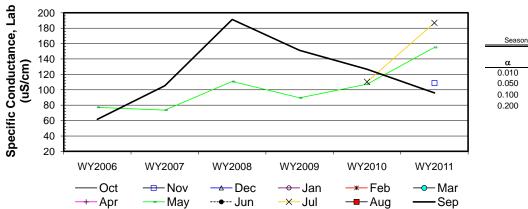



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

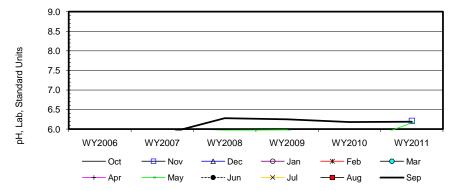



Site 27 – Selenium Dissolved



Site 27 – Mercury Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

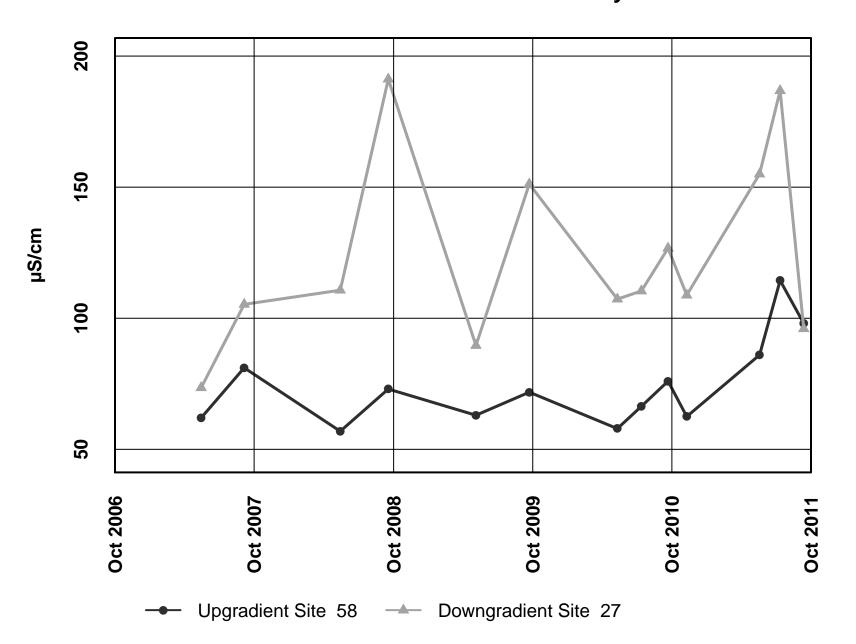

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	001	1101	Dee	oan	100	With	Арі	77.2	oun	oui	Aug	61.7
b	WY2007								73.5				105.3
С	WY2008								110.7				191.2
d	WY2009								89.6				151.2
е	WY2010								107.3		110.4		126.7
f	WY2011		108.8						155		186.8		96
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t,	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C
	t₄ t₅	0	0	0	0	0	0	0	0	0	0	0	0
	*5	Ū	Ŭ	Ŭ	Ŭ	Ŭ	ů	Ŭ		ő	ő	Ű	
	b-a c-a								-1 1				1 1
	d-a								1				1
	e-a								1				1
	f-a								1				1
	c-b								1				
	d-b								1				1
	e-b								1				1
	f-b								1				-1
	d-c								-1				-1
	e-c								-1				-1
	f-c								1				-1
	e-d								1				-1
	f-d								1				-1
	f-e S _k								1		1		-1
	Sk	0	0	0	0	0	0	0	9	0	1	0	1
σ	5 ² s=								28.33		1.00		28.33
Z _k =	s S _k /σ _s								1.69		1.00		0.19
	Z ² _k								2.86		1.00		0.04
	$\Sigma Z_k =$	2.88	Г	Tie Extent	t1	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2} =$	3.89		Count	15	0	0	0	0			$\Sigma S_k$	11
-	Z-bar=∑Z _k /K=	0.96	L	Count	10	0	0	0	0			2 <b>0</b> k	11
2	∠-0ai=2∠ _k /n=	0.96											
	$\chi^2_h = \Sigma Z^2_k - k$	K(Z-bar) ² =	1.13		@α=5	5% χ ² _(K-1) =	5.99	Te	est for station ho				
		р	0.568						$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.32	L	@α/2	=2.5% Z=	1.96		H ₀ (No tren		ACCEPT		
	57.67	р	0.906						H _A (± trend	d)	REJECT		



Seasonal-Kendall Slope Confidence Intervals								
Lower	Sen's	Upper						
Limit	Slope	Limit						
-22.23		30.79						
-2.17	44.07	19.69						
2.00	11.27	17.10						
6.94		16.04						
	Lower Limit -22.23 -2.17 2.00	Lower Sen's Limit Slope -22.23 -2.17 2.00 11.27						

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	001	NOV	Dec	Jan	160	Wiai	дрі	5.9	Jun	Jui	Aug	<u> </u>
b	WY2007								5.9				5.9
C	WY2008								6.0				6.3
d	WY2009								6.0				6.3
e	WY2010								5.6		5.5		6.2
f	WY2011		6.2						6.2		5.3		6.2
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t,	0	1	0	0	0	0	0	4	0	2	0	6
	t ₂	0	0	0	0	0	0	0	1	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								0				1
	c-a								1				1
	d-a								1				1
	e-a								-1				1
	f-a								1				1
	c-b								1				1
	d-b								1				1
	e-b								-1				1
	f-b								1				1
	d-c								1				-1
	e-c								-1				-1
	f-c e-d								1 -1				-1 -1
	f-d								-1				-1
	f-e								1		-1		1
	S _k	0	0	0	0	0	0	0	6	0	-1	0	Ę
σ	² s=								27.33		1.00		28.33
	S _k /σ _s								1.15		-1.00		0.94
2	<b>z</b> ² k								1.32		1.00		0.88
	$\Sigma Z_k =$	1.09	F	Tie Extent	t1	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2}$	3.20		Count	13	1	0	0	0			$\Sigma S_k$	10

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	2.81	@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.246			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	1.20	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
56.67	р	0.884			H _A (± trend)	REJECT

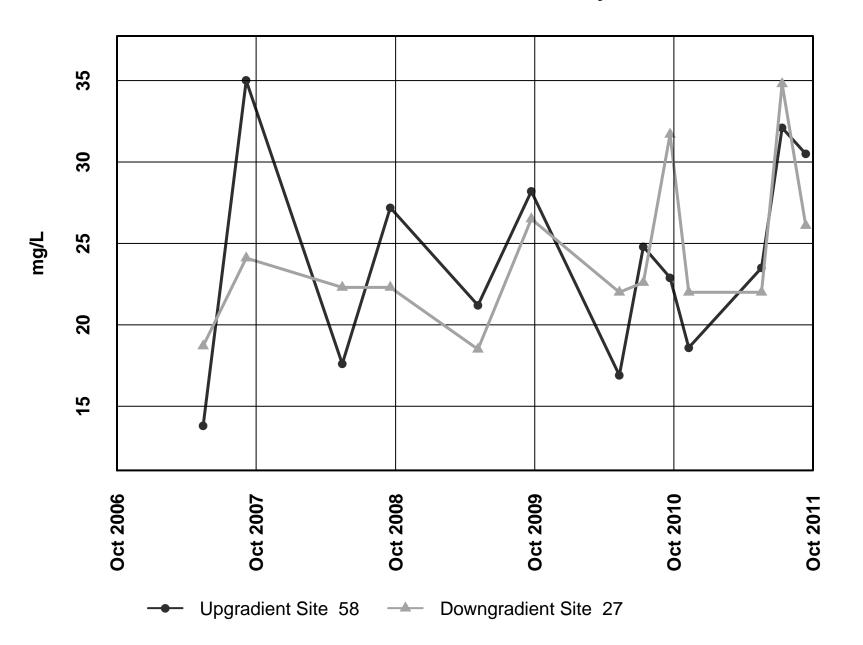



Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.06		0.12
0.050	-0.03	0.04	0.09
0.100	-0.01	0.04	0.07
0.200	0.01		0.06

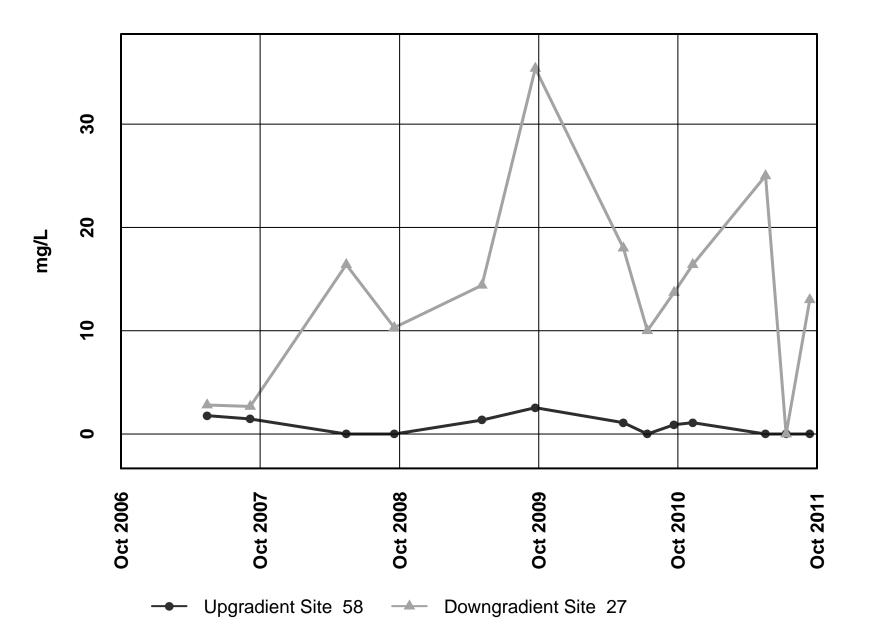
	#27						all analysi						
w label a b c d	Water Year WY2006 WY2007 WY2008 WY2009	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 25.2 18.7 22.3 18.5	Jun	Jul	Aug	Sep 25.8 24.1 22.3 26.5
e f	WY2010 WY2011		22.0						22.0 22.0		22.6 34.8		31.7
1	n	0	22.0 1	0	0	0	0	0	6	0	2	0	26.1 6
	t,	0	1 0	0	0	0	0 0	0	4	0	2	0	6
	t₂ t₃	0 0	0	0	0	0	0	0	1	0	0	0	C
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C C
	b-a								-1				-1
	c-a d-a								-1 -1				-1 1
	e-a f-a								-1 -1				1 1
	c-b								1				-1
	d-b e-b								-1 1				1 1
	f-b d-c								1 -1				1
	e-c								-1				1
	f-c e-d								-1 1				1 1
	f-d f-e								1 0		1		-1 -1
	S _k	0	0	0	0	0	0	0	-4	0	1	0	5
	σ ² s=								27.33		1.00		28.33
	= S _k /σ _S Z ² _k								-0.77 0.59		1.00 1.00		0.94
	∠ k								0.59		1.00		0.88
	$\Sigma Z_k = \Sigma Z_k^2 =$	1.17 2.47		Tie Extent Count	t₁ 13	t₂ 1	t₃ 0	t₄ O	t₅ 0			Σn ΣS _k	15 2
1	Z-bar=∑Z _k /K=	0.39											
	$\chi^2_h = \Sigma Z^2_k - I$		2.01		@α <b>=</b> 5%	ώ χ ² _(K-1) =	5.99		est for sta ² _h <χ ² _(K-1)	tion homog	-		
	ΣVAR(S _k )	P Z _{calc}	0.366 0.13		@a/2=	2.5% Z=	1.96	λ	- h ^{&lt;} λ (K-1) <b>H₀</b> (No		ACCEPT ACCEPT		
	56.67	P	0.553		ew2-	2.070 2	1.50		H _A (±1		REJECT		
40	F												
35	-							×	<u> </u>				
							$\sim$			Seasona	I-Kendall Slope		
20	-					/		$\prec$		α	Lower Limit	Sen's Slope	Upper Limit
30					$\sim$					0.010	-1.71		1.95
				$\leq$			×	e		0.050 0.100	-0.75 -0.34	0.06	1.25 1.13
25										0.200	-0.13		0.72
25													
25 20													
25 20 15					-								
30 25 20 15 10	WY2006	WY2	2007	WY2008	WY2	009	WY2010	WY2	011				
25 20 15	WY2006 — Oc —+ Ap	t —	2007 - Nov - May	WY2008 ▲ Dec ● Jun	WY2	Jan	WY2010 	-•-	011 - Mar • Sep				

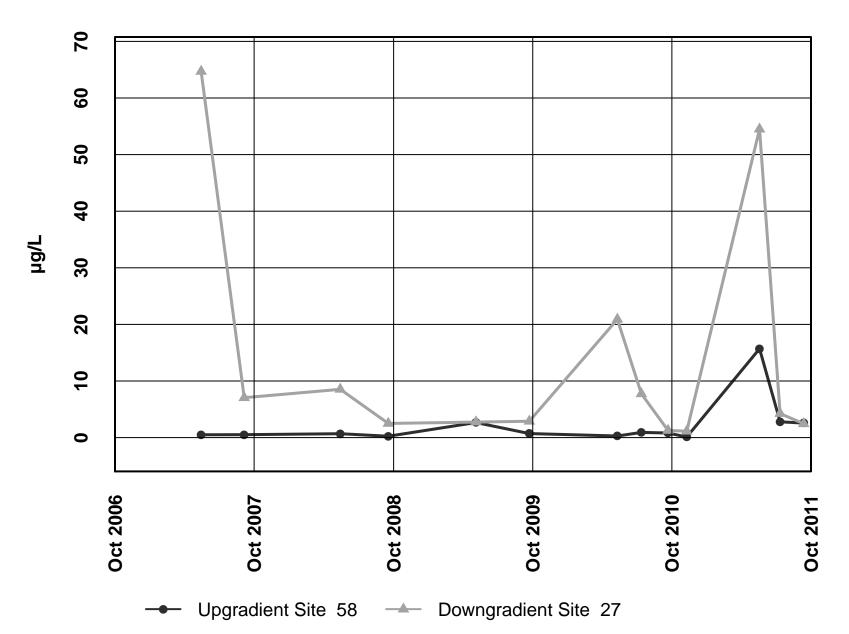
v label Water ' a WY20 b WY20 c WY22 d WY22 e WY22 f WY22 f WY22 n t ₁ t ₂ t ₃ t ₃ t ₄	006 007 008 009 010 011 0 0 0 0 0 0 0 0 0 0	<u>Nov</u> 16.4 1 0	<b>Dec</b>	Jan 0	Feb	Mar	Apr	May 1.8 2.8	Jun	Jul	Aug	<b>Sep</b> 2.2
n t_2 t_3 t_4	0 0 0 0	1	0	0				16.4 14.4 18.0 25.0		10.0 0.0		2.7 10.3 35.4 13.7 13.0
t ₂ t ₃ t ₄	0			•	0	0	0	6	0	2	0	6
t ₂ t ₃ t ₄	0		0	0	0	0	0	6	0	2	0	6
t4	-		0	0	0	0	0	0	0	0	0	(
	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
-		0	0	0	0	0	0	0	0	0	0	(
b-a	a							1				
c-a d-a								1 1				
e-a f-a								1				•
c-b								1				
d-b								1				
e-b f-b								1 1				
d-o	с							-1				
e-c f-c								1				
e-c								1				-
f-d f-e								1		-1		
S _k	0	0	0	0	0	0	0	13	0	-1	0	9
$\sigma_{s}^{2}$ =								28.33		1.00		28.3
$\mathbf{Z}_{\mathbf{k}} = \mathbf{S}_{\mathbf{k}} / \sigma_{\mathbf{S}}$								2.44		-1.00		1.69
$Z^2_k$								5.96		1.00		2.8
	Σ <b>Z</b> _k = 3.13		Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	15
∑ Z-bar=ΣZ	$\Sigma Z_{k}^{2} = 9.82$ $Z_{k}/K = 1.04$		Count	15	0	0	0	0			$\Sigma S_k$	21
$\chi^2_h = \Sigma VAR$ 57.6		6.55 0.038 2.63 0.996			% χ ² _(K-1) = x=5% Z=	5.99 1.64		Test for stat $\chi^2_h < \chi^2_{(K-1)}$ $H_0$ (No $=$ $H_A$ (± t	trend) R	neity EJECT EJECT A		

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	S
a	WY2006								0.4				
b	WY2007 WY2008								64.7 8.5				
c d	WY2009								2.7				
e	WY2010								20.9		7.7		
f	WY2011	0	1.1	0	0	0	0	0	54.5 6		4.3 0 2	0	
	n												
	t ₁ t ₂	0 0	1 0	0 0	0 0	0 0	0 0	0 0	6 0		) 2 ) 0	0 0	
	t ₃	0	0	0	0	0	0	0	0		0 0	0	
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		0 0 0 0	0 0	
-		0	0	0	0	0	0	0			0 0	0	
	b-a c-a								1 1				
	d-a								1				
	e-a								1				
	f-a c-b								1 -1				
	d-b								-1				
	e-b								-1				
	f-b								-1				
	d-c e-c								-1 1				
	f-c								1				
	e-d								1				
	f-d								1 1		1		
=	f-e S _k	0	0	0	0	0	0	0	5	(	-1 ) -1	0	
	2 _s =								00.00		4.00		
	s= S _k /σ _S								28.33 0.94		1.00 -1.00		1
	2 - k								0.88		1.00		
			F									_	
	$\Sigma Z_{k} =$	-1.75		Tie Extent	t1	t ₂	t ₃	t4	t ₅			Σn	1
	$\Sigma Z_k^2 = -bar = \Sigma Z_k/K =$	4.74 -0.58	L	Count	15	0	0	0	0			$\Sigma S_k$	-
	χ² _h =ΣΖ² _k -ł	K(Z-bar) ² =	3.72		@α=5%	6 χ ² _(K-1) =	5.99		Test for stat	ion homa			
		р	0.156					2	χ ² _h <χ ² _(K-1)		ACCEPT		
ſ	$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	-0.53		@α/2=	2.5% Z=	1.96		<b>H</b> ₀ (No t	rend)	ACCEPT		
l	57.67	р	0.299						H _A (± ti	end)	REJECT		
70 -													
		/	ζ										
<u>p</u>								/	_	Seasor	nal-Kendall Slope	e Confidence Ir	nterva
) 50 -		7							1-		Lower	Sen's	Up
<b>2</b> 40 -		/								α 0.010	Limit -2.86	Slope	Li 5.
S an			$\setminus$				/	/		0.050	-1.85	-0.34	2.
<b>Sic</b> 30 -		/								0.100	-1.33	-0.34	0.
ഥ ഗ് ^{20 -}		/		$\rightarrow$						0.200	-0.79		0.
Ĕ	/	/		$\backslash$		/							
	<b>├</b>		~				×						
<b>N</b> 10 -								×					
<b>N</b> 10 - 0 -	WY2006		2007	WY2008	WY2	,	WY2010	WY2	011				




Site 58 vs. Site 27 – Conductivity Field


Site 58 vs. Site 27 – pH Field




Site 58 vs. Site 27 – Alkalinity Total



Site 58 vs. Site 27 – Sulfate Total





Site 58 vs. Site 27 – Zinc Dissolved

### INTERPRETIVE REPORT SITE 29 "MONITORING WELL 3S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the period	od of October	2006 through Septemb	per 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Several results exceeding these criteria have been identified, as listed in the table below.

			Lir	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
9-Nov-10	Alkalinity	0 mg/L	20		
19-May-11	Alkalinity	19.1 mg/L	20		
12-Jul-11	Alkalinity	0 mg/L	20		
12-Jul-11	Copper Dissolved	4.54 µg/L		2.74	25.00 mg/L
19-May-11	Lead Dissolved	2.37 µg/L		0.54	25.00 mg/L
12-Jul-11	Lead Dissolved	7.13 µg/L		0.54	25.00 mg/L
9-Nov-10	pH Field	4.85 su	6.5	8.50	
19-May-11	pH Field	5.13 su	6.5	8.50	
12-Jul-11	pH Field	4.13 su	6.5	8.50	
12-Sep-11	pH Field	5.22 su	6.5	8.50	
19-May-11	Zinc Dissolved	51.3 µg/L		36.50	25.00 mg/L
12-Jul-11	Zinc Dissolved	36.7 μg/L		36.50	25.00 mg/L

#### Table of Exceedance for Water Year 2011

Four of these records are for field pH with values below the lower limit of 6.5 su listed in AWQS. Field pH from other wells completed in organic rich peat sediments similar to Site 29 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 27, and 32). Four exceedances were for dissolved lead and dissolved zinc in the months of May 2011 and July

2011. Three more exceedances were for total alkalinity and the remaining exceedance was for the July 2011 dissolved copper result.

Though dissolved lead has routinely been in exceedance at Site 29 over the past several years the sharp increase in the May 2011 and then July 2011 sampling results is notable. Furthermore, dissolved zinc and dissolved copper have not been in exceedance for any of the other five years used for this year's analysis. The most probable mechanism for dispersal of the lead and potentially other metals away from the tailings pile would be as fugitive tailings dust transported during cold, descanting winds during winter or due to dust induced by truck traffic during dry summer conditions.

The sharp increase in these analytes may reflect the changing topography of the tails dry stack facility. After the northeast expansion was completed in 2008 HGCMC commenced to place the majority of the tailings in the northeast region. For a couple of years the northeast was mostly bowl shaped and below the tree line. During the last couple of years this area stopped being a bowl and has been brought up in elevation. With the increase in elevation this area is not as protected from the winds that predominantly prevail from the northeast. Dispersal of fugitive dust from this region would be to the southwest towards Site 29 and Site 32.

In 2011 HGCMC implemented a biweekly dust monitoring program to support the snow monitoring program. This program has continued into 2012, but was switched to a weekly sampling during the winter months to increase the temporal resolution of the dataset. Results from this monitoring are summarized in the 2011 Tailings and Waste Rock Annual Report and will also be presented at the annual meeting in June 2012.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There is a visually apparent downward trend in total alkalinity values across the last five water years. The same trend is apparent in the dissolved arsenic, dissolved barium, dissolved manganese, hardness, and conductivity data. Currently, HGCMC does not have an explanation for the mechanism that is in operation causing the visual decrease in these values.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Ker	ndall test s	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.02	-	-11.68	-16.4
pH Field	6	0.03			
Alkalinity, Total	6	0.06			
Sulfate, Total	6	I	nconsistent	detection lin	nits
Zinc, Dissolved	6	0.40			

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

One significant trend was identified with this analysis. Field conductivity (p=0.02) was negatively trending with an estimated slope of -11.7  $\mu$ s/cm/yr or a 16.4% decrease.

Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by Analytica Laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

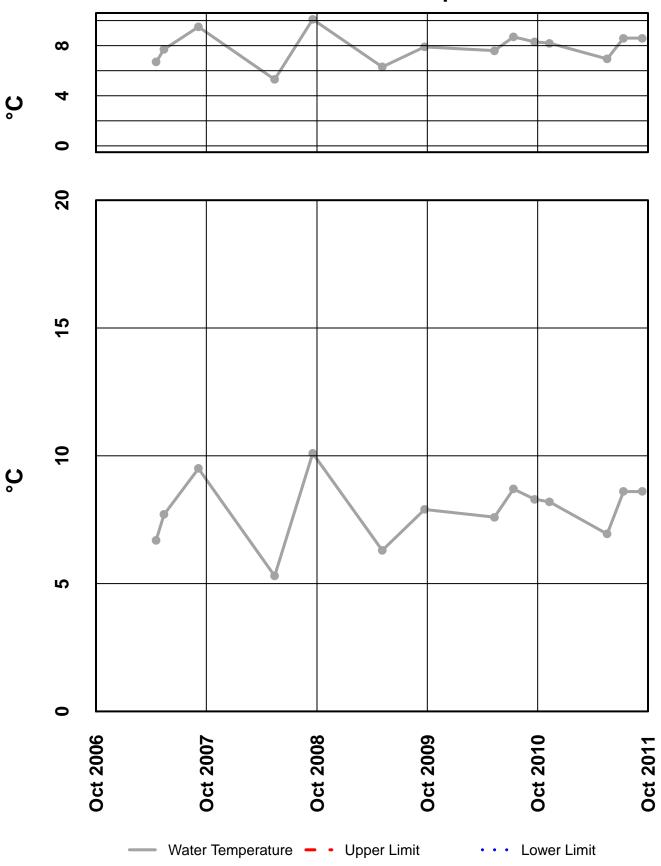
Additional X-Y plots have been generated for alkalinity, pH, conductance, sulfate, and dissolved zinc that co-plot data from Site 29 and Site 58, the up-gradient control site, to aid in the comparison between those two sites. Field conductivity and total alkalinity are within similar ranges at both sites. Field pH is slightly lower at Site 29 than Site 58, while total sulfate is slightly higher at Site 58 (note Site 29 typically returns sulfate values that are below the 0.1 mg/L SO₄ MDL). Site 29 routinely has dissolved zinc values that are  $\sim 5 \mu g/L$  higher than values found at Site 58. These results are similar in magnitude and range to what was noted previously for Site 29 are similar to Site 27 with the exception that Site 29 is not typically in an active surface discharge zone. However, the area around Site 29 is located in an area of gently sloping muskeg that is part of the upper headwater region of Further Creek, which drains westward into Hawk Inlet. The site's groundwater is characterized by diffuse flow through the peat/sand strata. Thus the lower pH would be due to the greater interaction with organic matter in the muskeg. The lower pH would also promote greater solubility for dissolved metals sampled at this site.

one ozor more on more on the original states of the original states													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		8.2						6.9		8.6		8.6	8.4
Conductivity-Field(µmho)		46.5						64		51.6		46	49.1
Conductivity-Lab (µmho)		33						57		37		78	47
pH Lab (standard units)		4.35						5.23		4.42		5.37	4.83
pH Field (standard units)		4.85						5.13		4.13		5.22	4.99
Total Alkalinity (mg/L)		0.5						19.1		0.5		31	9.8
Total Sulfate (mg/L)		2.5						2.5		25		2.5	2.5
Hardness (mg/L)		9.2						20.1		10.1		20.7	15.1
Dissolved As (ug/L)		3.59						7.91		3.61		9.36	5.760
Dissolved Ba (ug/L)		5.8						10.5		12.6		8.7	9.6
Dissolved Cd (ug/L)		0.004						0.0273		0.0502		0.0052	0.0163
Dissolved Cr (ug/L)		1.39						1.09		1.06		1.35	1.220
Dissolved Cu (ug/L)		0.309						1.07		4.54		0.252	0.690
Dissolved Pb (ug/L)		0.465						2.37		7.13		0.306	1.4175
Dissolved Ni (ug/L)		0.862						1.53		1.76		1.44	1.485
Dissolved Ag (ug/L)		0.004						0.002		0.004		0.002	0.003
Dissolved Zn (ug/L)		6.01						51.3		36.7		5.62	21.36
Dissolved Se (ug/L)		0.114						0.384		0.057		0.203	0.159
Dissolved Hg (ug/L)		0.00139						0.00112		0.00122		0.000654	0.001170

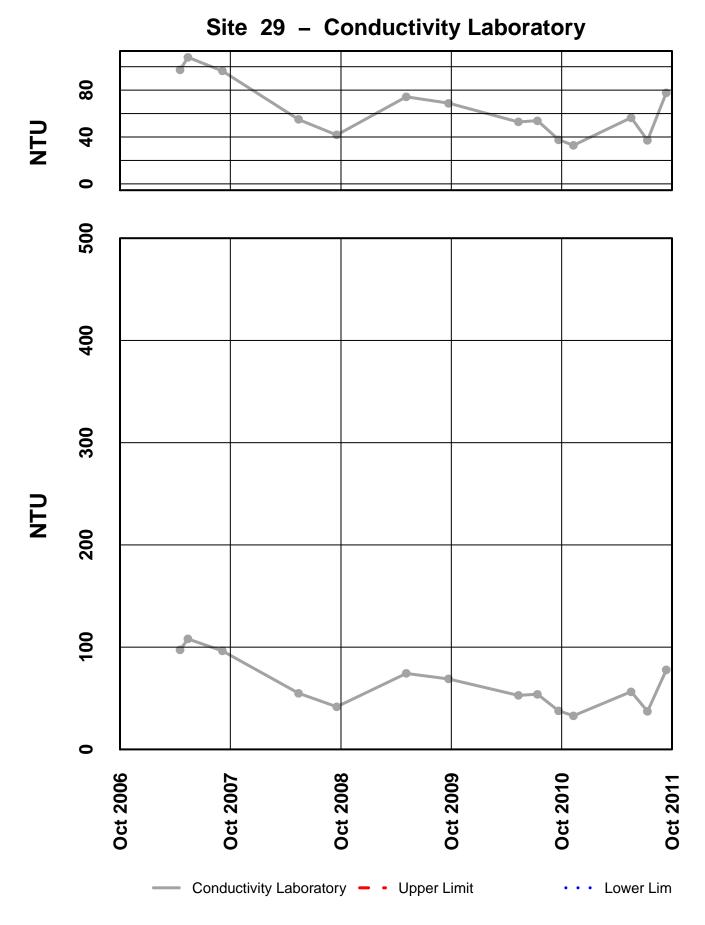
#### Site 029FMG - 'Monitoring Well - 3S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

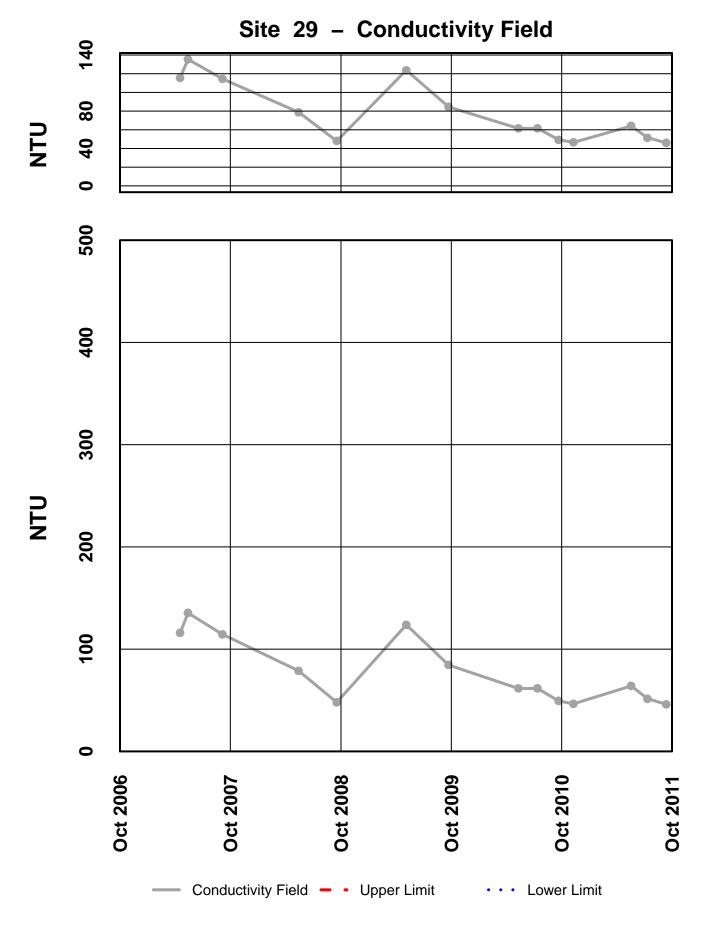
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

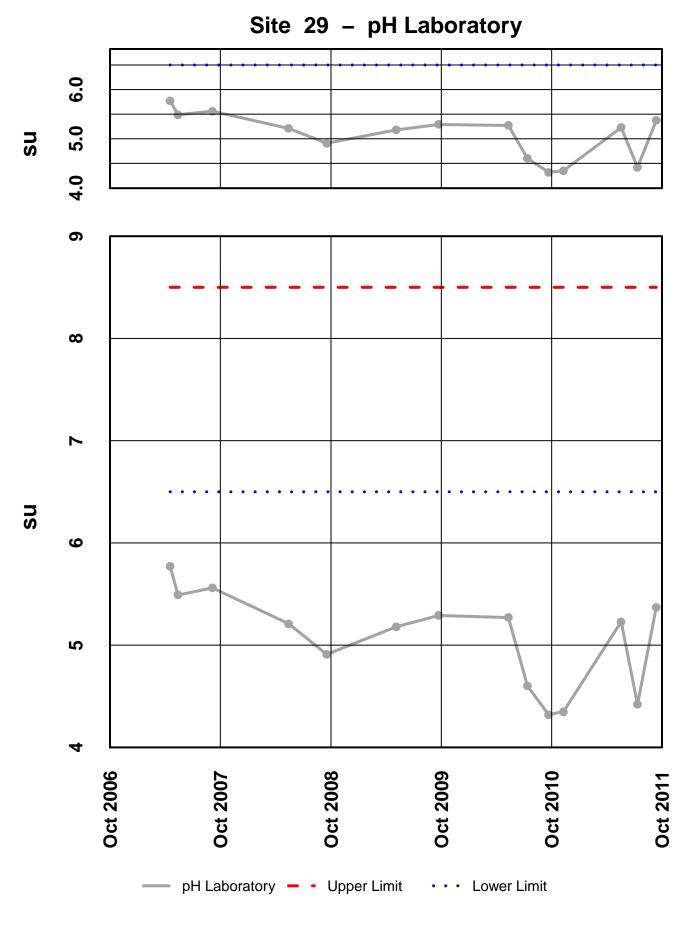
## Qualified Data by QA Reviewer


### Date Range: 10/01/2010 to 09/30/2011

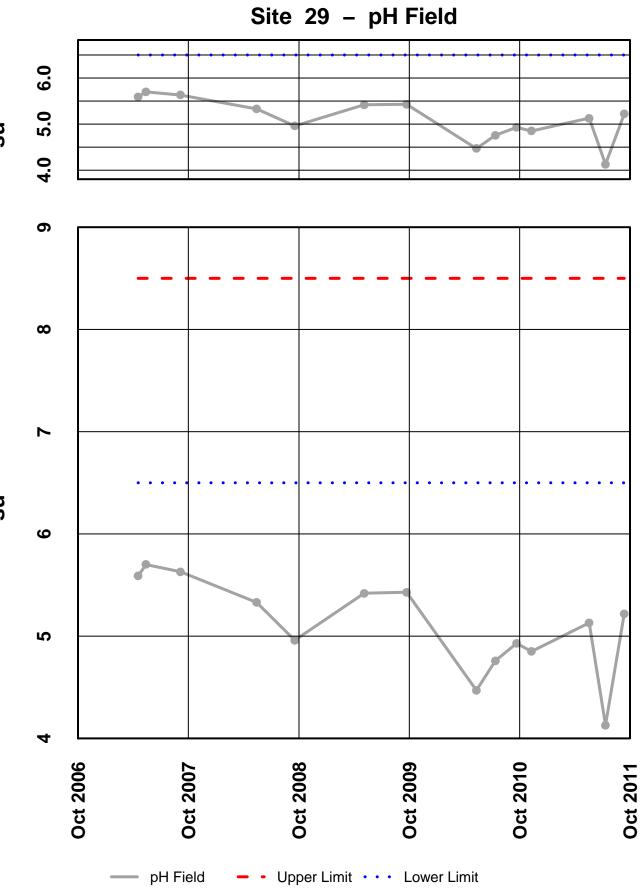
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
29	5/19/2011	12:00 AM				-
			pH Lab, su	5.23	J	Hold Time Violation
			SO4 Tot, mg/l	-5	R	Sample Reciept Temperature
			Cd diss, µg/l	0.0273	U	Trip Blank Contamination
29	7/12/2011	12:00 AM				
			SO4 Tot, mg/l	-50	R	Sample Reciept Temperature
29	9/12/2011	12:00 AM				
			Se diss, µg/l	0.2	J	Below Quantitative Range
			Cd diss, µg/l	0.00517	J	Below Quantitative Range
			Hg diss, µg/l	0.000654	U	Field Blank Contamination
			SO4 Tot, mg/l	0	UJ	Sample Receipt Temperature


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit



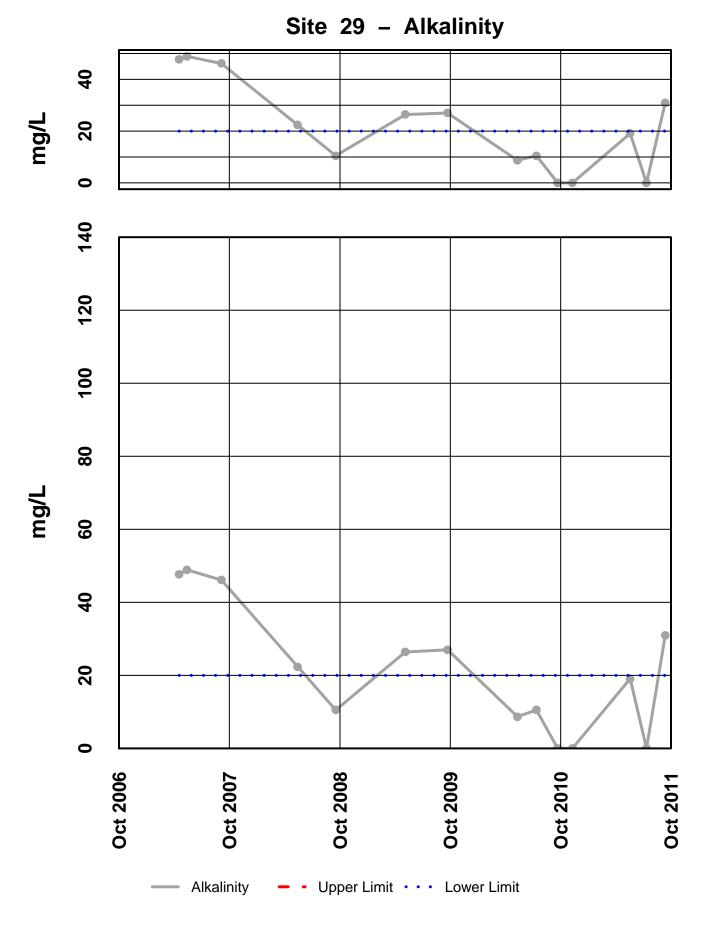

# Site 29 – Water Temperature



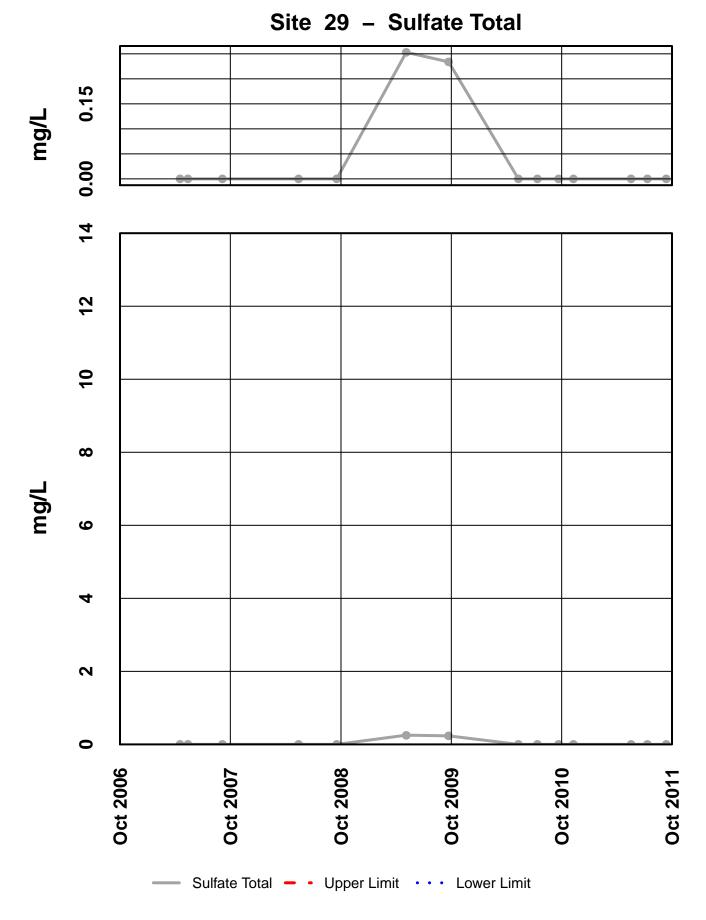

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



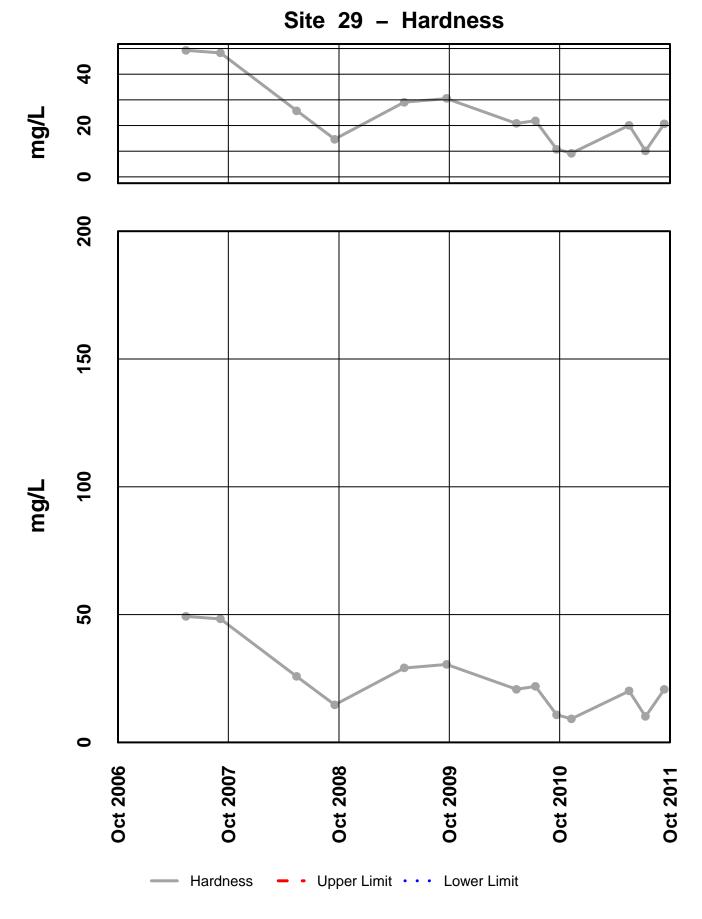
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

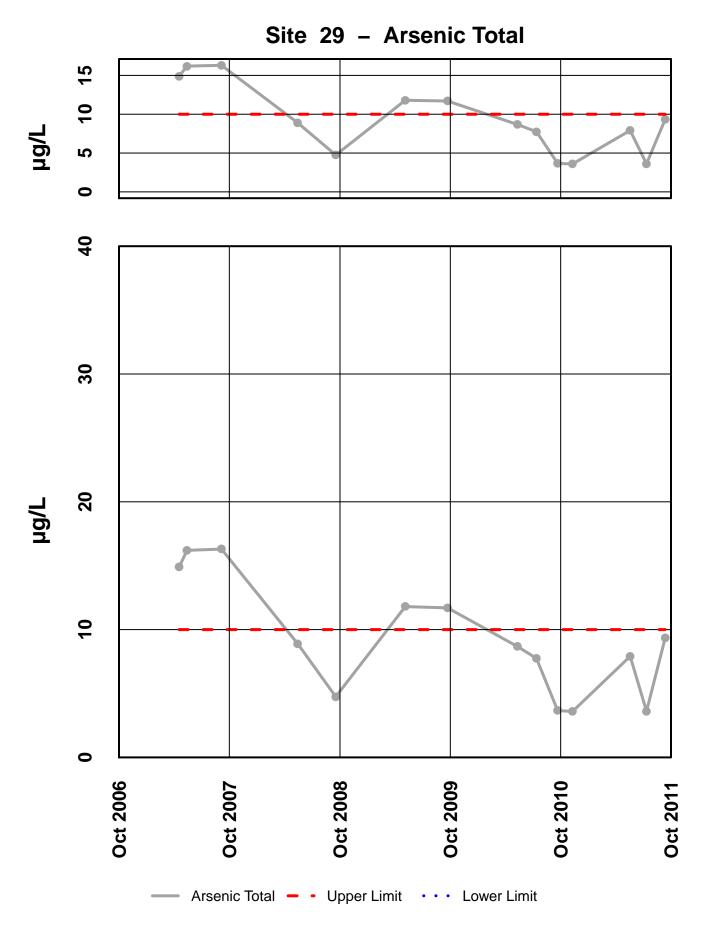



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

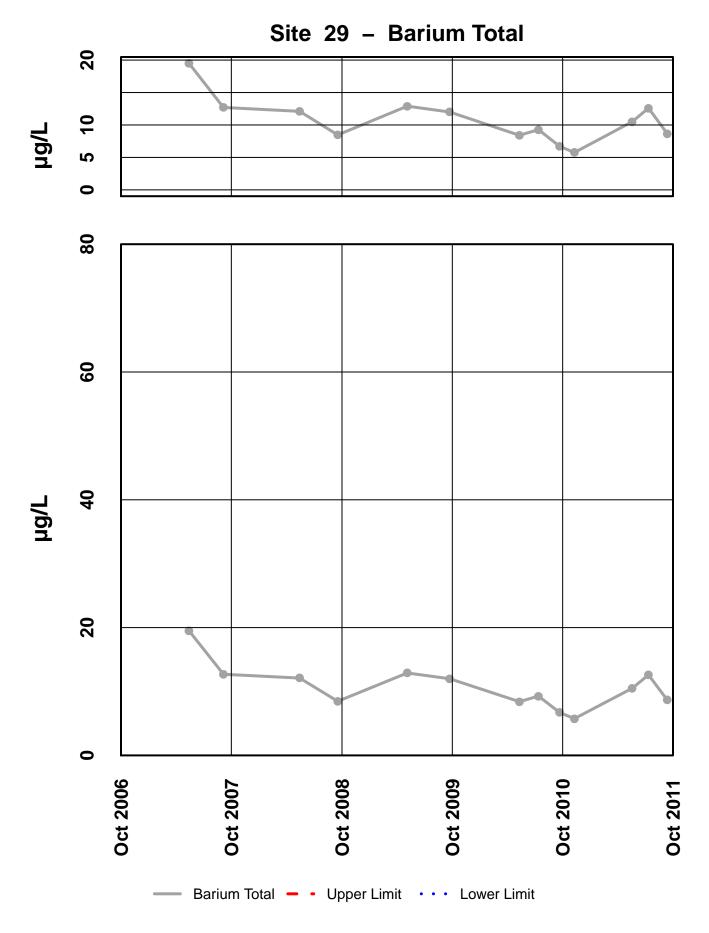



SU

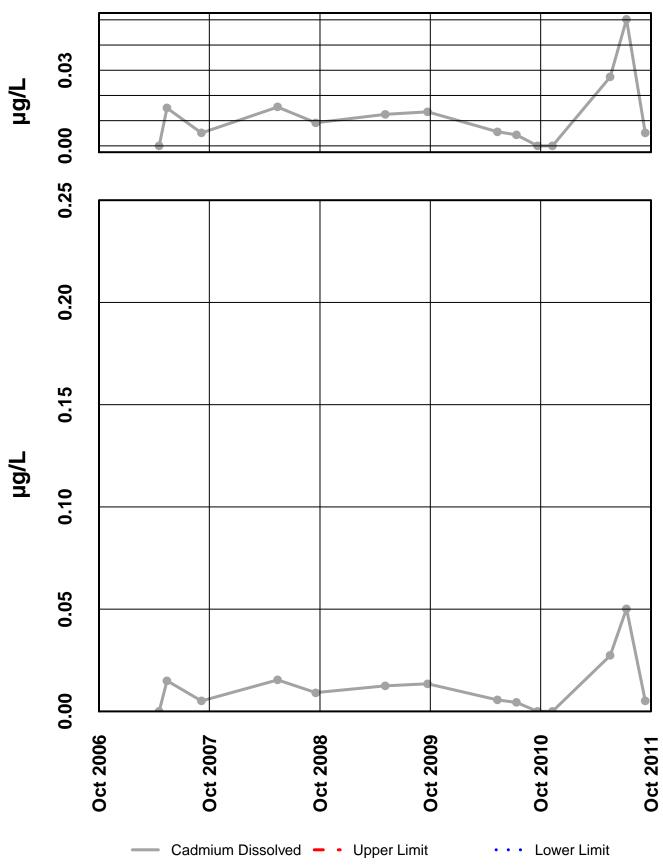

su



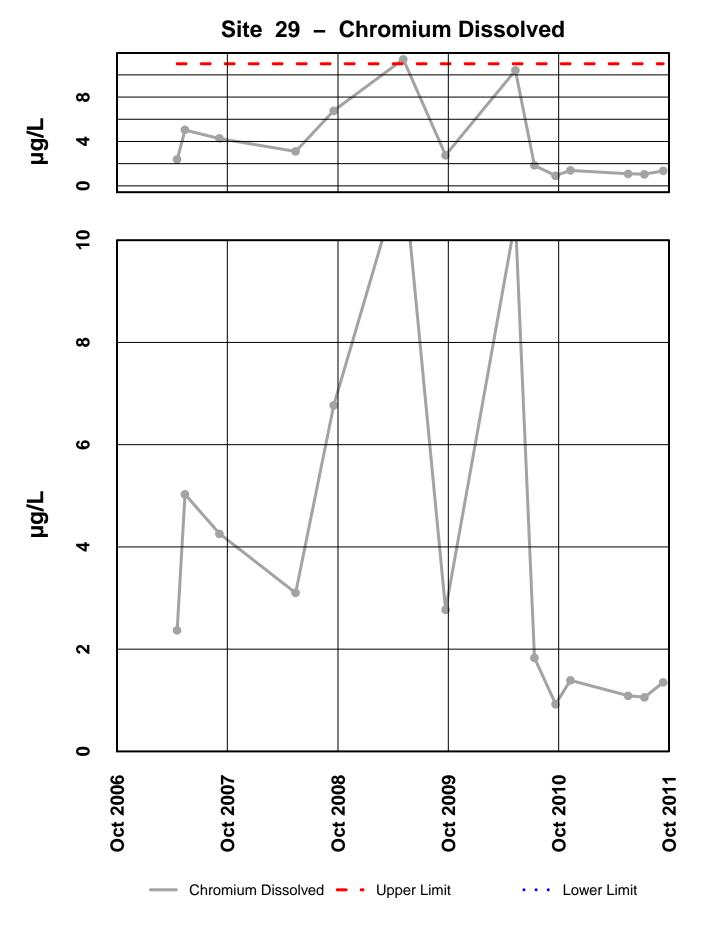

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



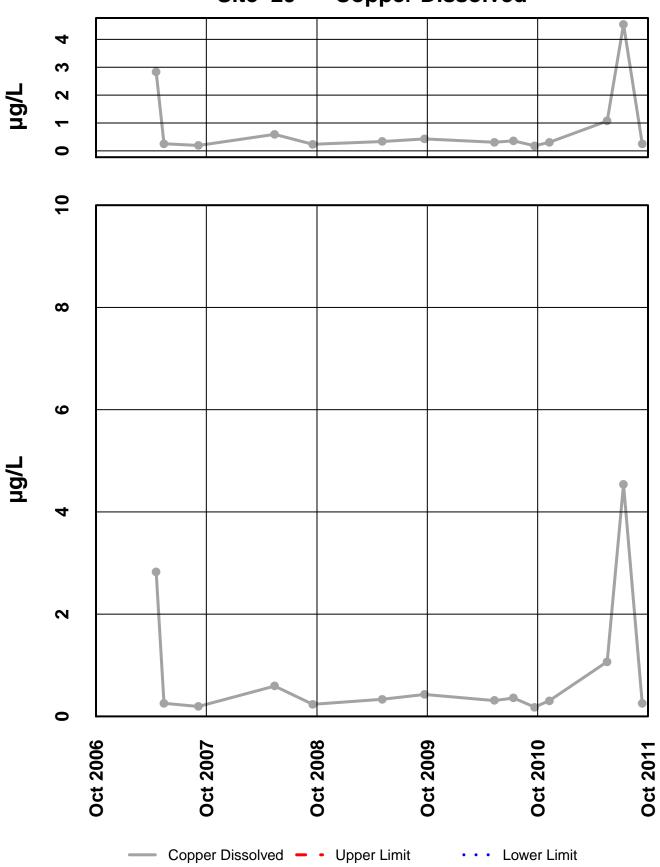

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



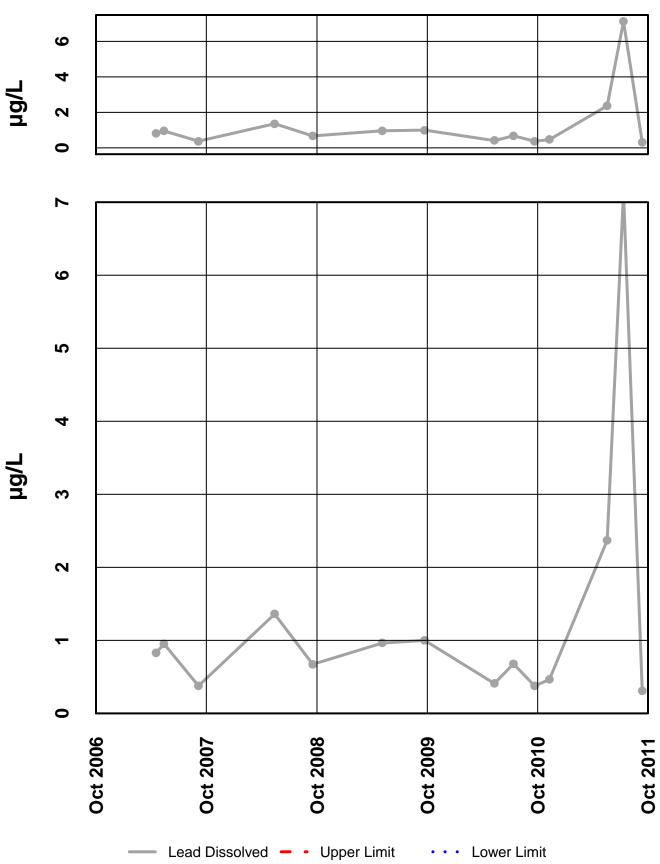




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

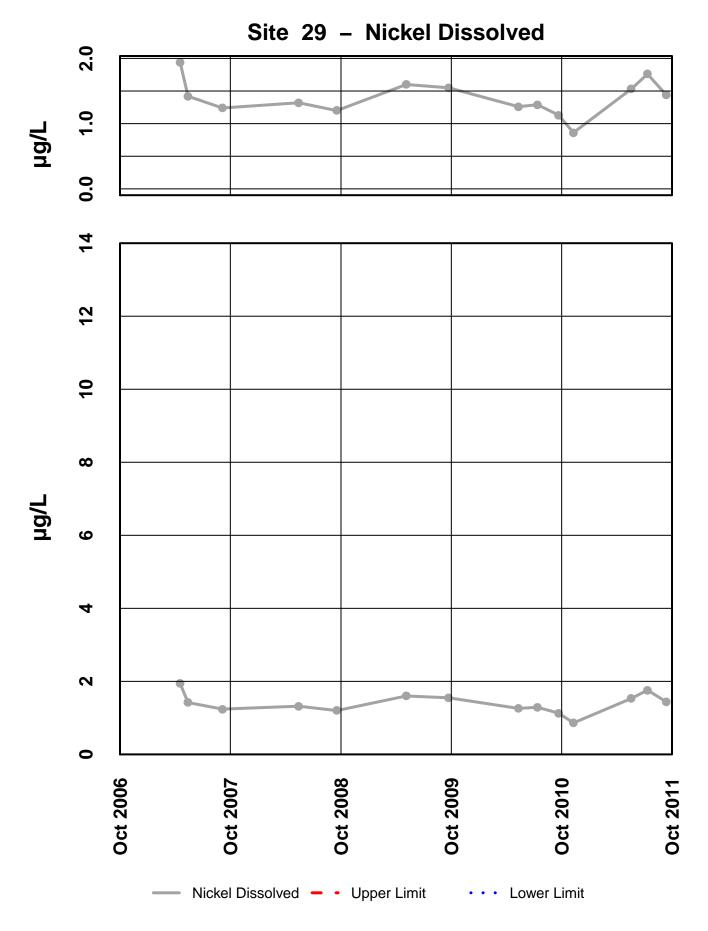


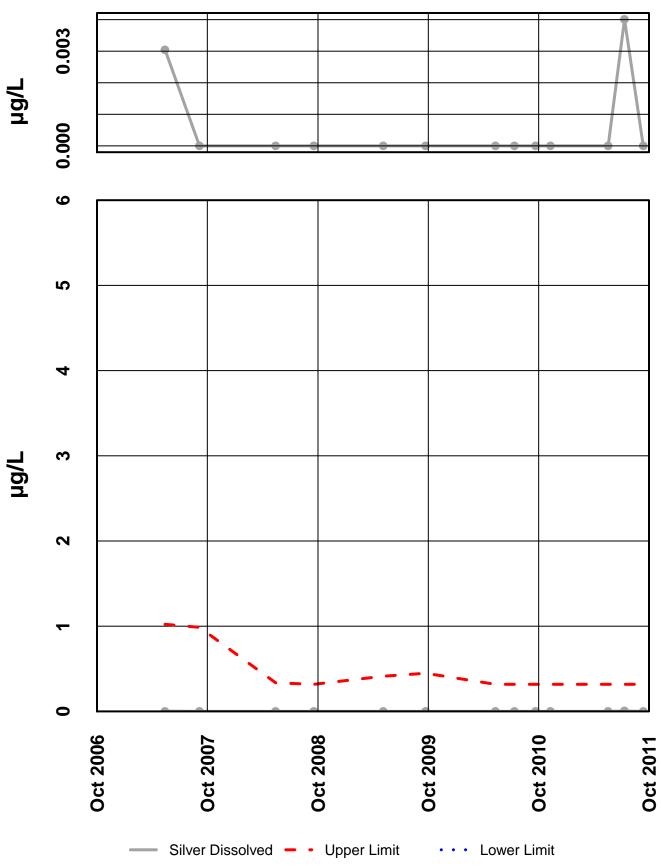

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



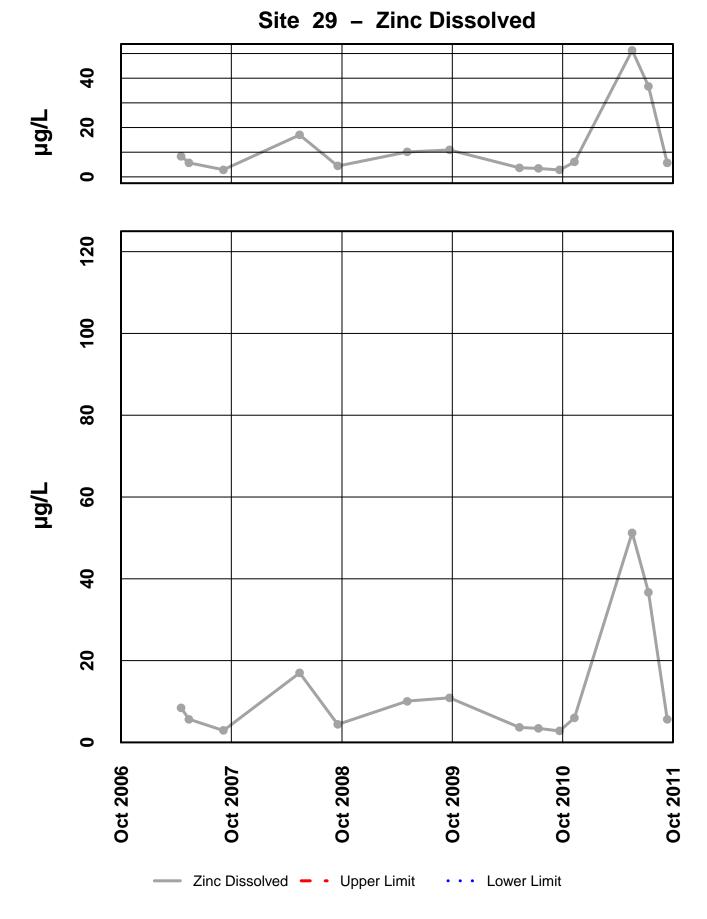

Site 29 – Cadmium Dissolved



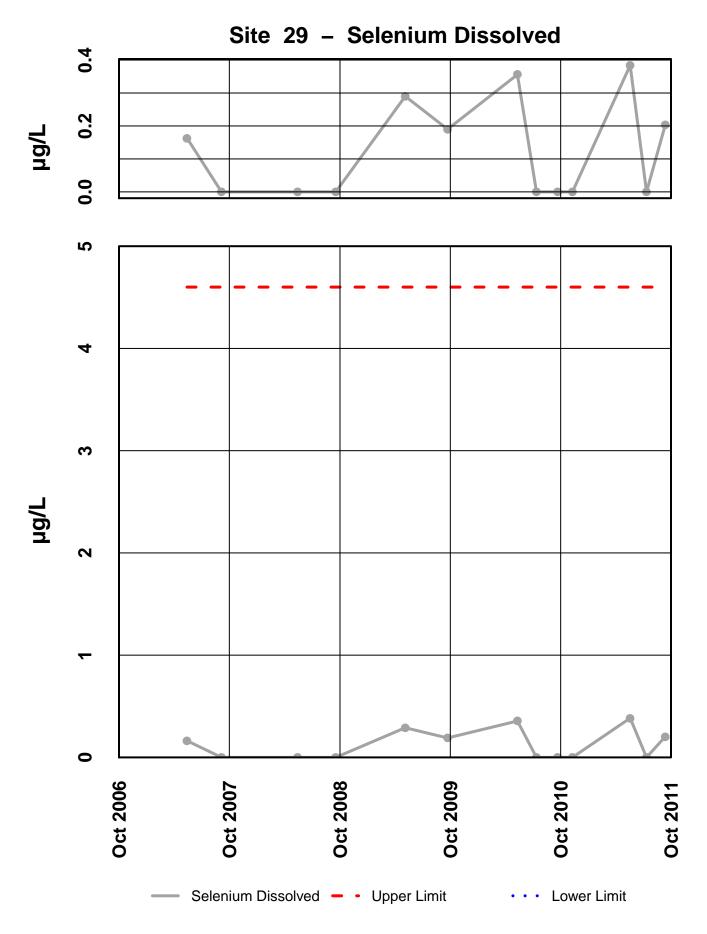

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

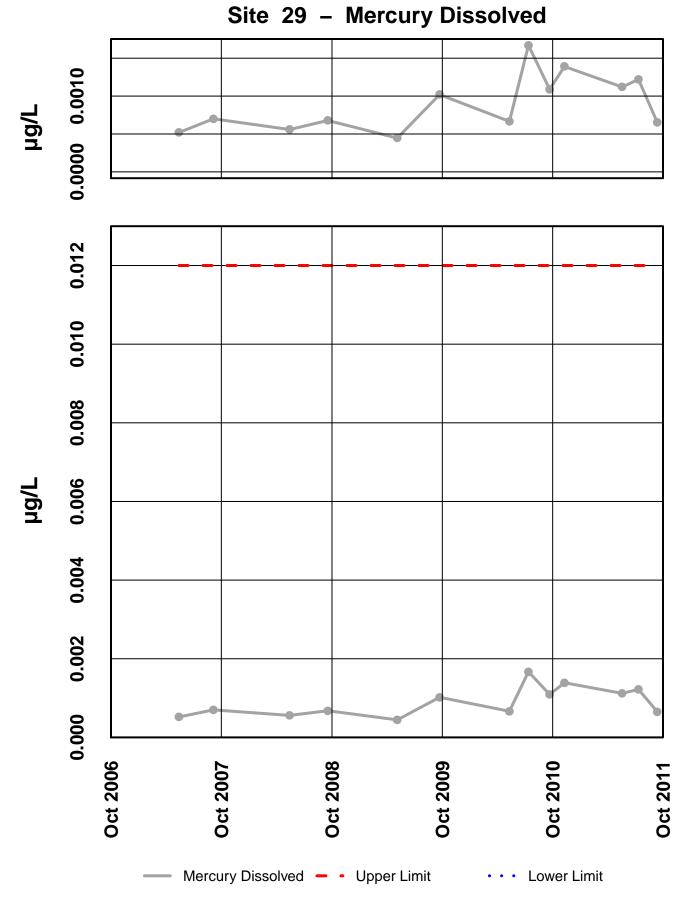



# Site 29 – Copper Dissolved




## Site 29 – Lead Dissolved



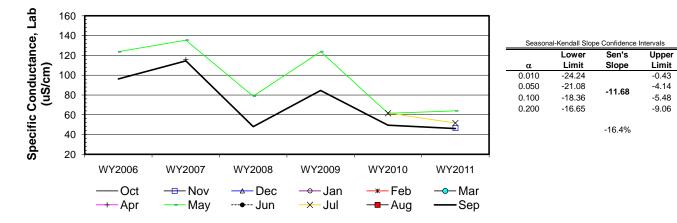




Site 29 – Silver Dissolved



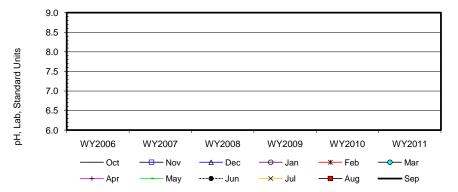
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis






Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

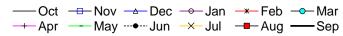
Second address	Mater Mars	Oat	Nov	Dec	Jan	Feb	Mar	Amr	May	Jun	Jul	A	Sam
ow label a b	Water Year WY2006 WY2007	Oct	NOV	Dec	Jan	Feb	Mar	Apr 115.8	мау 123.7 135.4	Jun	Jui	Aug	<b>Sep</b> 96. 114.
c	WY2008							115.6	78.8				114
d	WY2009								123.8				84
e	WY2010								61.5		61.6		49
f	WY2011		46.5						64		51.6		2
	n	0	1	0	0	0	0	1	6	0	2	0	
	t ₁	0	1	0	0	0	0	1	6	0	2	0	
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
	t₄ t₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a								1				
	c-a								-1				
	d-a								1				
	e-a								-1				
	f-a								-1				
	c-b								-1				
	d-b e-b								-1 -1				
	е-b f-b								-1				
	d-c								-1				
	e-c								-1				
	f-c								-1				
	e-d								-1				
	f-d								-1				
	f-e								1		-1		
	S _k	0	0	0	0	0	0	0	-7	0	-1	0	
σ	² s=								28.33		1.00		28.
Z _k =	$S_k\!/\!\sigma_S$								-1.32		-1.00		-1.
	Z ² _k								1.73		1.00		2.
	$\Sigma Z_k =$	-4.01	Г	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	16
	$\Sigma Z_{k}^{2} =$	5.59		Count	16	0	0	0	0			$\Sigma S_k$	-17
	Z-bar=∑Z _k /K=	-1.34	L	Journ	10	0	0	0	0			20K	-17


Site	#29	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)
------	-----	-----------------------------------------------------------------

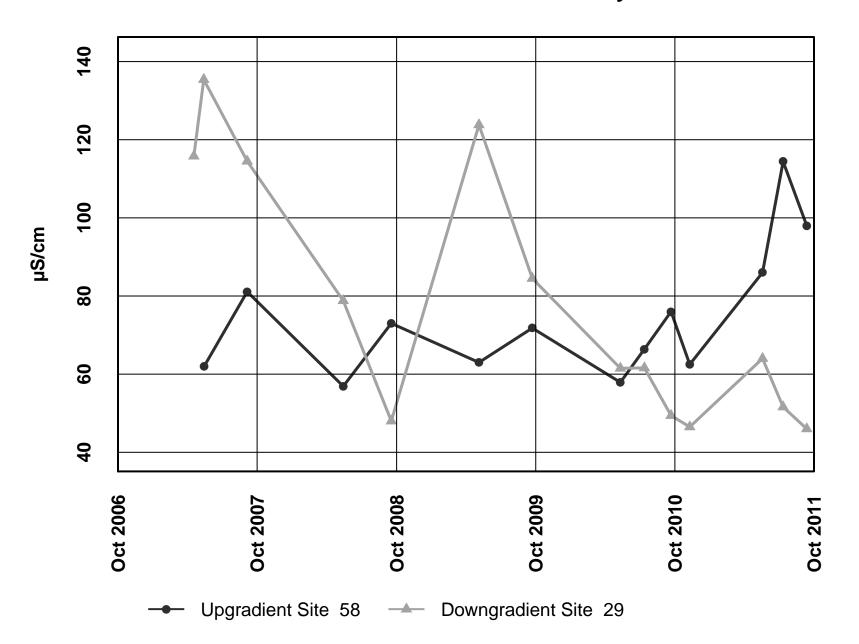
$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.24	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.887			χ² _h <χ² _(K-1)	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	-2.11	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
57.67	р	0.018			H _A (± trend)	ACCEPT



Site	#29	Oct	Nov	Dec	asonal K Jan	Feb	Mar	-	May	Jun	Jul	Aug	Com
Row label a	Water Year WY2006	Oct	NOV	Dec	Jan	reb	war	Apr	5.6	Jun	Jui	Aug	<b>Sep</b> 5.2
b	WY2007							5.6	5.7				5.0
С	WY2008								5.3				5.0
d	WY2009								5.4				5.4
е	WY2010								4.5		4.8		4.9
f	WY2011		4.9						5.1		4.1		5.2
	n	0	1	0	0	0	0	1	6	0	2	0	6
	t,	0	1	0	0	0	0	1	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	ha								1				1
	b-a c-a								1 -1				י 1-1
	d-a								-1				1
	e-a								-1				-1
	f-a								-1				-1
	c-b								-1				-1
	d-b								-1				-1
	e-b								-1				-1
	f-b								-1				-1
	d-c								1				1
	e-c								-1				-1
	f-c								-1				1
	e-d								-1				-1
	f-d f-e								-1 1		-1		-1 1
	S _k	0	0	0	0	0	0	0	-9	0	-1	0	-5
	2												
	² s=								28.33		1.00		28.33
	s S _k /σ _s								-1.69		-1.00		-0.94
2	Z ² _k								2.86		1.00		0.88
	$\Sigma Z_k =$	-3.63	Г	Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	16
	$\Sigma Z_{k}^{2}$	4.74		Count	16	0	0	0	0			$\Sigma S_k$	-15
_	Z-bar=ΣZ _k /K=	-1.21	L	Jount	10	v	0	v	5				10

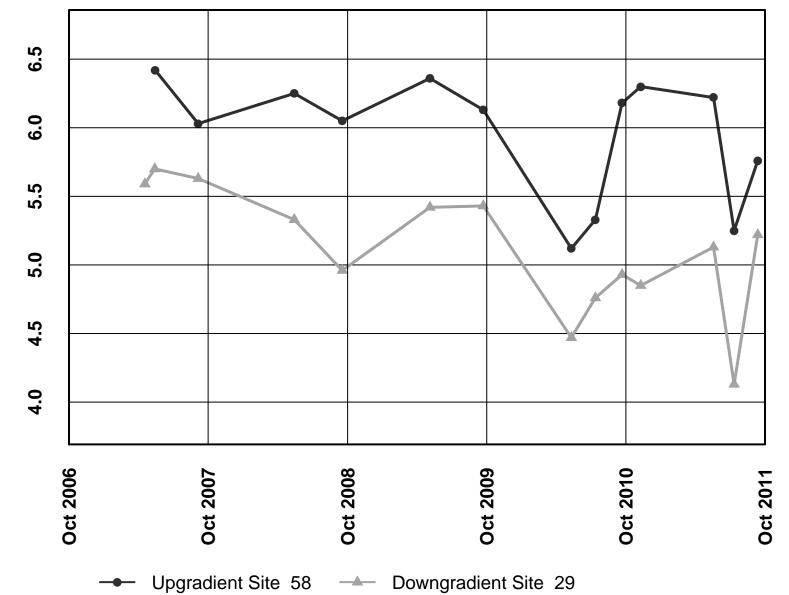

$\chi^2_h = \Sigma Z^2_k$ -	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 0.35$		@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.840			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.84	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.033			H _A (± trend)	REJECT




Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.38		0.07
0.050	-0.21	-0.10	-0.02
0.100	-0.14	-0.10	-0.06
0.200	-0.14		-0.08

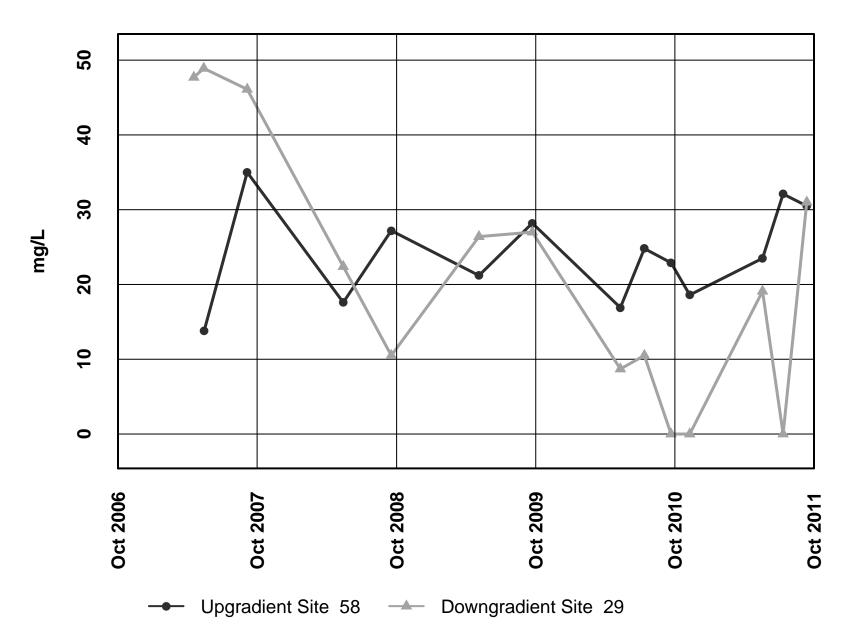
ite	#29						all analys						
a b c d e	Water Year WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 55.0 48.9 22.4 26.4 8.7	Jun	Jul 10.5	Aug	Sep 12.4 46.1 10.5 27.0 0.0
f	WY2011 n	0	0.0	0	0	0	0	0	19.1 6	0	0.0	0	31.0 6
	t1 t2 t3 t4	0 0 0	1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	6 0 0	0 0 0 0	2 0 0 0	0 0 0	6 0 0 0
1	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a c-a d-a f-a c-b d-b d-b f-b d-c e-c f-c								-1 -1 -1 -1 -1 -1 -1 -1 -1				1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1
	e-d f-d								-1 -1				-1 1
:	f-e S _k	0	0	0	0	0	0	0	-11	0	-1 -1	0	1-1
σ	² s=								28.33		1.00		28.33
$Z_k =$	S _k /σ _S Z ² _k								-2.07 4.27		-1.00 1.00		-0.19 0.04
Z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = -bar = \Sigma Z_{k}/K =$	-3.25 5.31 -1.08	1	Tie Extent Count	t, 15	t2 0	t ₃ 0	t₄ O	t _s 0			$\Sigma$ n $\Sigma$ S _k	15 -13
	$\chi^2_h = \Sigma Z^2_k - I$	K(Z-bar) ² =	1.78		@α=5%	₆ χ ² _(K-1) =	5.99		Fest for stati	ion homoge	neity		
		р	0.412						χ ² _h <χ ² _(K-1)	A	CCEPT		
	ΣVAR(S _k ) 57.67	$Z_{calc}$ p	-1.58 <b>0.057</b>		@α/2=2	2.5% Z=	1.96		H₀ (No t H _A (± ti		ACCEPT REJECT		
60 - 55 - 45 - 40 - 35 - 30 - 25 - 15 - 10 -	WY2006	WY2	2007	WY2008	WY2	009	¥ WY2010	WY2	=	<u>κ</u> 0.010 0.050 0.100 0.200	Kendall Slope Lower Limit -14.05 -11.06 -9.90 -8.90	Confidence Ir Sen's Slope -6.10	tervals Upper Limit 3.81 -0.99 -2.37 -3.69
	—— Oc	t	-Nov	<u>_</u> Dec	-0	Jan	<del></del>		- Mar				

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
a b c d	WY2006 WY2007 WY2008 WY2009	001	1107	Dee	Jun		mai	<u></u>	0.0 0.0 0.0 0.3	oun		Aug	0. 0. 0. 0.
e f	WY2010 WY2011		0.0						0.0 0.0		0.0 0.0		0. 0.
•	n	0	1	0	0	0	0	0	6	0	2	0	0.
	t,	0 0	1 0	0	0 0	0	0 0	0	1 0	0	0	0	
	t ₂ t ₃	0	0	0 0	0	0 0	0	0 0	0	0 0	1 0	0 0	
	t ₄ t ₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	
	b-a								0				
	c-a d-a								0 1				
	e-a								0				
	f-a c-b								0 0				
	d-b e-b								1 0				
	f-b								0				
	d-c e-c								1 0				
	f-c e-d								0 -1				
	f-d								-1		0		
	f-e S _k	0	0	0	0	0	0	0	0	0	0	0	
	σ ² s=								11.67		0.00		19.6
Z _k =	= S _k /σ _S								0.29		#DIV/0!		-1.1
	Z ² _k								0.09		#DIV/0!		1.2
	$\Sigma Z_{k} =$	#DIV/0!	Γ	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	15
	∑Z ⁻ _k = Z-bar=∑Z _k /K=	#DIV/0! #DIV/0!	L	Count	4	1	0	1	1			$\Sigma S_k$	-4
Z													
Z													
Z	$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	#DIV/0!		@α=5%	% χ ² _(K-1) =	5.99		est for stat	ion homog	eneity		
Z		р	#DIV/0!	Ĺ					ζ ² _h <χ ² _(K-1)		#DIV/0!		
Z	$\Sigma VAR(S_k)$	p Z _{calc}	<b>#DIV/0!</b> -0.54			% χ ² _(K-1) = x=5% Z=	5.99 1.64		$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend)	#DIV/0! ACCEPT		
Z		р	#DIV/0!	L					ζ ² _h <χ ² _(K-1)	trend)	#DIV/0!		
	ΣVAR(S _k ) 31.33	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend)	#DIV/0! ACCEPT		
	ΣVAR(S _k ) 31.33	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend)	#DIV/0! ACCEPT	e Confidence Ini	ervals
	ΣVAR(S _k ) 31.33 0.5	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend) Season	#DIV/0! ACCEPT #DIV/0! al-Kendall Slope Lower	Sen's	Upper
	ΣVAR(S _k ) 31.33 0.5 .45 0.4	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend)	#DIV/0! ACCEPT #DIV/0!		
	ΣVAR(S _k ) 31.33	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend) <u>Season</u> α. 0.010 0.050	#DIV/0! ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.08 0.00	Sen's	Upper Limit 0.00 0.00
	ΣVAR(S _k )           31.33           0.5           .45           0.4           .35           0.3           .25           0.2	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend) <u>Season</u> α 0.010	#DIV/0! ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.08	Sen's Slope	Upper Limit 0.00
urrare, Ioral (mg/l) 0 0 0 0	ΣVAR(S _k )           31.33           0.5           .45           0.4           .35           0.3           .25           0.2           .15	p Z _{calc}	<b>#DIV/0!</b> -0.54						$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend) <u>Season</u> <u>α</u> 0.010 0.050 0.100	#DIV/0! ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.08 0.00 0.00	Sen's Slope 0.00	Upper Limit 0.00 0.00 0.00
<b>Sultate, Iotal (mg/l)</b>	ΣVAR(Sk)           31.33           0.5           .45           0.4           .35           0.3           .25           0.2           .15           0.1	p Z _{calc}	<b>#DIV/0!</b> -0.54					;	$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No^2)}$	trend) rend) <u>Season</u> <u>α</u> 0.010 0.050 0.100	#DIV/0! ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.08 0.00 0.00	Sen's Slope	Upper Limit 0.00 0.00 0.00

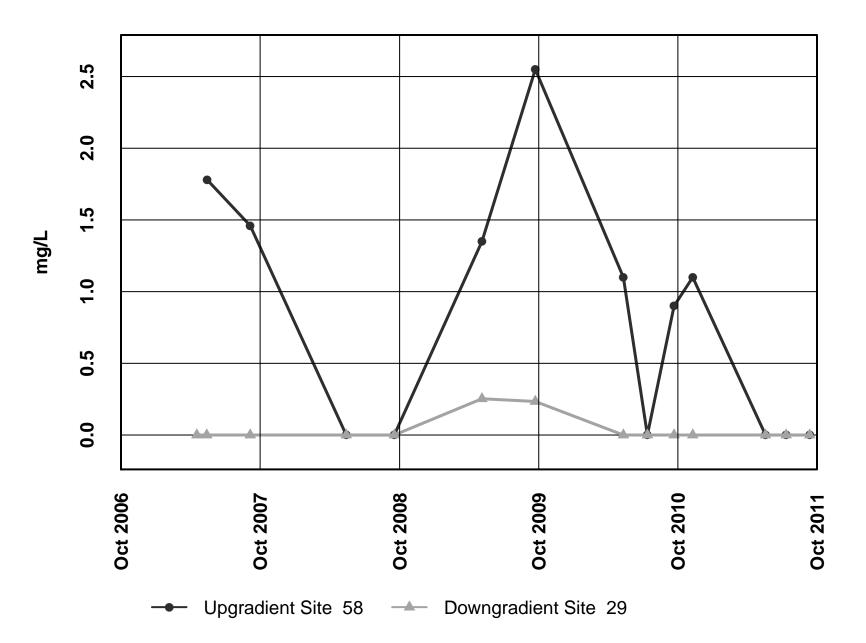


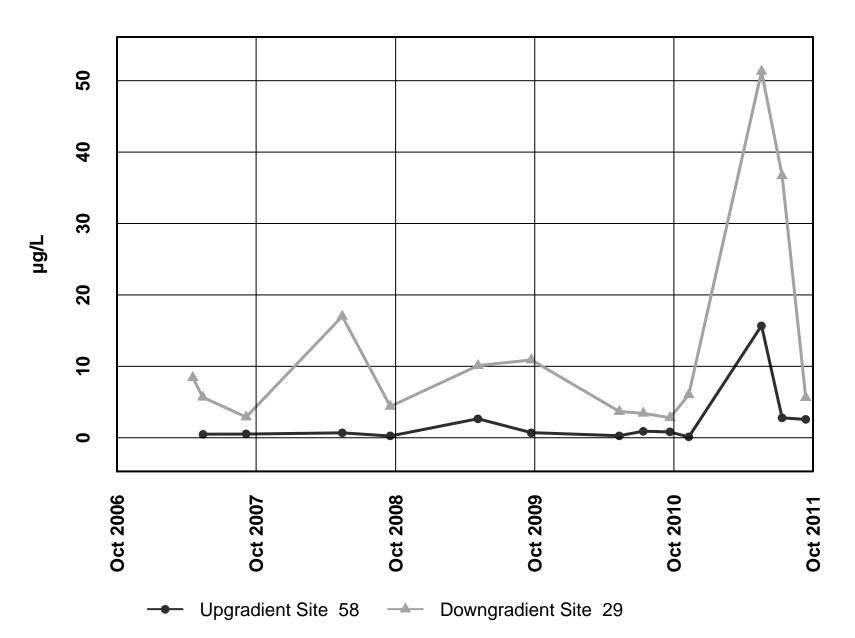

f	WY2011           n           t₁           t₂           t₃           t₄           t₅	0 0 0	6.0 1 1	0					17.0 10.1 3.7		3.4		4.4 10.9 2.8
	t2 t3 t4	0	4		0	0	0	0	51.3 6	0	36.7 2	0	5.
	t2 t3 t4	0		0	0	0	0	0	6	0	2	0	
	t4		0	0	0	0	0	0	0	0	0	0	
		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
		0	0	0	0	0	0	0	0	0	0	0	
	b-a								-1				-
	c-a								1				-
	d-a e-a								1 -1				-
	f-a								1				-'
	c-b d-b								1				
	e-b								-1				-'
	f-b d-c								1 -1				
	e-c								-1				-
	f-c e-d								1 -1				-
	f-d f-e								1 1		1		
	S _k	0	0	0	0	0	0	0	3	0	1	0	-
	2 _s =								28.33		1.00		28.3
	s= S _k /σ _s								0.56		1.00		-0.1
	Z ² _k								0.32		1.00		0.0
Z	$\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k / K =$	1.38 1.35 0.46	[	Tie Extent Count	t₁ 15	t ₂ 0	t ₃ 0	t4 0	t ₅ 0			$\Sigma$ n $\Sigma$ S _k	15 3
	$\chi^2_h = \Sigma Z^2_k - k$		0.72 <b>0.697</b>		@α=5%	% χ ² _(K-1) =	5.99		est for stat $({}^{2}_{h} < \chi^{2}_{(K-1)})$	ion homoge	neity .CCEPT		
	$\Sigma VAR(S_k)$	p Z _{calc}	0.26		@α/2=	2.5% Z=	1.96	,	H ₀ (No 1		CCEPT		
	57.67	р	0.604						H _A (± t		EJECT		
60 50 40 20 10 10 0	WY2006	6 WY2		WY2008	WY2		WY2010	WY2		<u>α</u> 0.010 0.050 0.100 0.200	Kendall Slope Lower Limit -1.98 -1.09 -0.84 -0.57	Confidence In Sen's Slope 0.68	tervals Upper Limit 7.27 3.70 2.44 1.39




Site 58 vs. Site 29 – Conductivity Field

Site 58 vs. Site 29 - pH Field





su





Site 58 vs. Site 29 – Sulfate Total





Site 58 vs. Site 29 – Zinc Dissolved

### INTERPRETIVE REPORT SITE 32 "MONITORING WELL 5S"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the period	od of October	2006 through September 201	1.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Thirteen results exceeding these criteria have been identified as listed in the table below.

			Lir	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
9-Nov-10	Alkalinity	3.9 mg/L	20		
19-May-11	Alkalinity	16.4 mg/L	20		
12-Jul-11	Alkalinity	11.4 mg/L	20		
12-Sep-11	Alkalinity	15.9 mg/L	20		
9-Nov-10	Lead Dissolved	1.12 µg/L		0.54	25.00 mg/L
19-May-11	Lead Dissolved	3.79 µg/L		0.54	25.00 mg/L
12-Jul-11	Lead Dissolved	2.28 µg/L		0.54	25.00 mg/L
12-Sep-11	Lead Dissolved	1.52 μg/L		0.54	25.00 mg/L
9-Nov-10	pH Field	5.23 su	6.5	8.50	
19-May-11	pH Field	5.16 su	6.5	8.50	
12-Jul-11	pH Field	4.51 su	6.5	8.50	
12-Sep-11	pH Field	5.02 su	6.5	8.50	
19-May-11	Zinc Dissolved	42.7 µg/L		36.50	25.00 mg/L

#### Table of Exceedance for Water Year 2011

All four of the annual sampling events were in exceedance for total alkalinity, dissolved lead, and field pH. The final exceedance was for dissolved zinc (42.7  $\mu$  g/L) in the May 2011 sampling. Due to the low hardness for this site, 34 of the past 35 samples have returned lead

values higher than the AWQS. Similar to Site 29 an exceedance for dissolved zinc had not been recorded in the previous five years of data used for this reports analysis. As noted in the interpretive section for Site 29 fugitive tailings dust may be contributing to the elevated lead levels monitored at Site 32.

Dissolved chromium concentrations for the current water year, which were in exceedance during the May 2009 and May 2010 sampling, were some of the lowest values recorded over the past 6 years. A mechanism has yet to be established to explain the two elevated chromium results in the preceding years. Also, HGCMC had the dissolved chromium sample speciated for CrVI. The total chromium value was1.77  $\mu$ g/L and the CrVI result was2.28  $\mu$ g/L, indicating that at least during this sampling event the dissolved chromium was all in the CrVI form. Though this sample is all CrVI the value was well below the AWQS. HGCMC plans to have the May 2012 sample for this site speciated again for CrVI.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No obvious trends are apparent except for dissolved lead which has generally decreased the last five water years from a peak in water year 2006. A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Ker	ndall test s	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.30			
pH Field	6	0.06			
Alkalinity, Total	6	0.35			
Sulfate, Total	6		Inconsistent	detection li	mits
Zinc, Dissolved	6	0.50			

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

No significant trends were identified with this analysis. Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by Analytica Laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

Additional X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 32 and Site 58, the upgradient control site, to aid in comparison between those two sites. Typically, total sulfate, and total alkalinity are slightly higher at Site 58 while field pH is more basic at Site 58 than at Site 32. Field

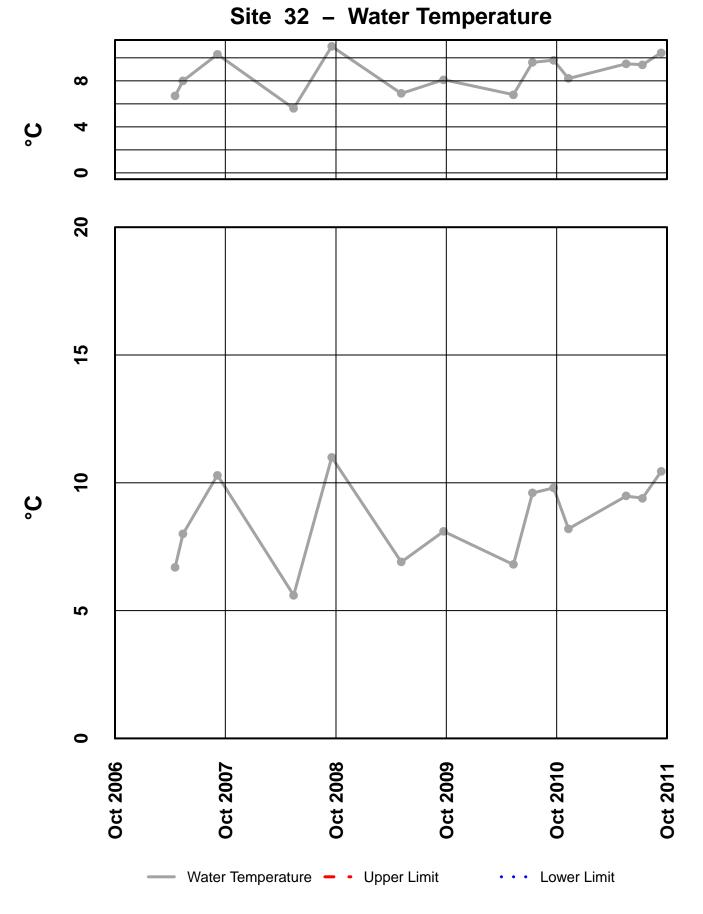
conductivity is usually similar in range until the last couple of measurements from the 2011 water year. The increase in conductivity seen in the July 2011 and September 2011 dataset for Site 58 is likely a result of the construction of the East Ridge Expansion. Dissolved zinc levels are higher at Site 32 than at Site 58. The long-term median value for dissolved zinc since June 1998 is ~10.0  $\mu$ g/L, which is elevated with respect to Site 58 and the other shallow wells completed into peat (*e.g.* Site 27 and Site 29). The previously discussed mechanisms (fugitive dust) that may be elevating the dissolved lead levels would also be expected to increase dissolved zinc. In addition the lower pH at Site 32 with respect to the other shallow wells may exacerbate the elevated zinc concentration due to higher zinc solubility at lower pHs.

Site 0521 MG - Monitoring Weil - 50													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		8.2						9.5		9.4		10.5	9.5
Conductivity-Field(µmho)		73.8						74		78.1		58	73.9
Conductivity-Lab (µmho)		57						63		61		61	61
pH Lab (standard units)		4.55						5.18		4.73		5.07	4.90
pH Field (standard units)		5.23						5.16		4.51		5.02	5.09
Total Alkalinity (mg/L)	3.9							16.4		11.4		15.9	13.7
Total Sulfate (mg/L)		5						5		25		5	5.0
Hardness (mg/L)		7.5						9.6		9		9	9.0
Dissolved As (ug/L)		3.33						5.43		5.28		5.69	5.355
Dissolved Ba (ug/L)		12.6						20.2		16.7		15.4	16.1
Dissolved Cd (ug/L)		0.0142						0.0589		0.0252		0.0202	0.0227
Dissolved Cr (ug/L)		2.27						1.77		2.02		2.29	2.145
Dissolved Cu (ug/L)		0.974						2.51		1.63		1.08	1.355
Dissolved Pb (ug/L)		1.12						3.79		2.28		1.52	1.9000
Dissolved Ni (ug/L)		2.56						3.95		3.59		3.82	3.705
Dissolved Ag (ug/L)		0.004						0.009		0.006		0.002	0.005
Dissolved Zn (ug/L)		6.51						42.7		13.1		10.2	11.65
Dissolved Se (ug/L)		0.114						0.598		0.057		0.771	0.356
Dissolved Hg (ug/L)		0.00186						0.0016		0.0017		0.00137	0.001650

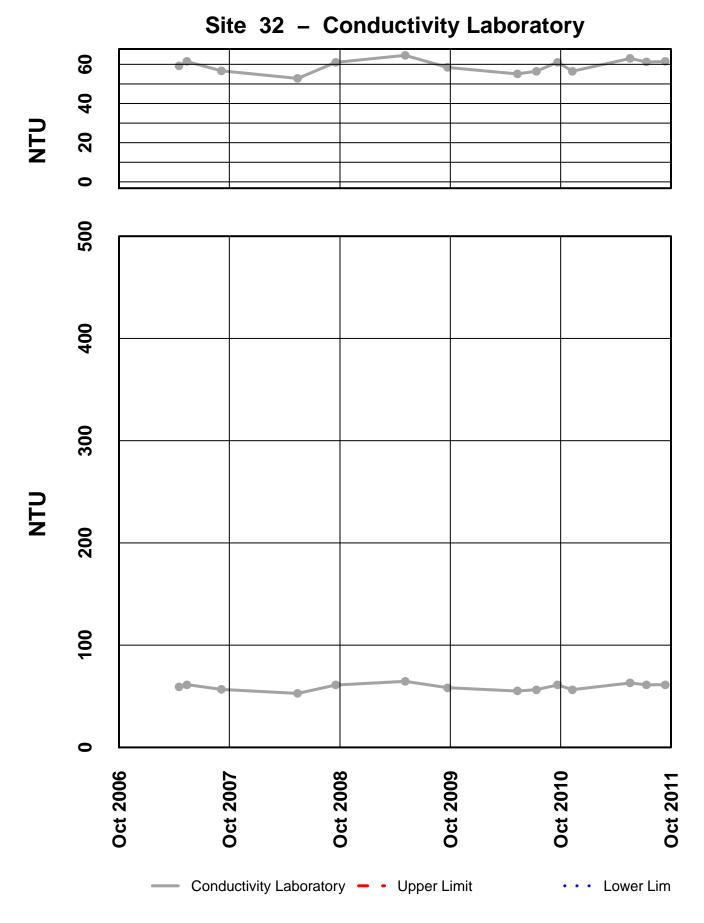
#### Site 032FMG - 'Monitoring Well - 5S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

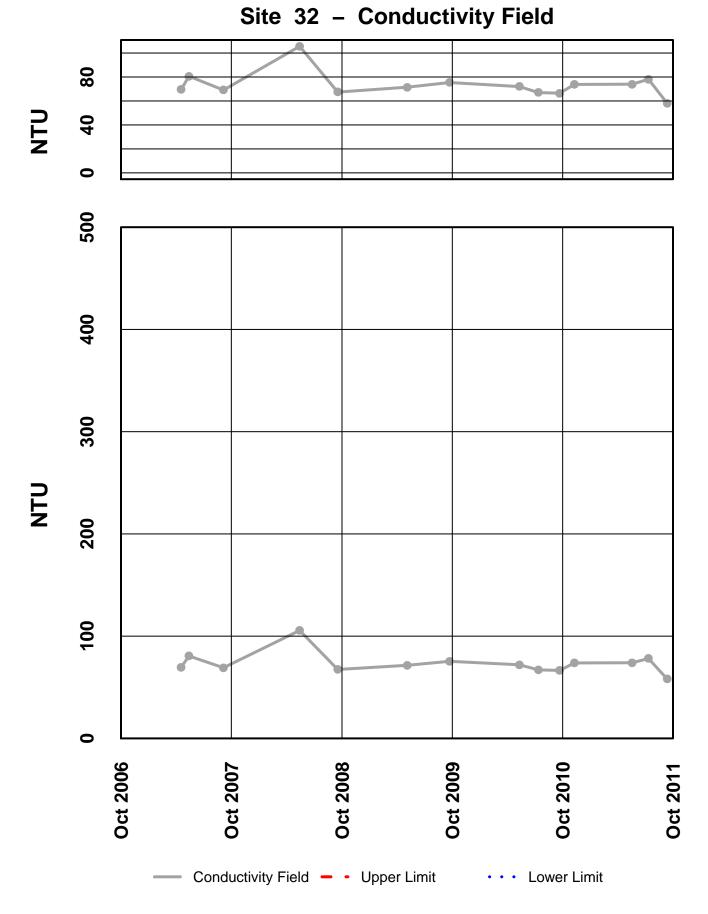
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

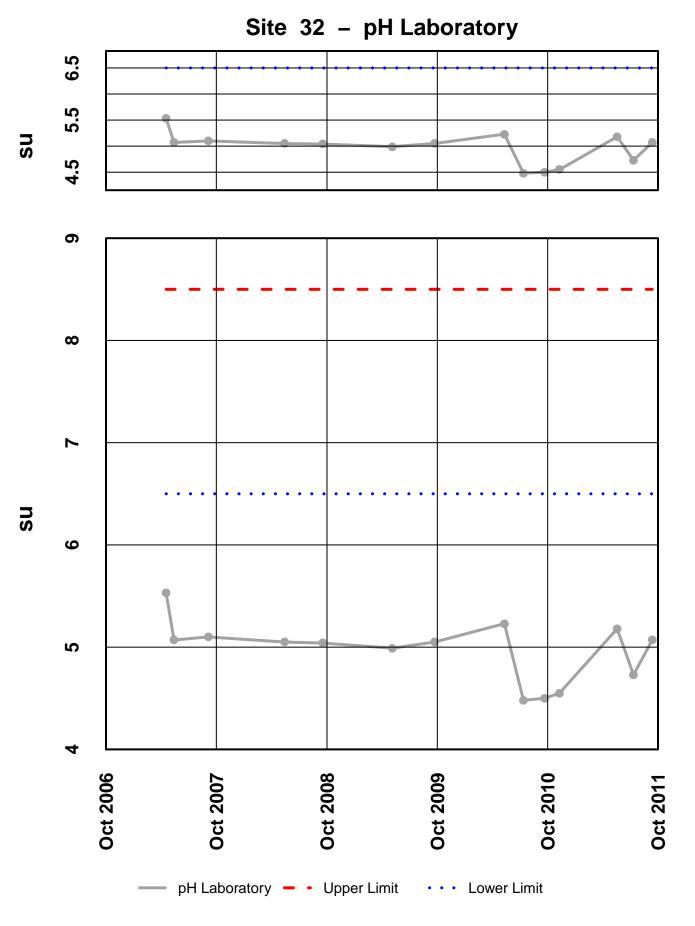

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

## Qualified Data by QA Reviewer

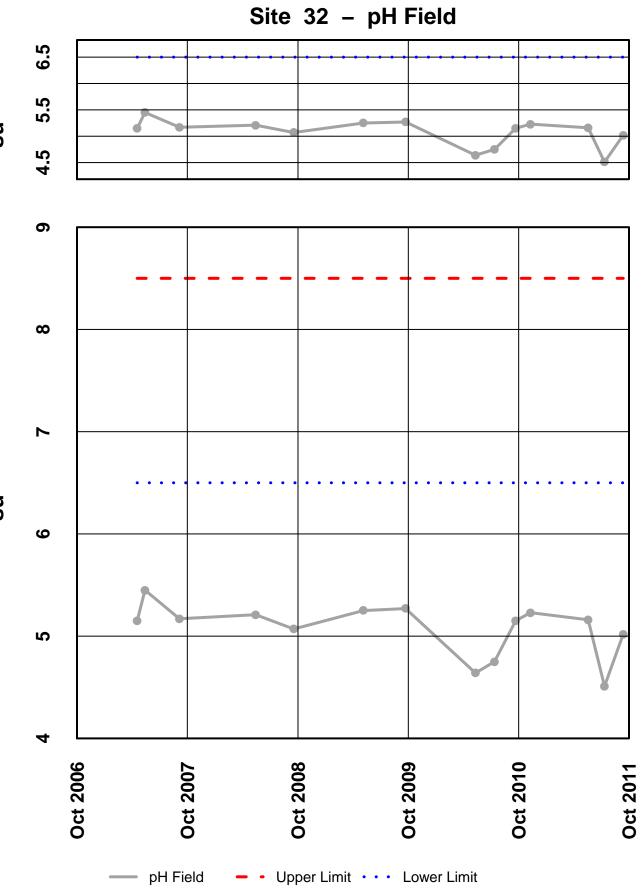

### Date Range: 10/01/2010 to 09/30/2011

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
32	11/9/2010	12:00 AM				
			Cd diss, µg/l	0.0142	J	Below Quantitative Range
32	5/19/2011	12:00 AM				
			Ag diss, µg/l	0.00898	J	Below Quantitative Range
			pH Lab, su	5.18	J	Hold Time Violation
			SO4 Tot, mg/l	-10	R	Sample Reciept Temperature
32	7/12/2011	12:00 AM				
			Ag diss, µg/l	0.00616	J	Below Quantitative Range
			SO4 Tot, mg/l	-50	R	Sample Reciept Temperature
32	9/12/2011	12:00 AM				
			SO4 Tot, mg/l	0	UJ	Sample Receipt Temperature


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit



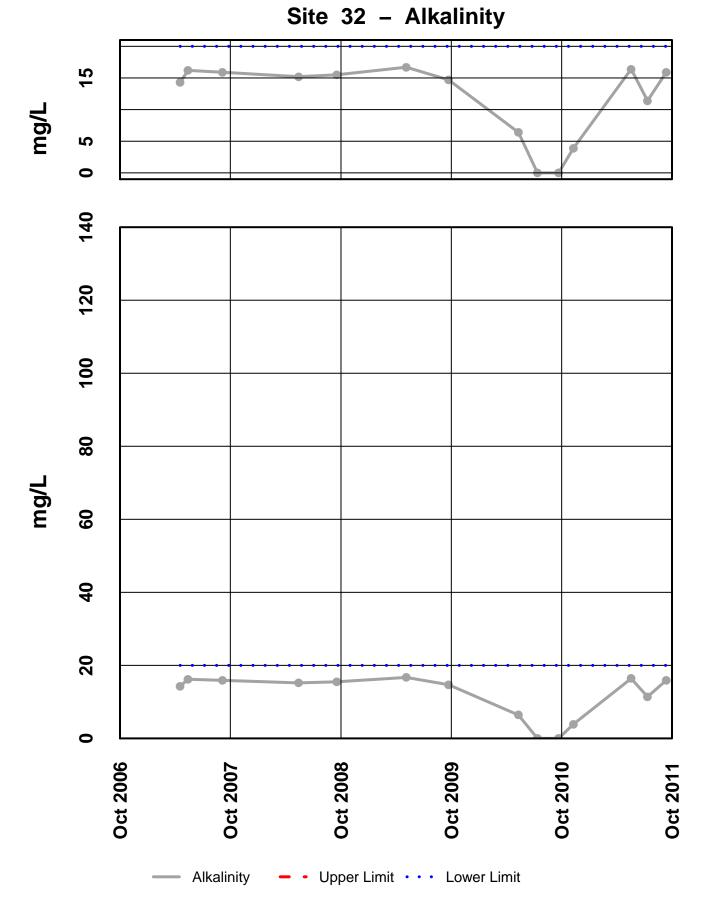

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

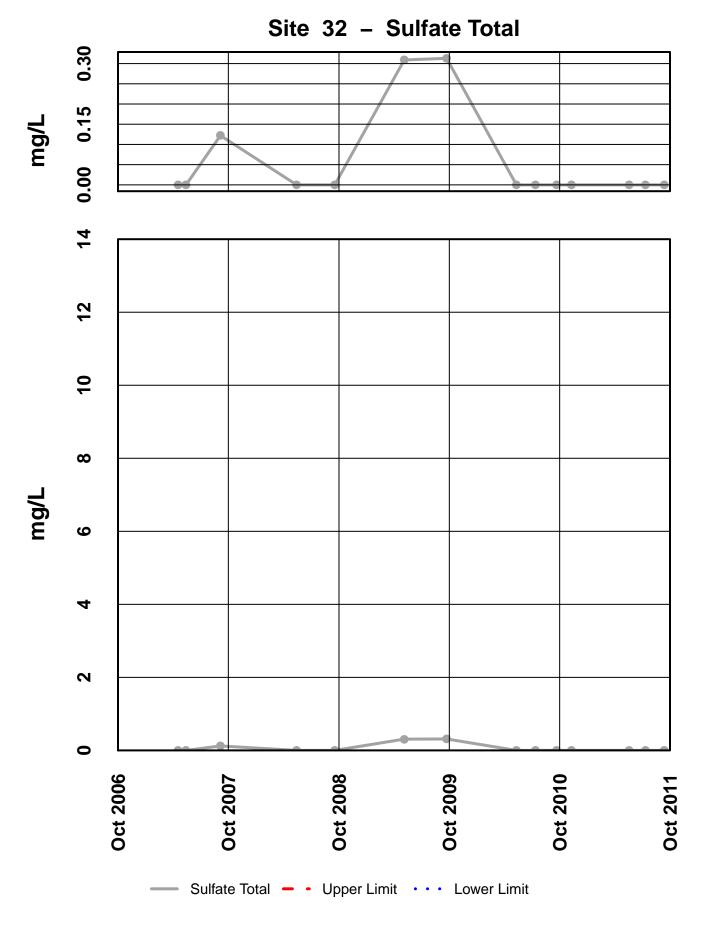



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

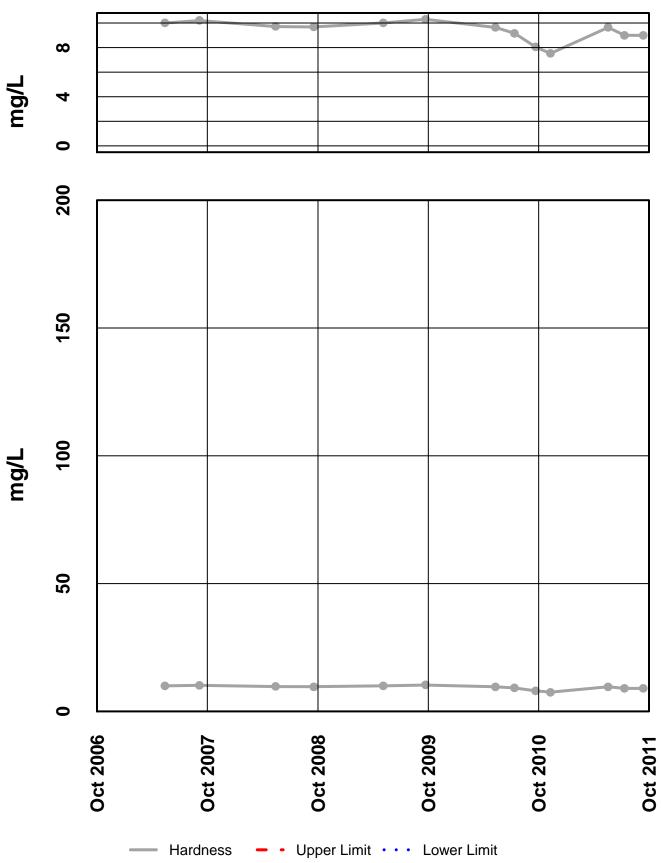




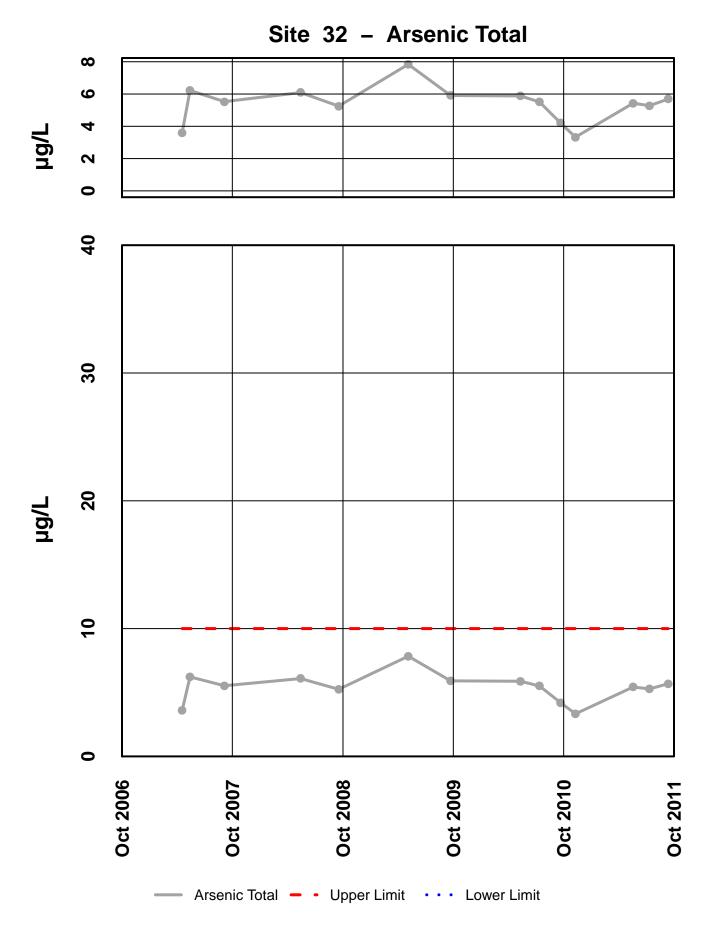

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



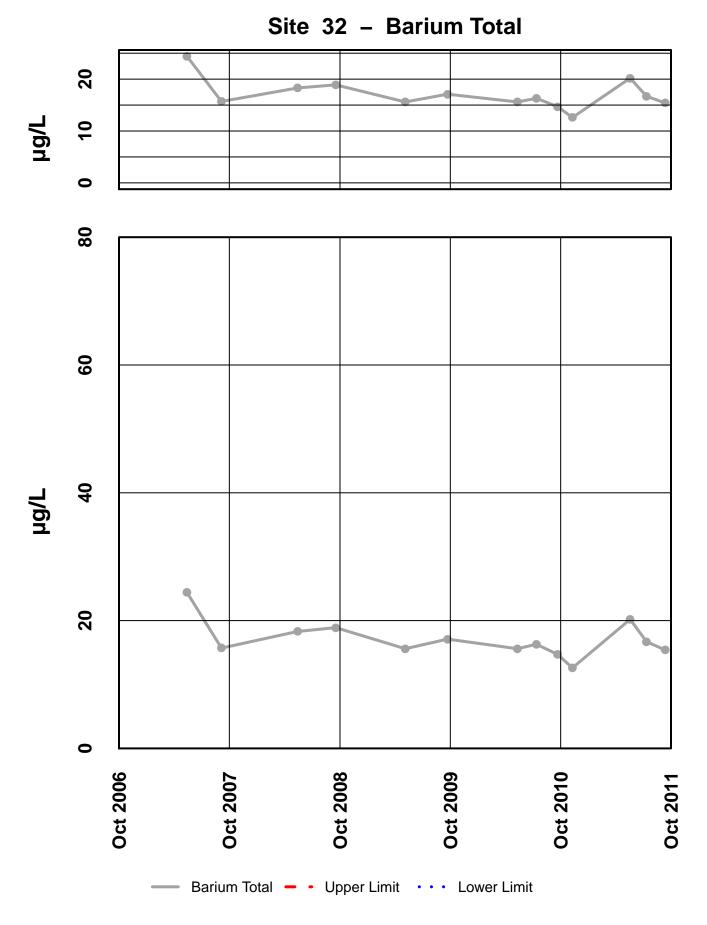

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

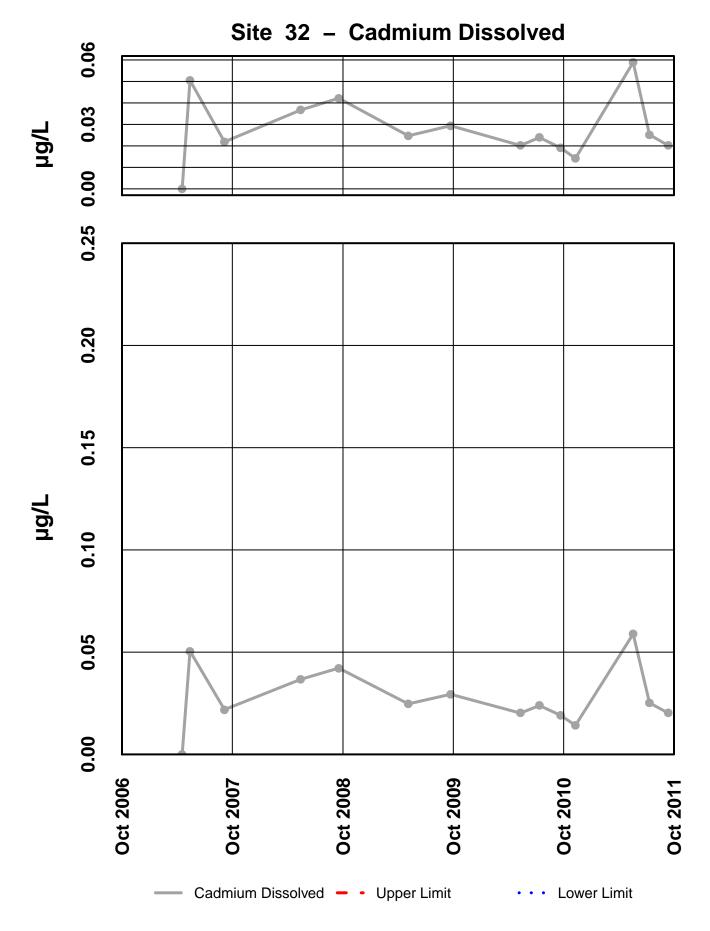

SU

su

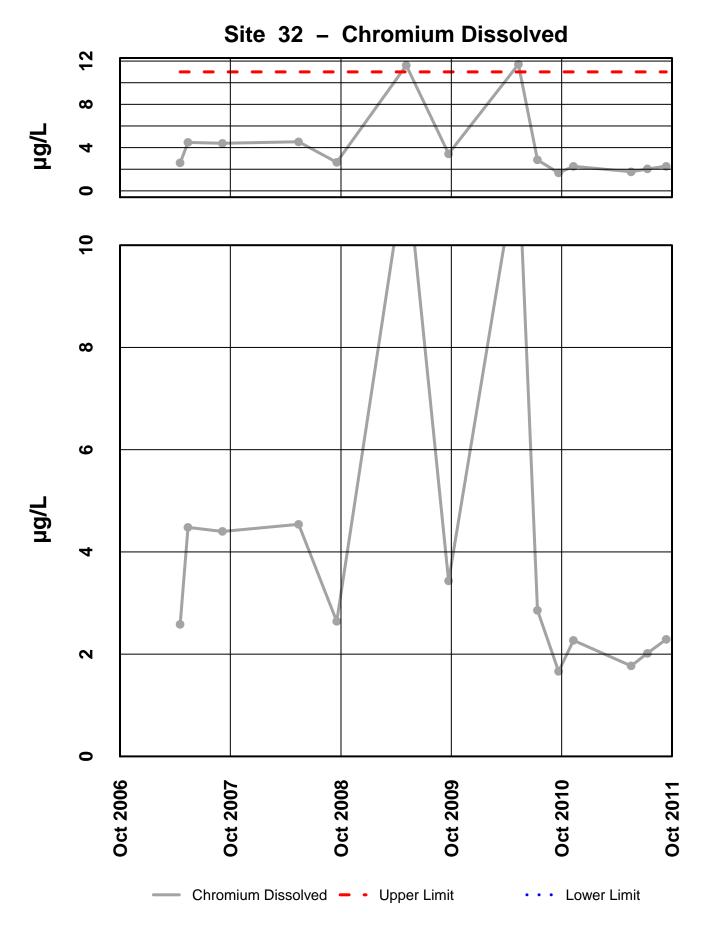


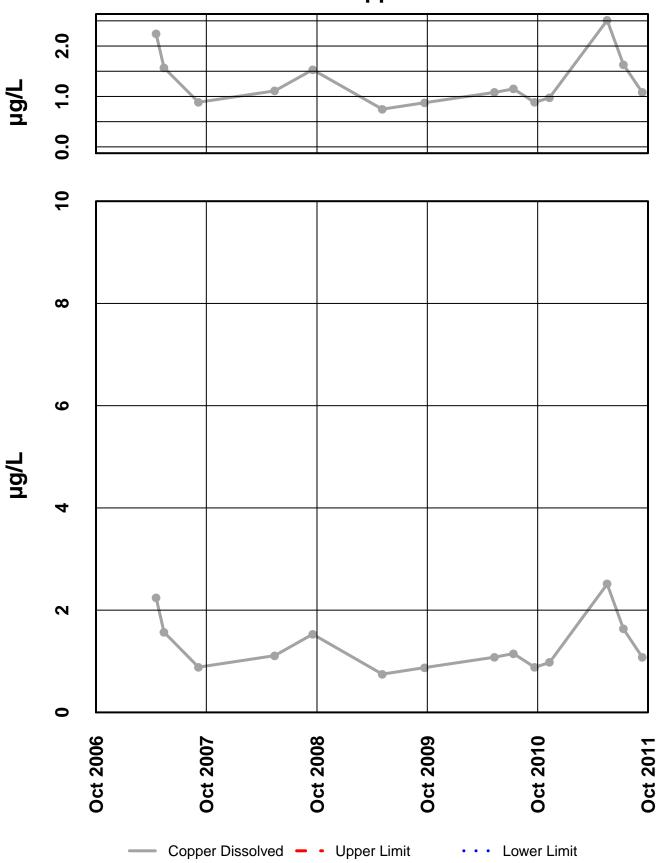




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

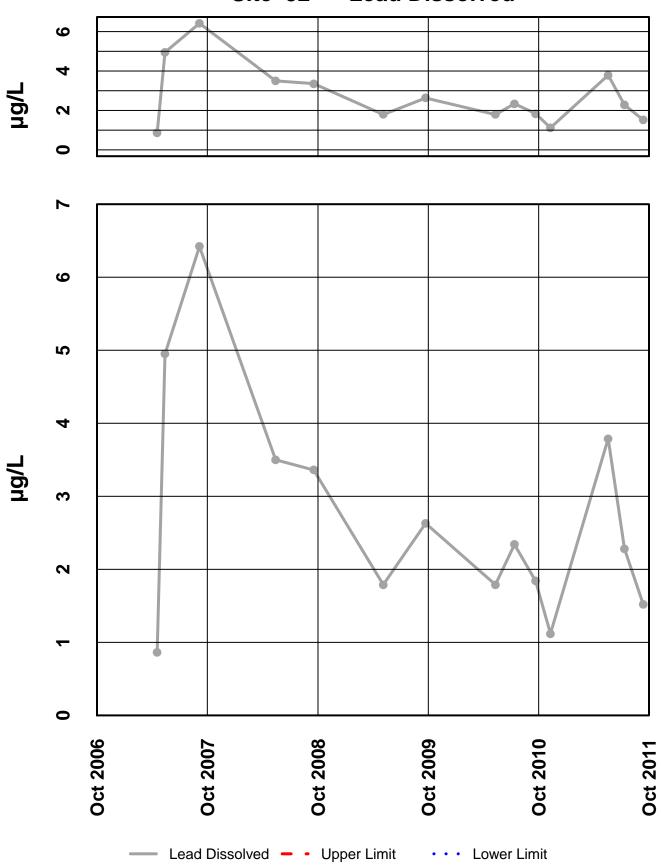



### Site 32 – Hardness

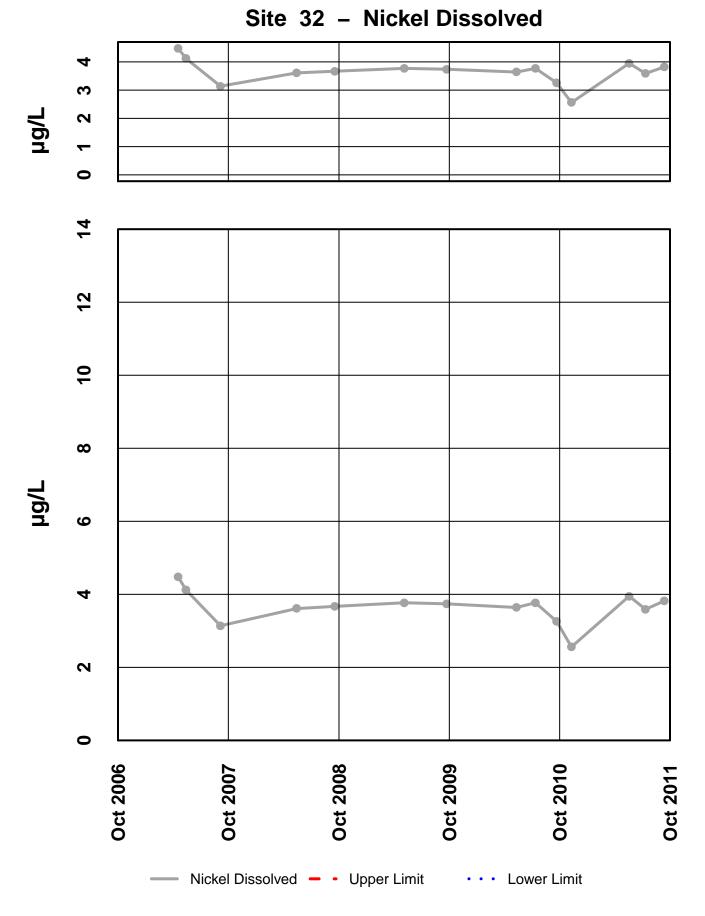




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

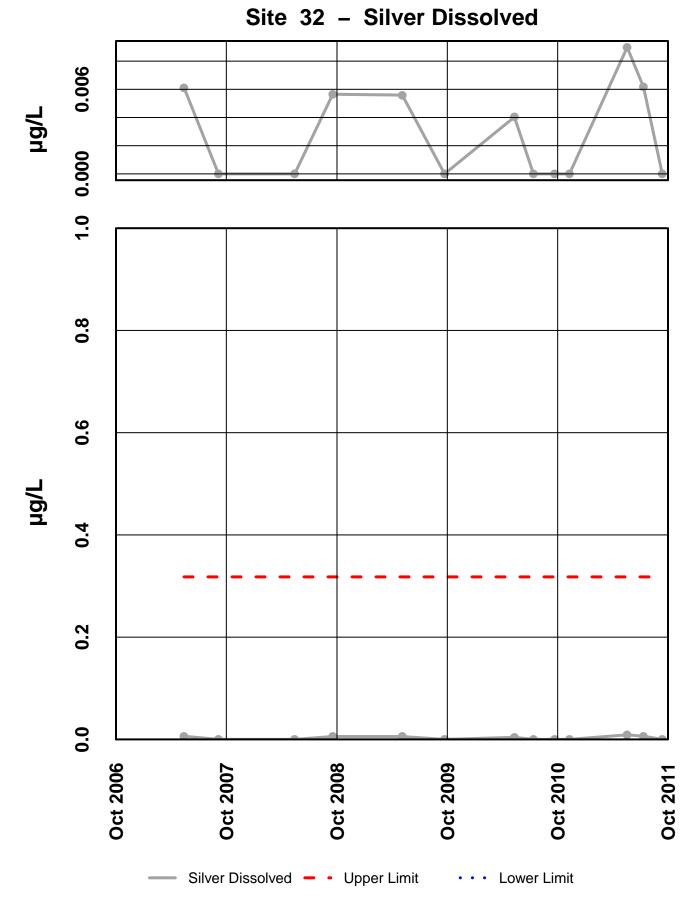




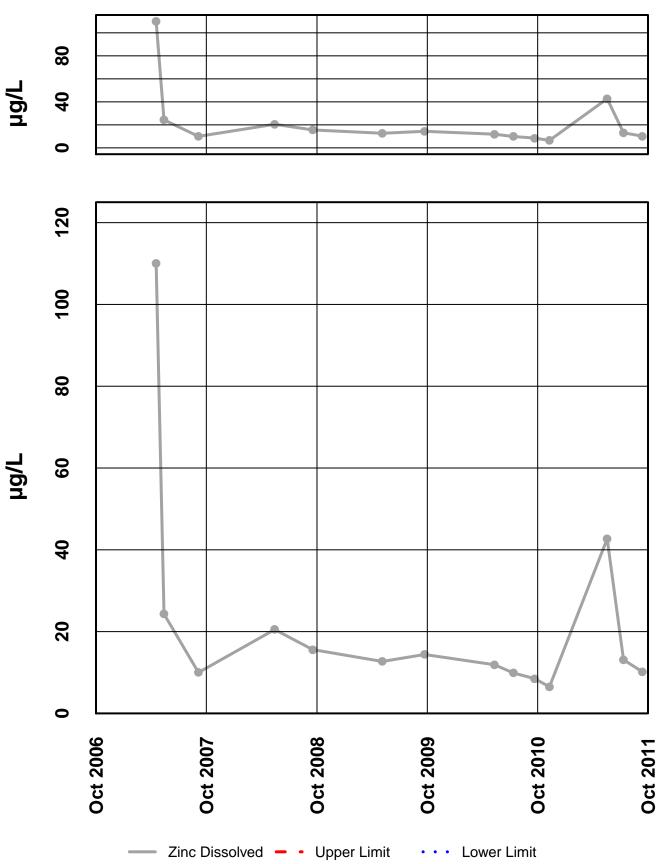

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



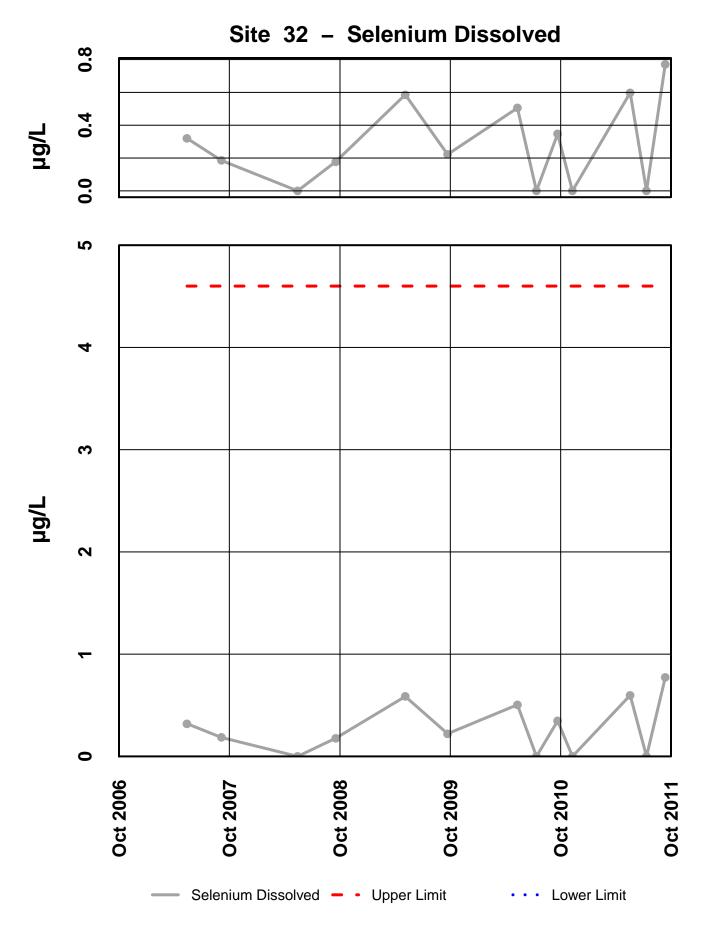




# Site 32 – Copper Dissolved

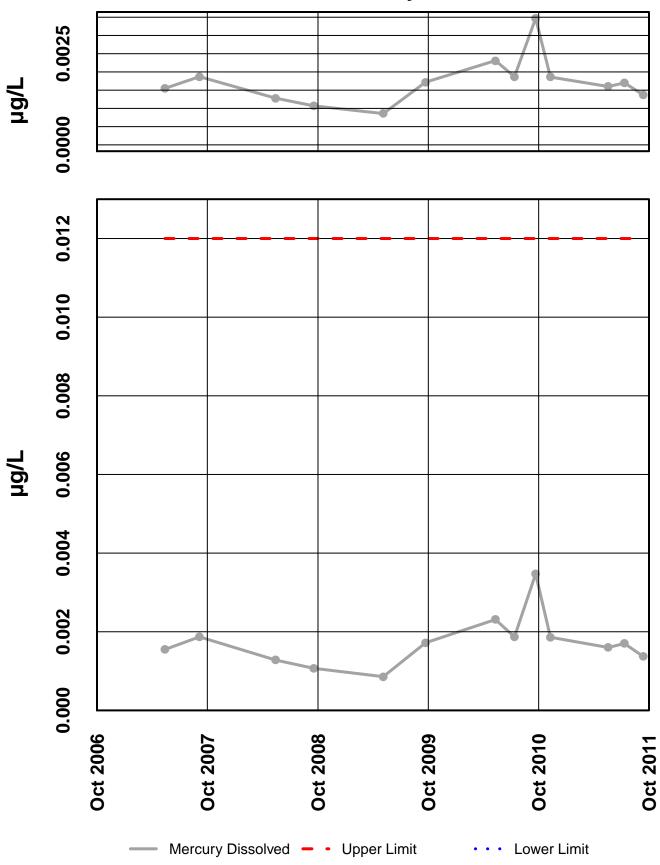



Site 32 – Lead Dissolved




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

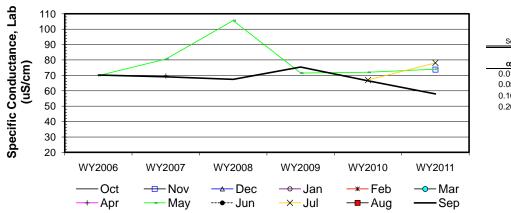



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



## Site 32 – Zinc Dissolved

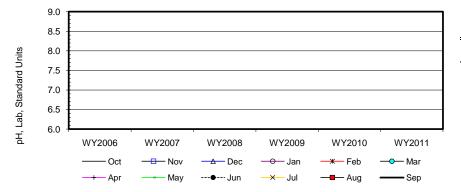



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 32 – Mercury Dissolved

w label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b c	WY2006 WY2007 WY2008 WY2009							69.6	69.9 80.6 105.6 71.5				70.2 69.1 67.4
d e	WY2009 WY2010								71.5		67		75.4 66.5
f	WY2011		73.8						72		78.1		58
	n	0	1	0	0	0	0	1	6	0	2	0	6
1	t ₁	0	1	0	0	0	0	1	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	b-a								1				-1
	c-a								1				-1
	d-a								1				1
	e-a								1				-1
	f-a								1				-1
	c-b								1				-1
	d-b								-1				1
	e-b								-1				-1
	f-b								-1				-1
	d-c								-1 -1				1 -1
	e-c f-c								-1				-1
	e-d								-1				-1
	f-d								1				-1
	f-e								1		1		-1
	S _k	0	0	0	0	0	0	0	3	0	1	0	-9
σ	² s=								28.33		1.00		28.33
Z _k =	$S_k/\sigma_S$								0.56		1.00		-1.69
	<u>Z</u> ² _k								0.32		1.00		2.86
	$\Sigma Z_k =$	-0.13	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	16
	$\Sigma Z_k^2 =$	4.18		Count	16	0	0	0	0			$\Sigma S_k$	-5
Z	Z-bar=∑Z _k /K=	-0.04	L										
I	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	4.17		@α=5	% χ ² _(K-1) =	5.99	Te	est for station ho	mogeneitv	]		
	70 ··· K	. /	0 124	L		10 ()			$\gamma^2 < \gamma^2 < \gamma^2$	0 )	ACCEPT		

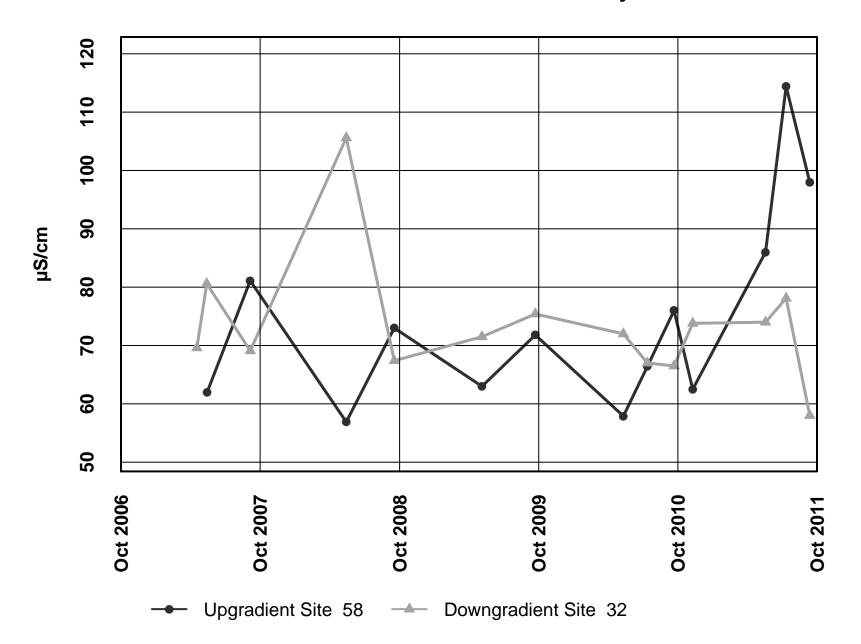

$\chi^2_h = \Sigma Z^2_k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 4.17$			@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.124	-			$\chi^2 h < \chi^2 (K-1)$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-0.53		@α/2=2.5% <b>Z</b> =	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.299				H _A (± trend)	REJECT



Season	Seasonal-Kendall Slope Confidence Intervals									
	Lower	Sen's	Upper							
α	Limit	Slope	Limit							
0.010	-5.87		1.82							
0.050	-2.84	-0.93	0.75							
0.100	-2.56	-0.95	0.53							
0.200	-1.68		0.21							

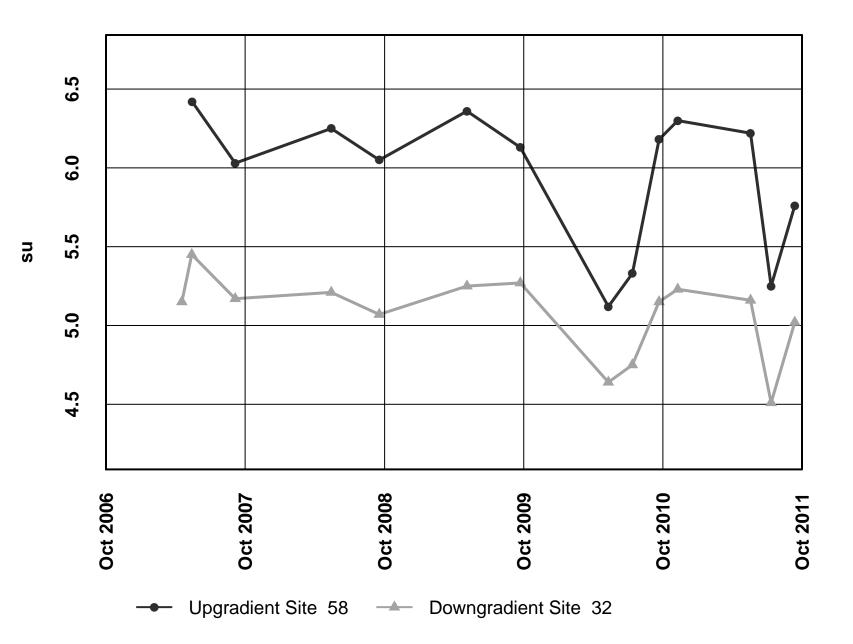
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	001	NUV	Dec	Jan	reb	IVIAI	Арі	5.4	Juli	Jui	Aug	<u> </u>
b	WY2007							5.2	5.5				5.2
С	WY2008								5.2				5.1
d	WY2009								5.3				5.3
е	WY2010								4.6		4.8		5.2
f	WY2011		5.2						5.2		4.5		5.0
	n	0	1	0	0	0	0	1	6	0	2	0	6
	t,	0	1	0	0	0	0	1	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C
	ha								1				1
	b-a c-a								י 1-1				ا 1-
	d-a								-1				1
	e-a								-1				1
	f-a								-1				-1
	c-b								-1				-1
	d-b								-1				1
	e-b								-1				-1
	f-b								-1				-1
	d-c								1				1
	e-c								-1				1
	f-c								-1				-1
	e-d f-d								-1				-1
	f-e								-1 1		-1		-1 -1
	S _k	0	0	0	0	0	0	0	-9	0	-1	0	-3
	² s=								28.33		1.00		28.33
	$S_k / \sigma_S$								-1.69		-1.00		-0.56
	Z ² _k								2.86		1.00		0.32
	$\Sigma Z_k =$	-3.25	Ŀ	Tie Extent	t ₁	t ₂	t ₃	t₄	t₅			Σn	16
	$\Sigma Z_k^2 =$	4.18		Count	16	0	0	0	0			$\Sigma S_k$	-13

$\chi^2_h = \Sigma Z^2_k$	$\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 0.65$		@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.724			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.58	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.057			H _A (± trend)	REJECT

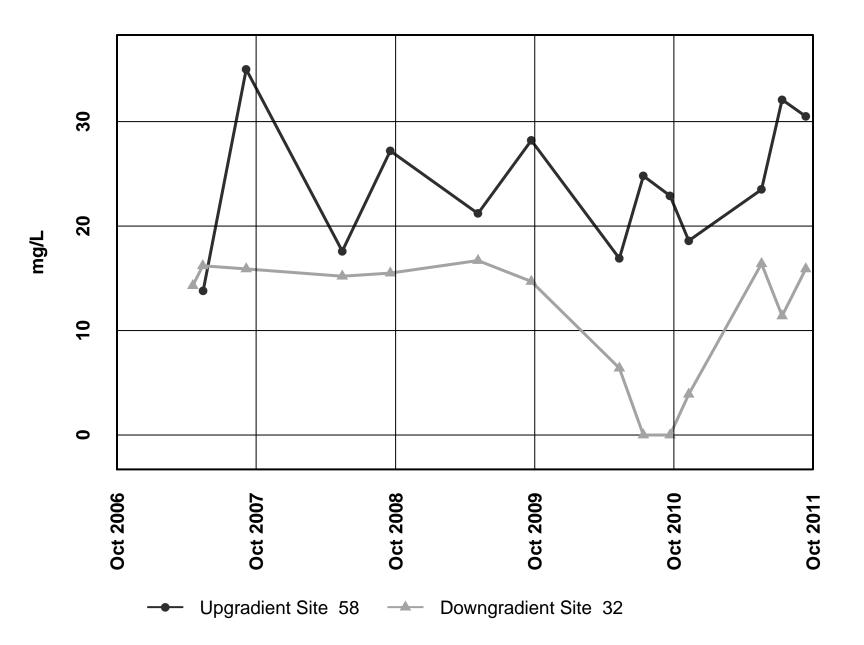



Seasona	Seasonal-Kendall Slope Confidence Intervals									
	Lower	Sen's	Upper							
α	Limit	Slope	Limit							
0.010	-0.15		0.04							
0.050	-0.11	-0.04	-0.01							
0.100	-0.10	-0.04	-0.02							
0.200	-0.09		-0.02							

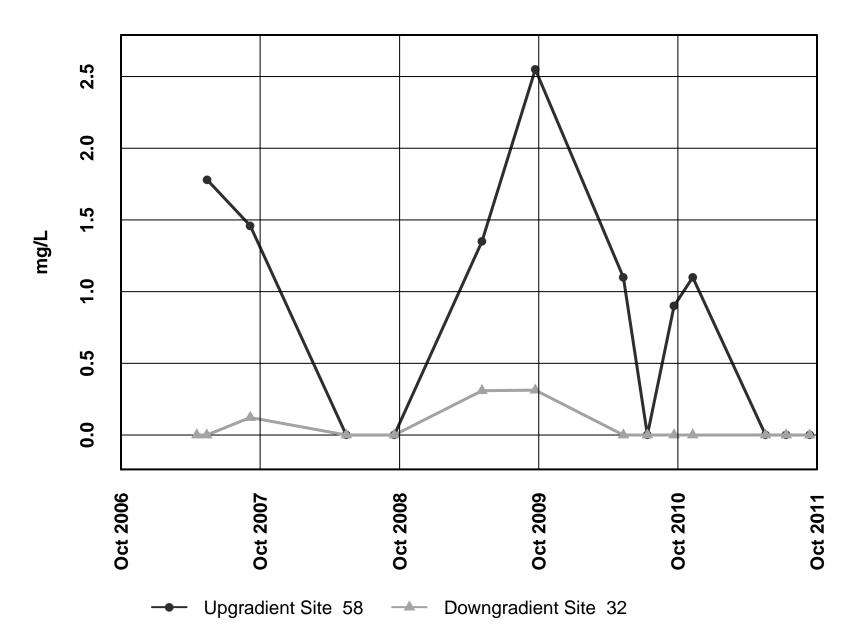
	#32						ıll analysi		nai Aik, (	mg/i)			
w label a b c d e	Water Year WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 13.1 16.2 15.2 16.7 6.4	Jun	<b>Jul</b> 0.0	Aug	Sep 2.0 15.9 15.5 14.7 0.0
f	WY2011 n	0	3.9 1	0	0	0	0	0	16.4 6	0	11.4 2	0	15.9 6
	t₁ t₂ t₃ t₄ t₅	0 0 0 0 0	1 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	6 0 0 0 0	0 0 0 0 0	2 0 0 0 0	0 0 0 0 0	4 1 0 0 0
	b-a c-a d-a e-a f-a c-b d-b f-b d-c e-c f-c f-c f-d f-e								1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1		1		1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
:	S _k	0	0	0	0	0	0	0	3	0	1	0	0
$Z_k =$	$\sigma_{s}^{2}$ s= $S_{k}/\sigma_{s}$ $Z_{k}^{2}$								28.33 0.56 0.32		1.00 1.00 1.00		27.33 0.00 0.00
Z	$\Sigma Z_{k} = \Sigma Z_{k}^{2} = Z - bar = \Sigma Z_{k}/K =$	1.56 1.32 0.52	-	Γie Extent Count	t₁ 13	t2 1	t ₃ 0	t4 0	t₅ O			$\Sigma$ n $\Sigma$ S _k	15 4
	$\chi^2_h = \Sigma Z^2_k +$		0.50		@α=5%	ό χ ² _(K-1) =	5.99			on homoger			
	ΣVAR(S _k ) 56.67	p Z _{calc} p	0.40 0.655		@α/2=2	2.5% Z=	1.96	χ	ζ ² _h <χ ² _(K-1) <b>H₀</b> (No t <b>H_Α</b> (± tr	rend) A	CCEPT CCEPT EJECT		
¹⁸ T	-								_				
17 16	-							/		Seasonal-ł	Kendall Slope	Confidence In	itervals
16	-	4		$\checkmark$					=		Lower	Sen's	Upper
16 15 14 13 12 11									=  <	<u>α</u> 0.010 0.050 0.100 0.200			
E E	WY2006	WY2	2007	WY2008	WY20	009	/ WY2010	WY2		α 0.010 0.050 0.100	Lower Limit -2.08 -0.74 -0.53	Sen's Slope	Upper Limit 2.86 1.15 0.79

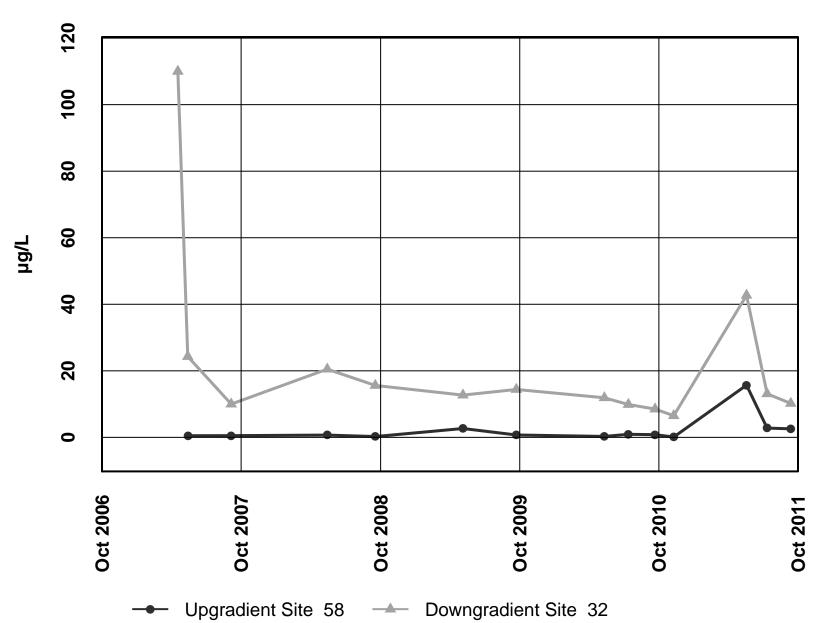

а	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
b c d	WY2006 WY2007 WY2008 WY2009							·	0.0 0.0 0.0 0.3				0. 0. 0. 0.
e f	WY2010		0.0						0.0		0.0		0
I	<b>WY2011</b> n	0	1	0	0	0	0	0	0.0	0	0.0	0	0.
	t,	0	1	0	0	0	0	0	1	0	0	0	
	t ₂	0	0	0	0	0	0	0	0	0	1	0	
	t3 t4	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
	t ₅	0	0	0	0	0	0	0	1	0	0	0	
	b-a								0				
	c-a d-a								0 1				
	e-a f-a								0 0				
	c-b								0				
	d-b e-b								1 0				
	f-b d-c								0				
	e-c								0				
	f-c e-d								0 -1				
	f-d f-e								-1 0		0		
	S _k	0	0	0	0	0	0	0	1	0	0	0	
	$\sigma_{s}^{2}$ =								11.67		0.00		24.6
Z _k	$= S_k / \sigma_S$								0.29		#DIV/0!		-1.2
	$Z^2_{k}$								0.09		#DIV/0!		1.4
		#DIV/0!		Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			$\Sigma$ n	15
	$\Sigma Z_{k}^{2}$ Z-bar= $\Sigma Z_{k}/K$ =	#DIV/0! #DIV/0!		Count	5	1	1	0	1			$\Sigma \mathbf{S}_{\mathbf{k}}$	-5
	22					. 2							
	$\chi_{h}^{2} = \Sigma Z_{k}^{2}$	K(Z-bar) ² =	#DIV/0!	L	@α=5%	% χ ² _(K-1) =	5.99		est for stat	ion homog			
		n	#DIV/01					2	12.224.00				
	$\Sigma VAR(S_k)$	p Z _{calc}	<b>#DIV/0!</b> -0.66		@0	x=5% Z=	1.64	)	$\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No!)}$	rend)	#DIV/0! ACCEPT		
	ΣVAR(S _k ) 36.33	p Z _{calc} p	#DIV/0! -0.66 0.253		@c	x=5% Z=	1.64	)	ζ ² h<χ ² (K-1) <b>H</b> ₀ (No t <b>H_A</b> (± ti		#DIV/0! ACCEPT #DIV/0!		
		$Z_{calc}$	-0.66		@c	x=5% Z=	1.64	)	H ₀ (No t		ACCEPT		
C		$Z_{calc}$	-0.66	L	@c	x=5% Z=	1.64	;	H ₀ (No t		ACCEPT		
	36.33	$Z_{calc}$	-0.66		@c	x=5% Z=	1.64		H ₀ (No t	rend)	ACCEPT #DIV/0!		
	36.33 0.35	$Z_{calc}$	-0.66		@c	z=5% Z=	1.64	;	H ₀ (No t	rend)	ACCEPT	e Confidence Ir Sen's	
	36.33 0.35 0.3 0.25	$Z_{calc}$	-0.66		@c	z=5% Z=	1.64	;	H ₀ (No t	rend) <u>Season</u> α	ACCEPT #DIV/0! al-Kendall Slope Lower Limit		Upper Limit
	36.33       0.35       0.3       0.25       0.2	$Z_{calc}$	-0.66		@c	z=5% Z=	1.64		H ₀ (No t	rend) Season α 0.010 0.050	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03 -0.02	Sen's	Upper Limit 0.00 0.00
	36.33 0.35 0.3 0.25	$Z_{calc}$	-0.66		@c	z=5% Z=	1.64		H ₀ (No t	rend) Season α 0.010	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03	Sen's Slope	Upper Limit 0.00
	36.33       0.35       0.3       0.25       0.2	$Z_{calc}$	-0.66		@c	z=5% Z=	1.64	;	H ₀ (No t	<u>Season</u> <u>α</u> 0.010 0.050 0.100	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03 -0.02 -0.01	Sen's Slope 0.00	Upper Limit 0.00 0.00 0.00
Sulfate, Total (mg/l)	36.33       0.35       0.3       0.25       0.2       0.15       0.1	Z _{calc} p	-0.66	 		x=5% Z=	1.64		H ₀ (No t	<u>Season</u> <u>α</u> 0.010 0.050 0.100	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03 -0.02 -0.01	Sen's Slope	Upper Limit 0.00 0.00 0.00
Sulfate, Total (mg/l)	36.33       0.35       0.3       0.25       0.25       0.15       0.15       0.15	Z _{calc} p	-0.66 <b>0.253</b>			$\bigwedge$			H ₀ (No t H _A (± tr	<u>Season</u> <u>α</u> 0.010 0.050 0.100	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03 -0.02 -0.01	Sen's Slope 0.00	Upper Limit 0.00 0.00 0.00
Sulfate, Total (mg/l)	36.33       0.35       0.3       0.25       0.2       0.15       0.1	Z _{calc} p	-0.66 <b>0.253</b>			$\bigwedge$			H ₀ (No t H _A (± tr	<u>Season</u> <u>α</u> 0.010 0.050 0.100	ACCEPT #DIV/0! al-Kendall Slope Lower Limit -0.03 -0.02 -0.01	Sen's Slope 0.00	Upp Lim 0.00 0.00 0.00

Row label a b c d e	Water Year WY2006 WY2007 WY2008 WY2009 WY2010 WY2010	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 10.8 24.3 20.5 12.7 11.9 42.7	Jun	9.9	Aug	Sep 15.: 10.0 15.0 14.4 8.5 10.5
f	<b>WY2011</b> n	0	6.5 1	0	0	0	0	0	42.7 6	0	13.1 2	0	10.
	t ₁ t ₂ t ₃ t ₄ t ₅	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	6 0 0 0	0 0 0 0	2 0 0 0 0	0 0 0 0	
	b-a c-a d-a e-a f-a c-b d-b f-b d-c e-c f-c e-d f-d f-e								1 1 1 -1 -1 -1 -1 1 1 1 1		1		ت ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،
	S _k	0	0	0	0	0	0	0	3	0	1	0	
Z _k =	$\sum_{k=1}^{2} \frac{\sum_{k=1}^{2} \sum_{k=1}^{2} \sum_$	0.62 2.20 0.21	[	Fie Extent Count	t, 15	t ₂ 0	t ₃ 0	t₄ 0	28.33 0.56 0.32 t _s 0		1.00 1.00 1.00	$\Sigma$ n $\Sigma$ S _k	28.3: -0.94 0.83 15 -1
	$\chi^2_h = \Sigma Z^2_k - k$	(Z-bar) ² =	2.07		@α=5%	ν χ ² (κ-1)=	5.99	Т	est for stati	ion homoge	neitv		
	ΣVAR(S _k ) 57.67	p Z _{calc} p	0.355 0.00 0.500	L		2.5% Z=	1.96		$\chi^{2}_{h} < \chi^{2}_{(K-1)}$ H ₀ (No t H _A (± tr	A trend) A	ACCEPT ACCEPT REJECT		
<b>Zinc, Dissolved (ug/l)</b> <b>Zinc, Dissolved (ug/l)</b> <b>Zinc, Dissolved (ug/l)</b> <b>Zinc, Dissolved (ug/l)</b>	>									<u>α</u> 0.010 0.050 0.100 0.200	Kendall Slope Lower Limit -3.91 -2.02 -1.74 -1.15	Confidence In Sen's Slope -0.30	tervals Upper Limit 4.68 2.07 1.02 0.24




Site 58 vs. Site 32 – Conductivity Field


Site 58 vs. Site 32 – pH Field




Site 58 vs. Site 32 – Alkalinity Total



Site 58 vs. Site 32 – Sulfate Total





Site 58 vs. Site 32 – Zinc Dissolved

### INTERPRETIVE REPORT SITE 59 "MONITORING WELL T-00-01A"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Sampling at this site was added to the FWMP in May-2002. All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes
No outliers have	been identified by HGC	CMC for the peri	od of Octobe	r 2006 through September 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Out of the four sampling events, two were in exceedance for field pH. This is the second year in row that Site 59 has been in exceedance for field pH. Where as in the previous five years there were no exceedances for pH. This type of exceedance happening at an upgradient background well is normally considered part of the natural variation. However over the last two years Site 59 has been in the area of the East Ridge Expansion (ERE) which underwent extensive construction. It is speculated that the construction in the area may be responsible for the decrease in pH.

#### **Table of Exceedance for Water Year 2011**

			Lin	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
12-Jul-11	pH Field	5.79 su	6.5	8.50	
12-Sep-11	pH Field	6.42 su	6.5	8.50	

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. A visual trend in dissolved mercury concentration was noted in the previous FWMP report, which stated that "there was a moderate increase in the dissolved mercury concentration". By the May 2011 sampling event the dissolved mercury concentration had returned to historical levels. A similar trend was also noted for the other upgradient well Site 58 and both were thought to be a result of the preparatory work for the East Ridge Expansion. A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Ker	ndall test st	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.06			
pH Field	6	0.40			
Alkalinity, Total	6	0.40			
Sulfate, Total	6	0.03			
Zinc, Dissolved	6	0.22			

#### **Table of Summary Statistics for Trend Analysis**

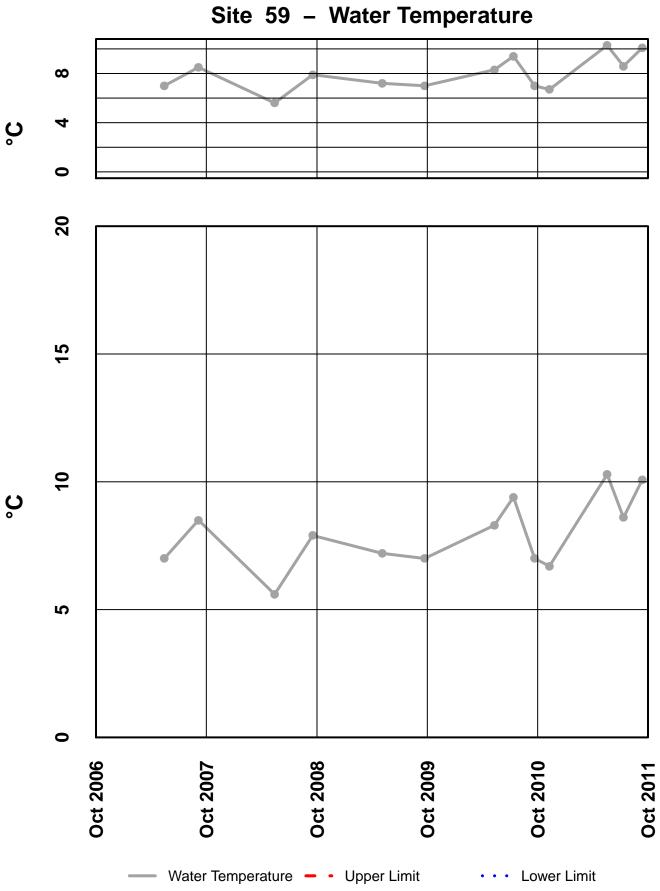
* Number of Years ** Significance level

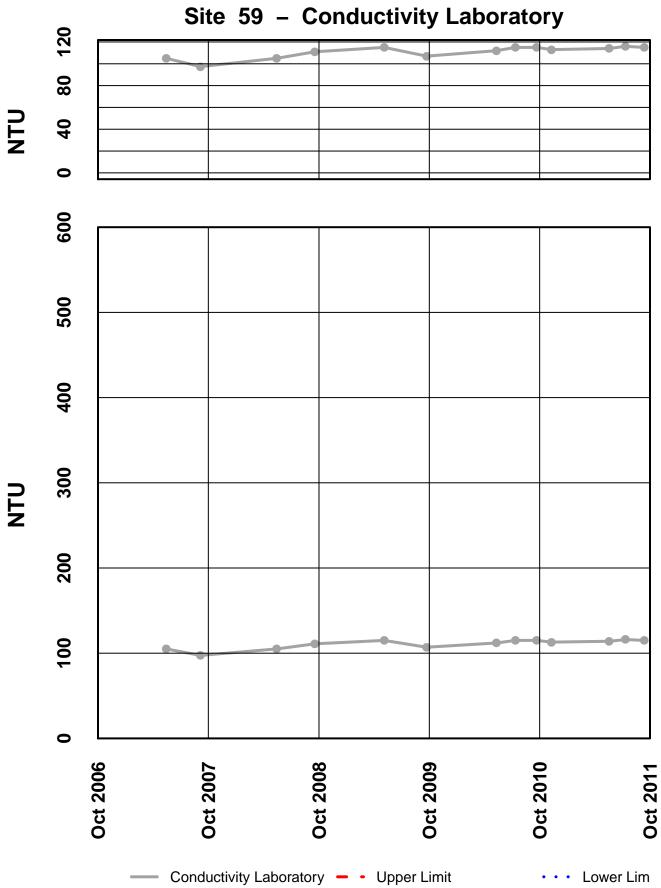
There were no statistically significant trends ( $\alpha/2=2.5\%$ ) for Site 59 during the 2011 water year. HGCMC feels the current FWMP program is sufficient to monitor any future increases at Site 59 before any water quality values are impaired.

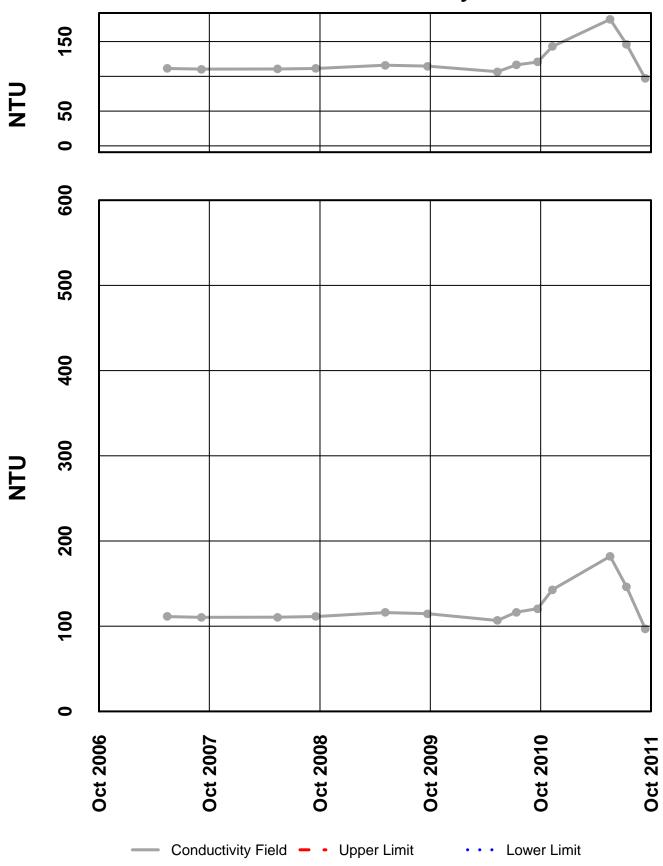
Site 059FMG - 'Monitoring Well -T-00-01A'													
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		6.7						10.3		8.6		10.1	9.4
Conductivity-Field(µmho)		142.9						182		146.2		97	144.6
Conductivity-Lab (µmho)		113						114		116		115	115
pH Lab (standard units)		6.22						6.68		6.49		6.6	6.55
pH Field (standard units)		6.73						6.93		5.79		6.42	6.58
Total Alkalinity (mg/L)		39.6						41.7		42.5		42.9	42.1
Total Sulfate (mg/L)		5.2						4.3		5.3		5.2	5.2
Hardness (mg/L)		51.2						47.1		50.2		47.9	49.1
Dissolved As (ug/L)		0.16						0.164		0.151		0.184	0.162
Dissolved Ba (ug/L)		7.3						6.9		7.8		7.8	7.6
Dissolved Cd (ug/L)		0.0115						0.0208		0.0103		0.0128	0.0122
Dissolved Cr (ug/L)		4.26						4.82		4.06		4.66	4.460
Dissolved Cu (ug/L)		0.421						0.128		0.103		0.126	0.127
Dissolved Pb (ug/L)		0.003						0.0043		0.0445		0.0015	0.0037
Dissolved Ni (ug/L)		1.04						0.921		0.894		1.02	0.971
Dissolved Ag (ug/L)		0.004						0.002		0.002		0.002	0.002
Dissolved Zn (ug/L)		0.38						0.31		0.73		0.48	0.43
Dissolved Se (ug/L)		0.566						0.669		0.057		0.54	0.553
Dissolved Hg (ug/L)		0.00206						0.000144		0.000187		0.000113	0.000166

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

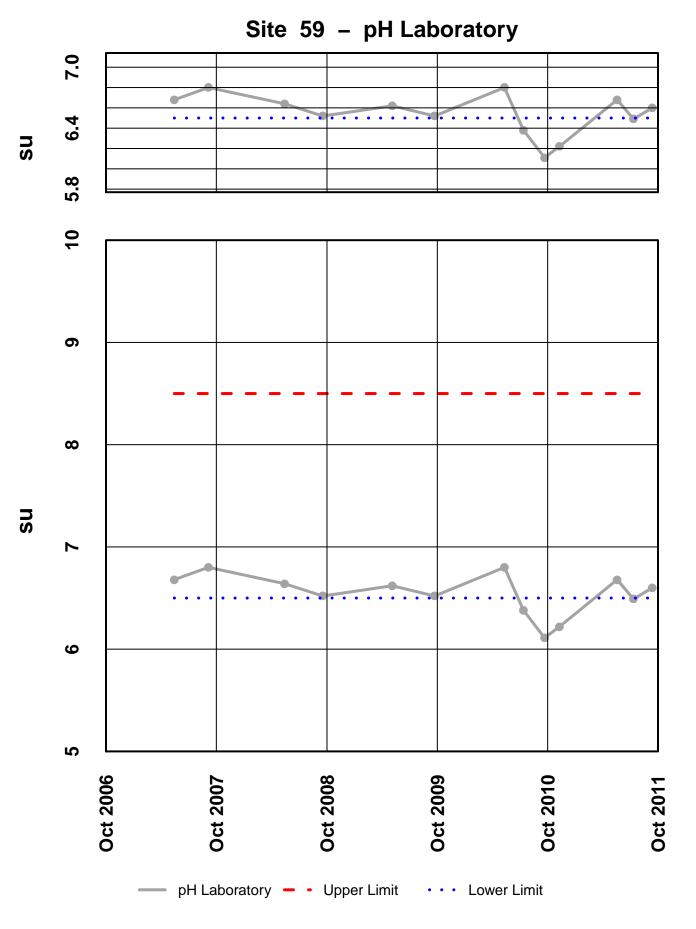
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

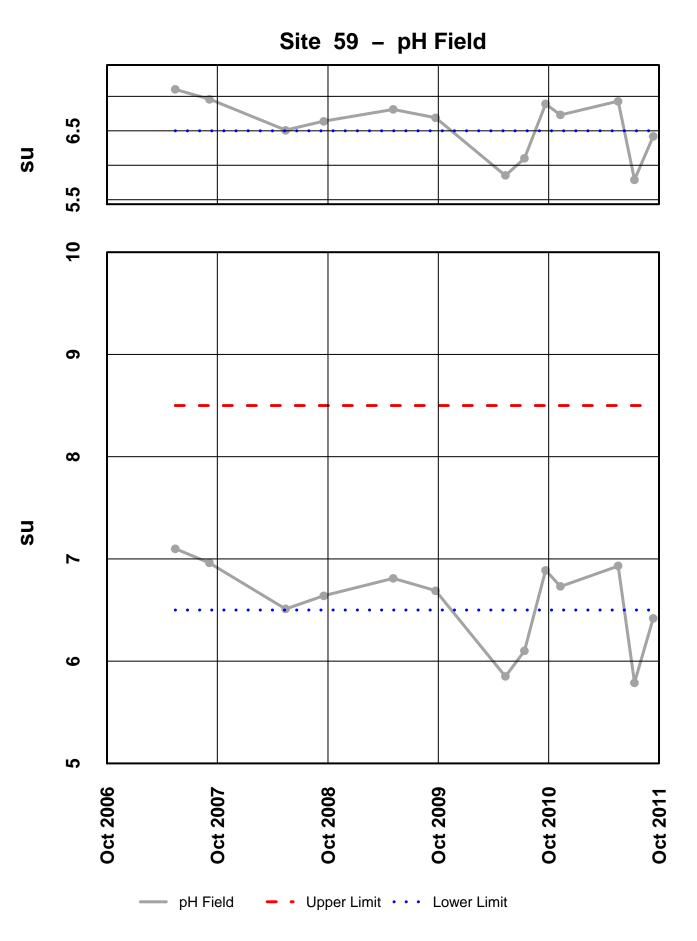

## Qualified Data by QA Reviewer


### Date Range: 10/01/2010 to 09/30/2011

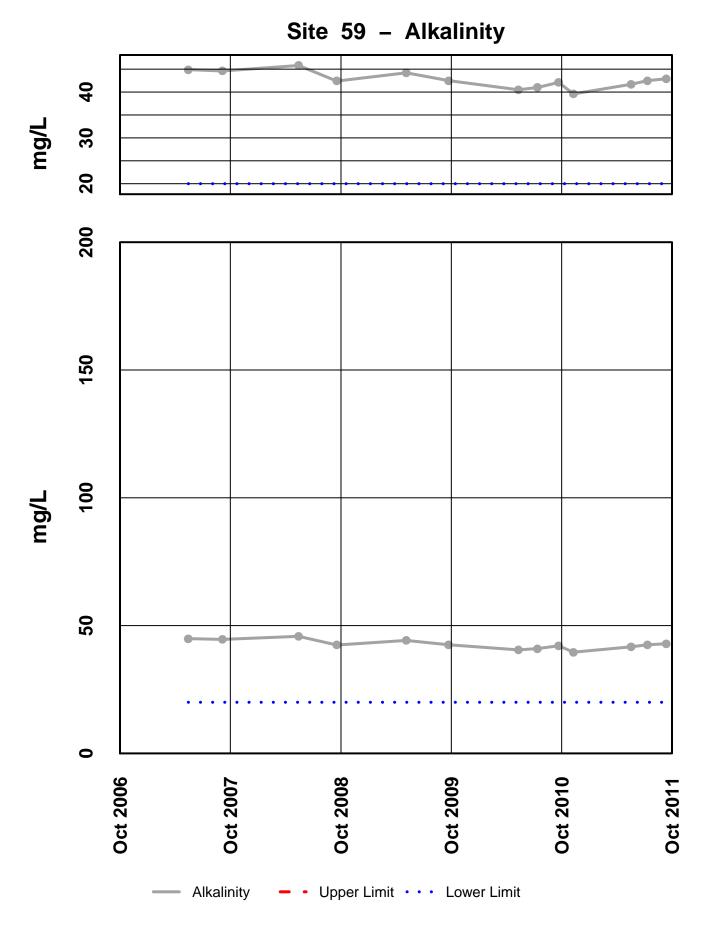
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
59	11/9/2010	12:00 AM			-	
			Se diss, µg/l	0.566	J	Below Quantitative Range
			Cd diss, µg/l	0.0115	J	Below Quantitative Range
59	4/12/2011	12:00 AM				
			Hg diss, µg/l	0.000128	U	Field Blank Contamination
9	5/19/2011	12:00 AM				
			SO4 Tot, mg/l	4.3	J	Sample Reciept Temperature
			pH Lab, su	6.68	J	Hold Time Violation
			Cu diss, µg/l	0.128	U	Field Blank Contamination
			Cd diss, µg/l	0.0208	U	Trip Blank Contamination
			Pb diss, µg/l	0.0043	U	Field Blank Contamination
			Hg diss, µg/l	0.000144	U	Field Blank Contamination
59	7/12/2011	12:00 AM				
			Cd diss, µg/l	0.01	J	Below Quantitative Range
			SO4 Tot, mg/l	5.3	J	Sample Reciept Temperature
			Cu diss, µg/l	0.1	U	Field Blank Contamination
			Zn diss, µg/l	0.72	U	Field Blank Contamination
			Hg diss, µg/l	0.000187	UJ	Field Blank Contamination
9	9/12/2011	12:00 AM				
			SO4 Tot, mg/l	5.2	J	Sample Receipt Temperature
			Zn diss, µg/l	0.47	U	Trip Blank Contamination
			Hg diss, µg/l	0.000113	U	Field Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

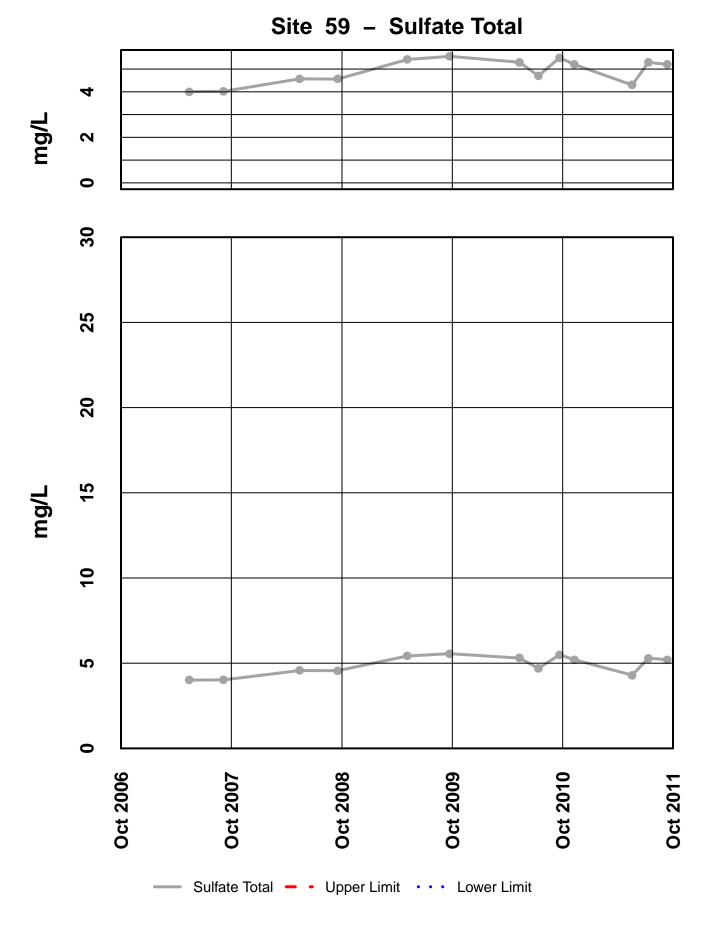




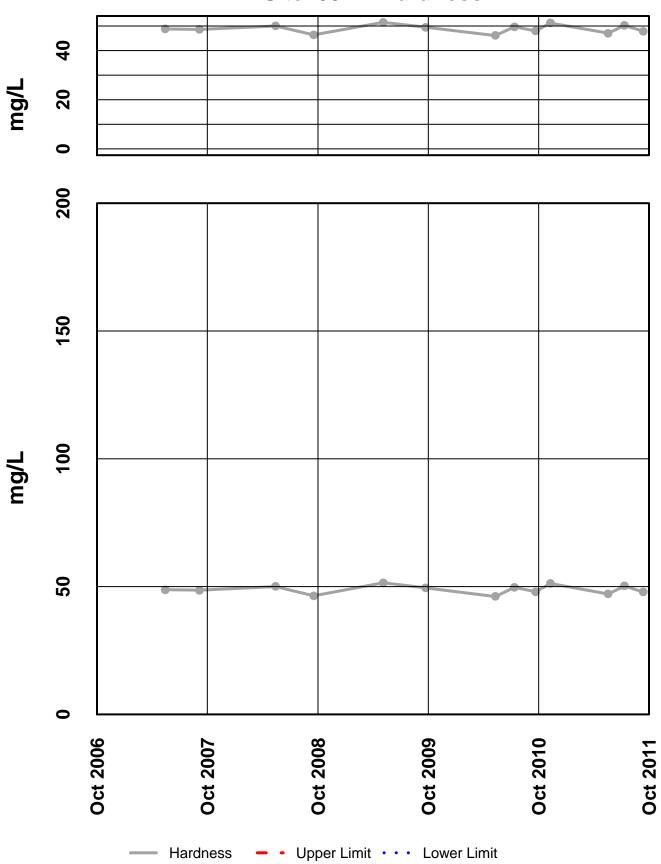




# Site 59 – Conductivity Field

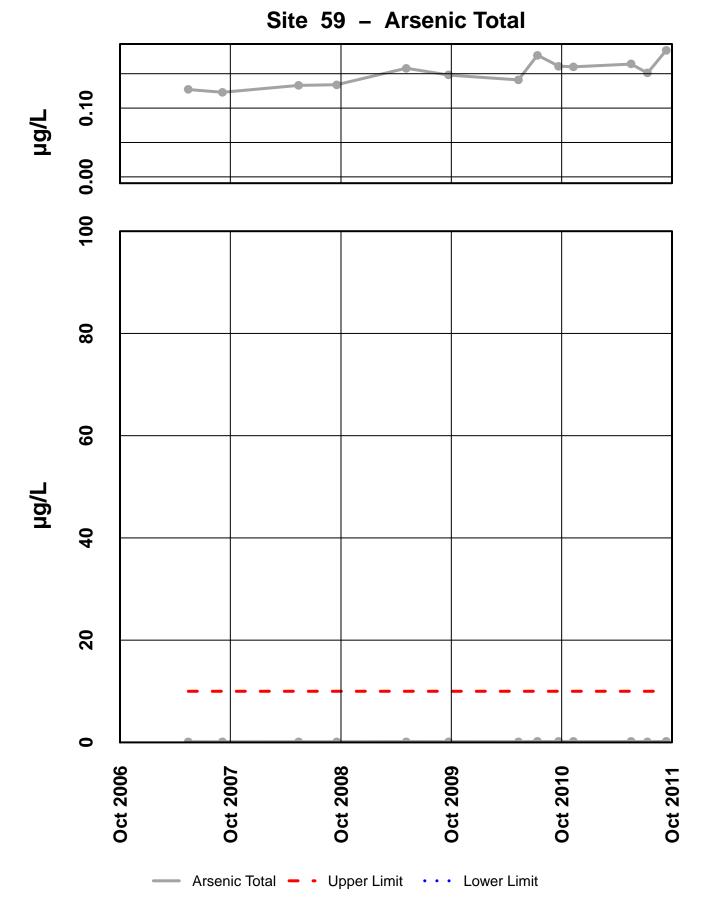



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

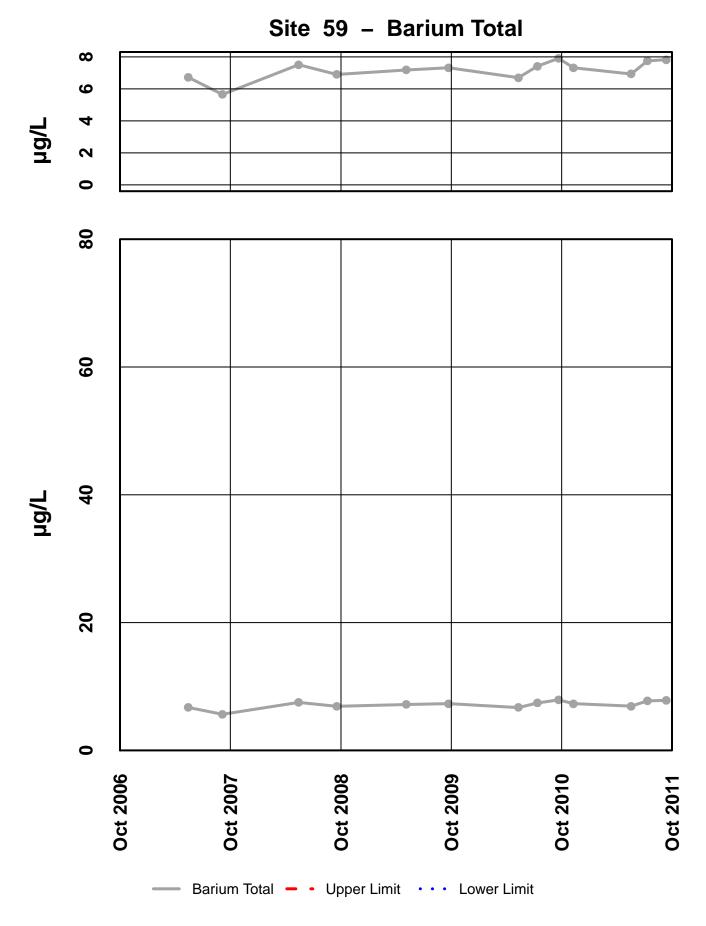



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

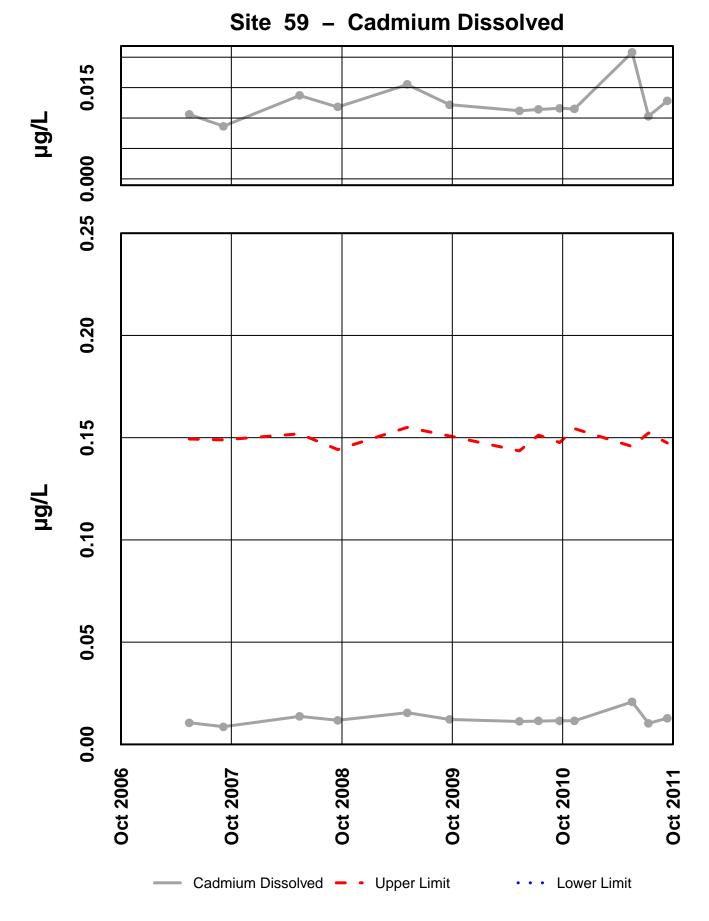



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

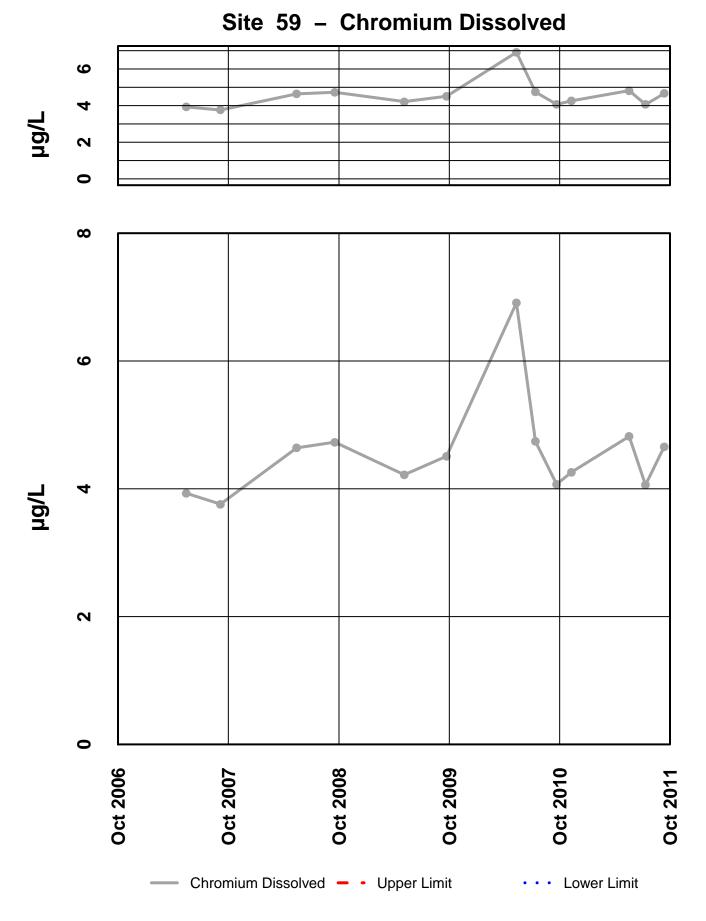



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

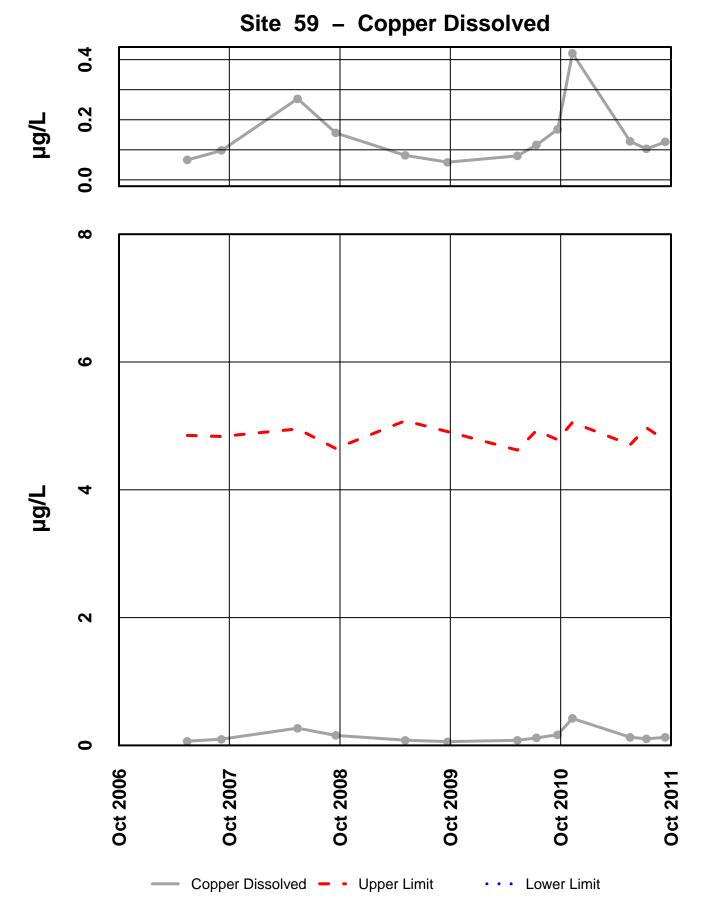



## Site 59 – Hardness

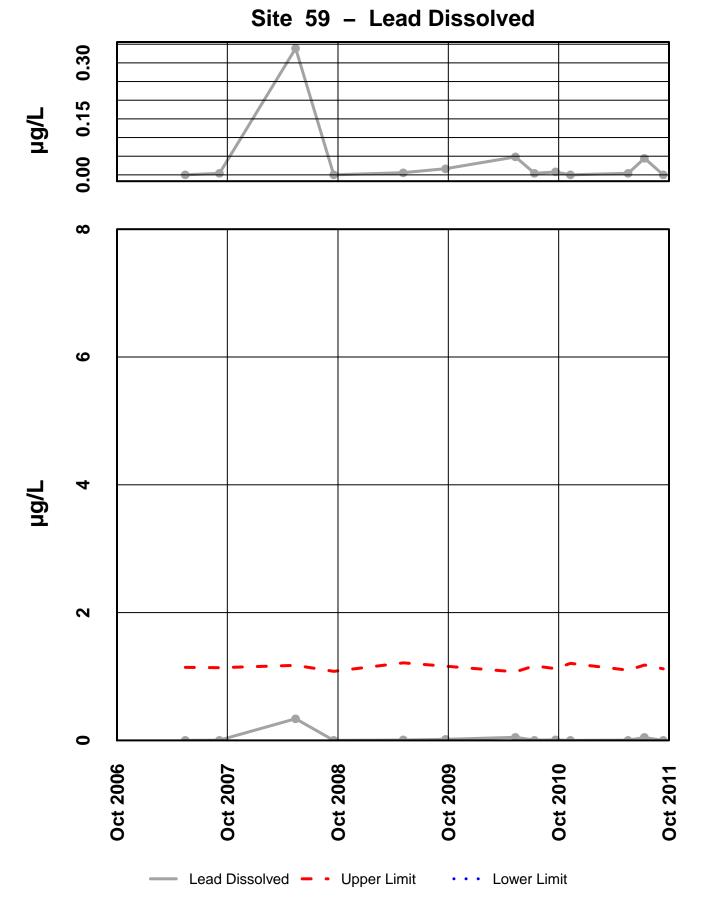


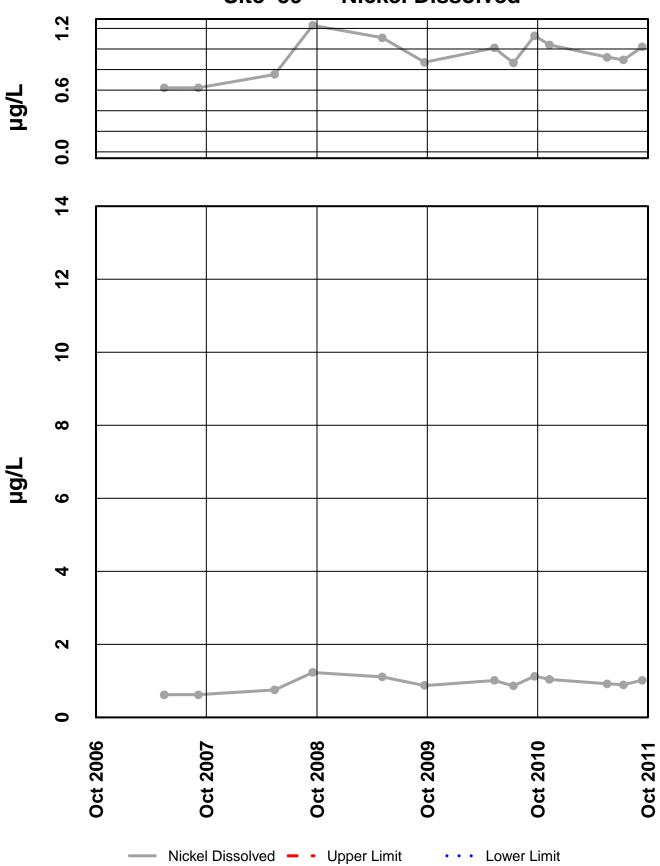

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



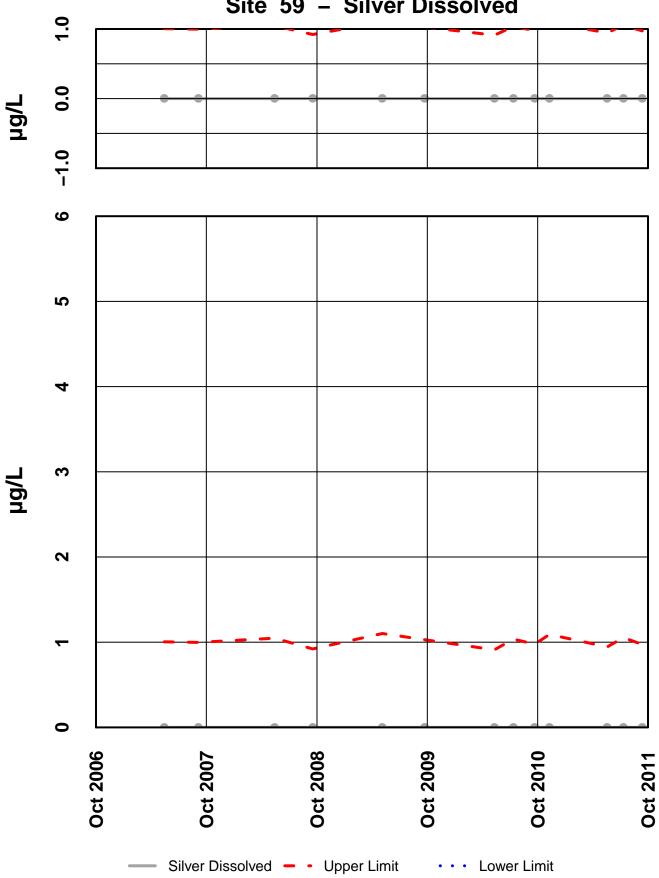

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



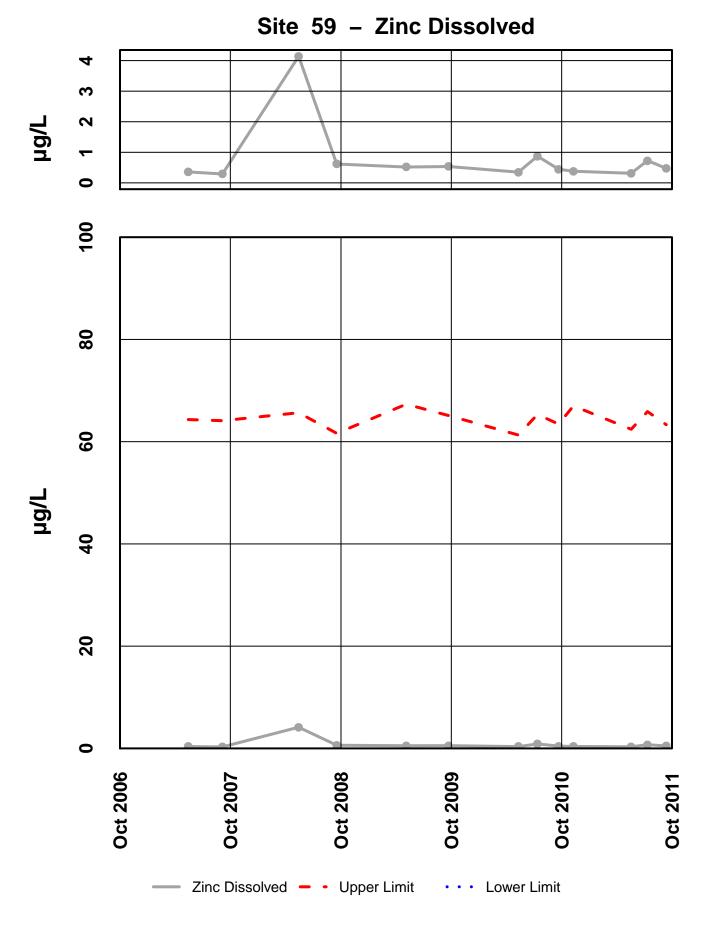

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



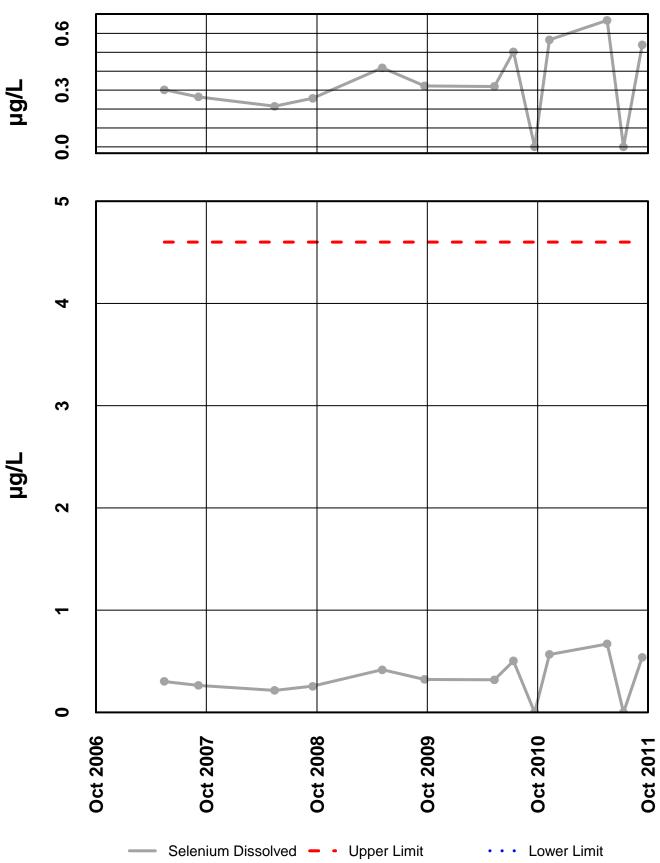

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



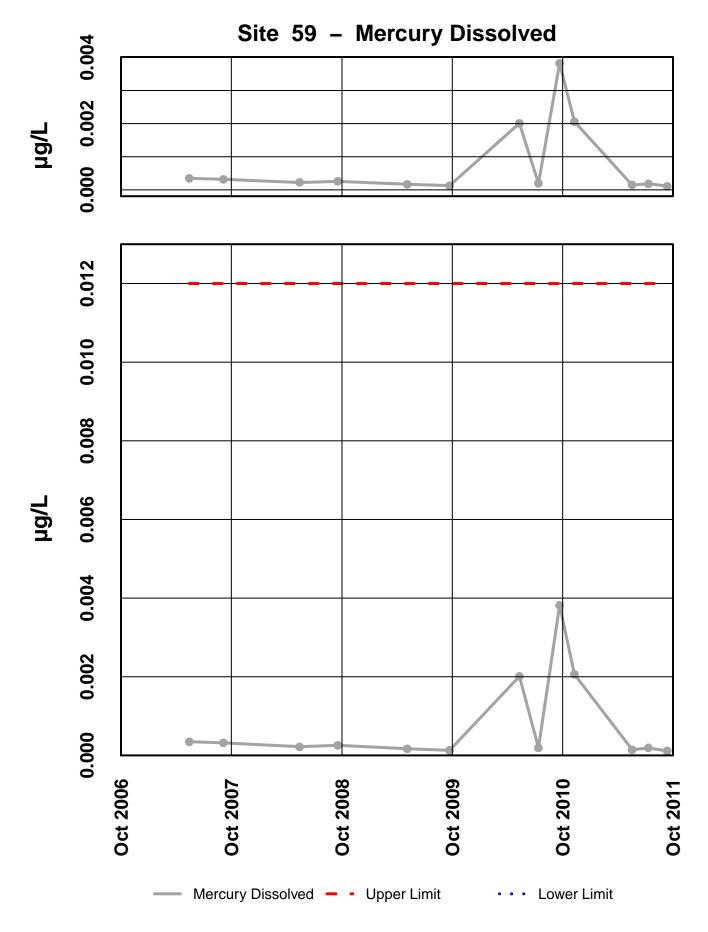

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis







## Site 59 – Nickel Dissolved

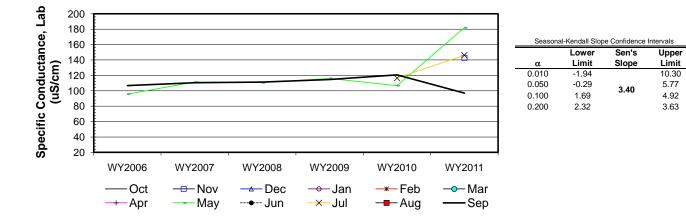



# Site 59 – Silver Dissolved



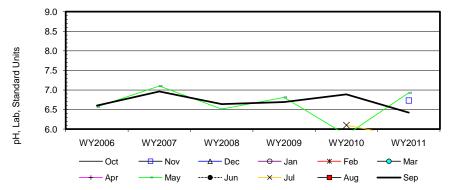
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 59 – Selenium Dissolved



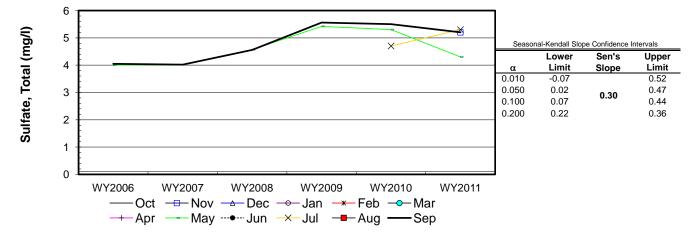
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006			200	•			, (p.	95.5	• • • •	•	7.0.9	106.7
b	WY2007								111.3				110.4
С	WY2008								110.6				111.3
d	WY2009								116				114.7
е	WY2010								106.7		116.5		120.6
f	WY2011		142.9						182		146.2		97
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t1	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								1				1
	c-a								1				1
	d-a								1				1
	e-a								1				1
	f-a								1				-1
	c-b								-1				1
	d-b								1				1
	e-b								-1				1
	f-b								1				-1
	d-c								1				1
	e-c								-1				1
	f-c								1				-1
	e-d								-1				1
	f-d f-e								1		1		-1 -1
	S _k	0	0	0	0	0	0	0	7	0	1	0	5
	² s=								28.33		1.00		28.33
	$S_k/\sigma_S$								1.32		1.00		0.94
2	Z ² _k								1.73		1.00		0.88
	$\Sigma Z_k =$	3.25	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2} =$	3.61		Count	15	0	0	0	0			$\Sigma S_k$	13
-	Z-bar=∑Z _k /K=	1.08	L			-	-	÷	÷			— - n	

$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	0.08	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.960			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	1.58	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.943			H _A (± trend)	REJECT



	#59	0-4	Mari				-	-	ab, Stand			A	0
Row label a	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 6.6	Jun	Jul	Aug	Sep 6.6
b	WY2007								7.1				7.0
c	WY2008								6.5				6.6
d	WY2009								6.8				6.7
e	WY2010								5.9		6.1		6.9
f	WY2011		6.7						6.9		5.8		6.4
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t ₁	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t ₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1				
	c-a								-1				
	d-a								1				
	e-a f-a								-1 1				
	c-b								-1				-
	d-b								-1				-
	e-b								-1				-
	f-b								-1				-^
	d-c								1				
	e-c								-1				
	f-c								1				-*
	e-d								-1				
	f-d								1				-^
	f-e								1		-1		-1
	S _k	0	0	0	0	0	0	0	-1	0	-1	0	-^
σ	² s=								28.33		1.00		28.33
<b>Z</b> _k =	$S_k/\sigma_S$								-0.19		-1.00		-0.19
	Z ² _k								0.04		1.00		0.04
	$\Sigma Z_k =$	-1.38	 [·	Tie Extent	t,	t ₂	t ₃	t₄	t _s			Σn	15
	$\Sigma Z_{k}^{2}$	1.07											
	∠∠ k=	1.07		Count	15	0	0	0	0			$\Sigma S_k$	-3


$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	0.44	@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.803			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-0.26	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
57.67	р	0.396			H _A (± trend)	REJECT



Seasona	Seasonal-Kendall Slope Confider									
	Lower	Sen's	Upper							
α	Limit	Slope	Limit							
0.010	-0.31		0.09							
0.050	-0.14	-0.03	0.07							
0.100	-0.14	-0.03	0.05							
0.200	-0.12		0.03							

bel	Water Year	Oct	Nov	Dec	Jan	Feb	all analys Mar	Apr	May	Jun	Jul	Aug	Sep
	WY2006							•	41.8			Ŭ	42.3
	WY2007 WY2008								44.9 45.8				44.6 42.4
	WY2009								44.2				42.5
	WY2010								40.5		41.0		42.1
	WY2011 n	0	39.6 1	0	0	0	0	0	41.7 6	0	42.5 2	0	42.9 6
		Ũ	•		Ũ	Ű	0		0	0		Ŭ	0
	t₁ +	0 0	1 0	0 0	0 0	0 0	0 0	0 0	6 0	0 0	2 0	0 0	6 0
	t₂ t₃	0	0	0	0	0	0	0	0	0	0	0	0
	t4	0	0	0	0	0	0	0	0	0	0	0	0
i.	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								1				1
	c-a								1				1
	d-a e-a								1 -1				1 -1
	f-a								-1				1
	c-b								1				-1
	d-b e-b								-1 -1				-1 -1
	f-b								-1				-1
	d-c								-1 -1				1
	e-c f-c								-1 -1				-1 1
	e-d								-1				-1
	f-d f-e								-1 1		1		1 1
:	Sk	0	0	0	0	0	0	0	-5	0	1	0	1
	o –												
	² s=								28.33		1.00		28.33
	S _k /σ _S								-0.94 0.88		1.00 1.00		0.19 0.04
2	- k								0.00				
											1.00		
	$\Sigma Z_{k} =$	0.25	Γ	Tie Extent	t,	t ₂	t ₃	t4	t ₅		1.00	Σn	15
_	$\Sigma Z_{k}^{2} =$	1.92	[	Tie Extent Count	t₁ 15	t ₂ 0	t₃ 0	t₄ 0	t₅ 0			$\Sigma$ n $\Sigma$ S _k	
Z													15
Z	$\Sigma Z_{k}^{2} =$	1.92	[										15
z	$\Sigma Z_{k}^{2}$ =-bar= $\Sigma Z_{k}/K$ =	1.92 0.08			15	0	0	0	0	tion homog			15
Z	$\Sigma Z_{k}^{2}$ =-bar= $\Sigma Z_{k}/K$ =	1.92 0.08 K(Z-bar) ² =	1.90		15			0	0 Test for sta		eneity		15
Z	$\Sigma Z_{k}^{2} = -bar = \Sigma Z_{k}/K = \frac{\chi^{2} h = \Sigma Z_{k}^{2} + \chi^{2} h = \chi^{2} h =$	1.92 0.08 K(Z-bar) ² =	1.90 <b>0.387</b>		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2 h < \chi^2 (K-1)$		eneity ACCEPT		15
Z	$\Sigma Z_{k}^{2}$ =-bar= $\Sigma Z_{k}/K$ =	1.92 0.08 K(Z-bar) ² =	1.90		15 @α=59	0	0	0	0 Test for sta	trend)	eneity		15
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend)	eneity ACCEPT ACCEPT		15
) [	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend)	eneity ACCEPT ACCEPT		15
) [	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend)	eneity ACCEPT ACCEPT		15
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend)	eneity ACCEPT ACCEPT REJECT	$\Sigma S_k$	15 -3
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend)	eneity ACCEPT ACCEPT REJECT	ΣS _k e Confidence II Sen's	15 -3 ntervals Upper
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) Seasona	eneity ACCEPT ACCEPT REJECT	ΣS _k	15 -3 Upper Limit
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) Seasona	eneity ACCEPT ACCEPT REJECT	ΣS _k e Confidence II Sen's Slope	15 -3 Upper Limit 0.80
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	eneity ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82 -0.56	ΣS _k e Confidence II Sen's	15 -3 <b>Upper</b> Limit 0.80 0.15 0.11
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050	eneity ACCEPT ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82	ΣS _k e Confidence II Sen's Slope	15 -3 Upper Limit 0.80 0.15
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	eneity ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82 -0.56	ΣS _k e Confidence II Sen's Slope	15 -3 <b>Upper</b> Limit 0.80 0.15 0.11
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	$\frac{1.92}{0.08}$ $\frac{K(Z-bar)^2}{p}$ $\frac{p}{Z_{calc}}$	1.90 0.387 -0.26		15 @α=59	0 % χ ² (K-1)=	0	0	0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	eneity ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82 -0.56	ΣS _k e Confidence II Sen's Slope	15 -3 <b>Upper</b> Limit 0.80 0.15 0.11
)	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} - I$ $\Sigma VAR(S_{k})$	1.92 0.08 K(Z-bar) ² = <b>p</b> Z _{calc} <b>p</b>	1.90 0.387 -0.26		15 @α=59	0 % χ ² (κ-1)= =2.5% Z=	0		0 Test for sta $\chi^2_h < \chi^2_{(K-1)}$ <b>H</b> ₀ (No	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	eneity ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82 -0.56	ΣS _k e Confidence II Sen's Slope	15 -3 <b>Upper</b> Limit 0.80 0.15 0.11
	$\Sigma Z^{2}_{k} =$ -bar= $\Sigma Z_{k}/K =$ $\chi^{2}_{h} = \Sigma Z^{2}_{k} + I$ $\Sigma VAR(S_{k})$ 57.67	1.92 0.08 K(Z-bar) ² = <b>p</b> Z _{calc} <b>p</b>	1.90 0.387 -0.26 0.396		15 @α=59 @α/2=	0 % χ ² (κ-1)= =2.5% Z=	0 5.99 1.96	0	$\frac{0}{\frac{\chi^2_h < \chi^2_{(K-1)}}{H_0 (No}}}$	trend) trend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	eneity ACCEPT REJECT I-Kendall Slope Lower Limit -1.29 -0.82 -0.56	ΣS _k e Confidence II Sen's Slope	15 -3 <b>Upper</b> Limit 0.80 0.15 0.11

Site	#59			S	easonal	Kendall	analysis	s for Sul	fate, Tota	ıl (mg/l)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006								4.0				4.1
b c	WY2007 WY2008								4.0 4.6				4.0 4.6
d	WY2009								4.0 5.4				5.6
e	WY2010								5.3		4.7		5.5
f	WY2011		5.2						4.3		5.3		5.2
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t ₁	0	1	0	0	0	0	0	6	0	2 0	0	6
	t₂ t₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								1				-1
	c-a								1				1
	d-a								1				1
	e-a								1				1
	f-a								1				1
	c-b d-b								1				1 1
	e-b								1				1
	f-b								1				1
	d-c								1				1
	e-c								1				1
	f-c								-1				1
	e-d								-1				-1
	f-d f-e								-1 -1		1		-1 -1
	S _k	0	0	0	0	0	0	0	7	0	1	0	7
	² _s =								00.00		4.00		00.00
									28.33		1.00		28.33
	$S_k/\sigma_S$								1.32		1.00		1.32
	Z ² _k								1.73		1.00		1.73
	$\Sigma Z_k =$	3.63	]	Tie Extent	t ₁	t ₂	t ₃	t4	t _s			$\Sigma$ n	15
	$\Sigma Z_k^2 =$	4.46		Count	15	0	0	0	0			$\Sigma S_k$	15
Z	Z-bar=ΣZ _k /K=	1.21											
	2 2	2				2							
	$\chi^2_h = \Sigma Z^2_k - k$	K(Z-bar) ² =	0.07		@α=5	5% χ ² _(K-1) =	5.99		Test for stati	-			
		р	0.967						$\chi^2_h < \chi^2_{(K-1)}$		CCEPT		
	$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.84		@α=	=2.5% Z=	1.96		H₀ (No t	rend) A	CCEPT		
	57.67	р	0.967				<u>ı</u>		H _A (± tr	end) F	REJECT		



Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006								1.0			v	0.4
b	WY2007								0.4				0.3
C	WY2008								4.1				0.6
d	WY2009 WY2010								0.5 0.4		0.9		0.5 0.4
e f	WY2011		0.4						0.4		0.9		0.4
	n	0	1	0	0	0	0	0	6	0		0	6
	t,	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	0
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								-1				-1
	c-a								1				1
	d-a								-1				1
	e-a f-a								-1 -1				1
	c-b								-1				1
	d-b								1				1
	e-b								-1				1
	f-b								-1				1
	d-c e-c								-1 -1				-1 -1
	f-c								-1				-1
	e-d								-1				-1
	f-d f-e								-1 -1		-1		-1 1
	S _k	0	0	0	0	0	0	0	-1	0	-1	0	3
		-	-	-	-	-	-	-	-	-		-	
	5 ² s=								28.33		1.00		28.33
	S _k /σ _S								-1.69		-1.00		0.56
	Z ² _k								2.86		1.00		0.32
	$\Sigma Z_k =$	-2.13	Γ	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2}$	4.18		Count	15	0	0	0	0			$\Sigma S_k$	-7
	$\frac{\chi^2_{h}=\Sigma Z^2_{k}-k}{\Sigma VAR(S_k)}$ 57.67	${\sf p}$ $Z_{\sf calc}$	2.67 <b>0.263</b> -0.79 <b>0.215</b>			% χ ² _(K-1) = -2.5% Z=	5.99		^c est for stat	trend)	eneity ACCEPT ACCEPT REJECT		
4.5 <b>e</b> 4		·											
Zinc, Dissolved (ug/l) 2.2 1.2 1.2 2 2 1.2				$\rightarrow \rightarrow$						Seasona	al-Kendall Slope	Confidence Ir	tervals
<b>ğ</b> 3				$/ \rightarrow$	\				=		Lower	Sen's	Upper
2.5	1		/	/						<u>α</u> 0.010	Limit -0.17	Slope	Limit 0.05
°. So			/		$\backslash$					0.050	-0.14	0.04	0.02
2 2 SI										0.100	-0.11	-0.04	0.01
<b>1</b> .5	+		_/		$\rightarrow$					0.200	-0.09		0.00
<b>u</b> 1			_/				×						
⊽ _{0.5}				$\sim$			~	×					
0					1	1							
	WY2006	6 WY2	NO.07	WY2008	WY2	2000	WY2010	WY2	011				

### INTERPRETIVE REPORT SITE 28 "MONITORING WELL 2D"

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes	
No outliers have	been identified by HG	CMC for the peri-	od of October	r 2006 through Septe	mber 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Four results exceeding these criteria have been identified, as listed in the table below. Dissolved arsenic was in exceedance for all four monthly FWMP sampling events. This site has routinely returned arsenic values above the AWQS and has a mean value of 73.6  $\mu$ g/L based on sampling since October 1988.

		Limits								
Sample Date	Parameter	Value	Lower	Upper	Hardness					
9-Nov-10	Arsenic Total	70.9 µg/L		10.00						
19-May-11	Arsenic Total	70.2 µg/L		10.00						
12-Jul-11	Arsenic Total	67.2 μg/L		10.00						
12-Sep-11	Arsenic Total	69 µg/L		10.00						

#### Table of Exceedance for Water Year 2011

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There was a trend in dissolved mercury similar to those noted for the upgradient background Sites 58 and 59. Dissolved mercury had a moderate increase at the beginning of the water year, but returned to within historical values by the May 2011 sampling event.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011).

	Mann-Kei	ndall test sta	atistics	Sen's slope	estimate
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.45			
pH Field	6	< 0.01	-	-0.16	-1.9
Alkalinity, Total	6	0.50			
Sulfate, Total	6	0.04			
Zinc, Dissolved	6	< 0.01	-	-0.28	-129.2

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

There was a significant decreasing trend identified in field pH (<0.01) with an estimated slope of -0.16 su/yr or a -1.93% decrease, during the period of calculation. Secondly, there was a significant decreasing trend in dissolved zinc with an estimated slope of -0.28  $\mu$ g/L/yr or a -129% decrease over the calculation period.

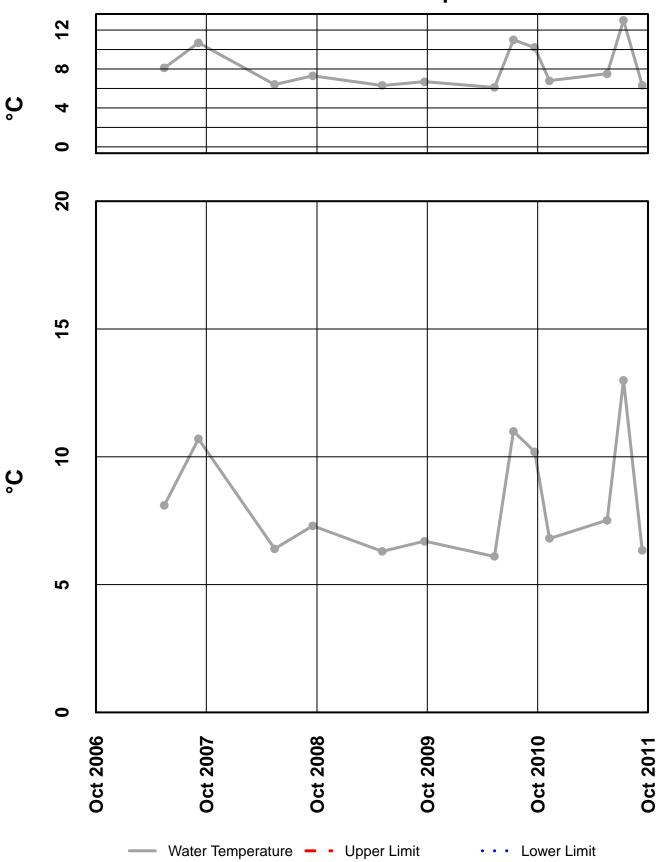
Additional X-Y plots have been generated for alkalinity, pH, sulfate, conductance, and dissolved zinc that co-plot data from Site 28 and Site 59, the upgradient control site, to aid in comparison between those two sites. Laboratory conductivity, field pH, total alkalinity, and total sulfate are all higher at Site 28 than at Site 59 while the dissolved zinc concentrations are generally similar except for water year 2006 which shows a pronounced spike of moderate amplitude for Site 28. By the end of the water year 2007 dissolved zinc was again at a typical value for Site 28. Site 59 and Site 28 are deep completion wells that are each respectively co-located with Site 58 and Site 27. A similar line of reasoning discussed in the section for Site 27 can be applied to explaining the differences in water chemistry between Site 59 and Site 28. Thus, the generally higher concentrations at Site 28 reflect the more mature of the groundwater sampled at this location.

							ng wen	- 20					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		6.8						7.5		13		6.3	7.2
Conductivity-Field(µmho)		215						228		183		177	199.0
Conductivity-Lab (µmho)		205						215		212		214	213
pH Lab (standard units)		8.02						8.28		8.02		8.09	8.06
pH Field (standard units)		8.19						7.77		7.37		8.26	7.98
Total Alkalinity (mg/L)		85						81.1		88		94.5	86.5
Total Sulfate (mg/L)		10.9						11.1		11		11.3	11.1
Hardness (mg/L)		72.7						74.6		75.8		75.7	75.2
Dissolved As (ug/L)		70.9						70.2		67.2		69	69.600
Dissolved Ba (ug/L)		6						6.4		6.3		5.9	6.2
Dissolved Cd (ug/L)		0.004						0.0018		0.0018		0.0018	0.0018
Dissolved Cr (ug/L)		0.479						0.145		0.156		0.203	0.180
Dissolved Cu (ug/L)		0.217						0.131		0.256		0.114	0.174
Dissolved Pb (ug/L)		0.003						0.0104		0.0078		0.0015	0.0054
Dissolved Ni (ug/L)		0.639						0.673		1.02		0.747	0.710
Dissolved Ag (ug/L)		0.004						0.002		0.002		0.002	0.002
Dissolved Zn (ug/L)		0.11						0.05		0.41		0.06	0.09
Dissolved Se (ug/L)		0.112						0.057		0.057		0.247	0.085
Dissolved Hg (ug/L)		0.0025						0.00005		0.000114		0.00005	0.000082

#### Site 028FMG - 'Monitoring Well - 2D'

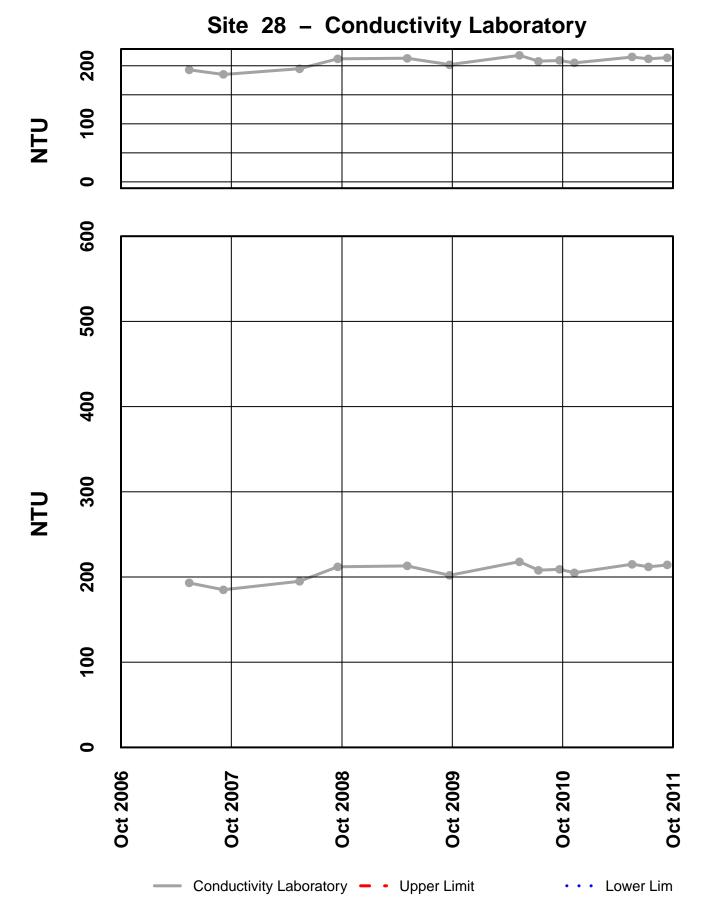
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

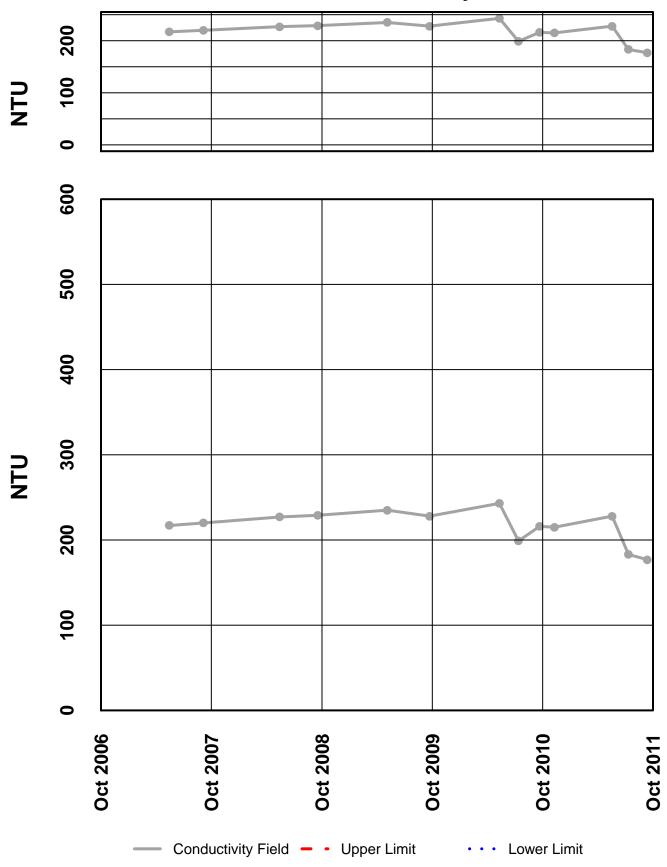
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

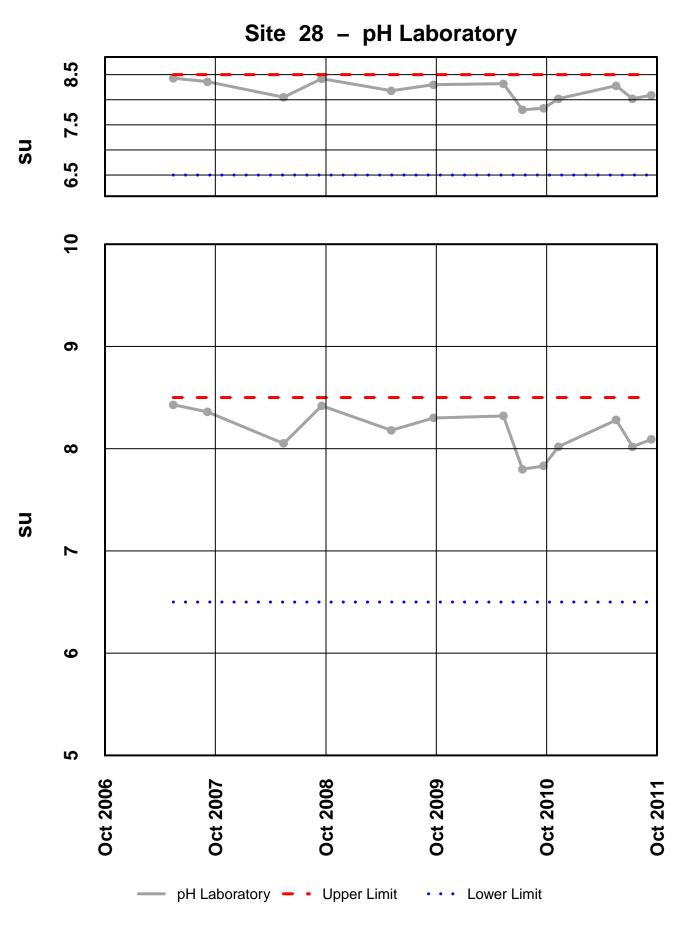
## Qualified Data by QA Reviewer

## Date Range: 10/01/2010 to 09/30/2011

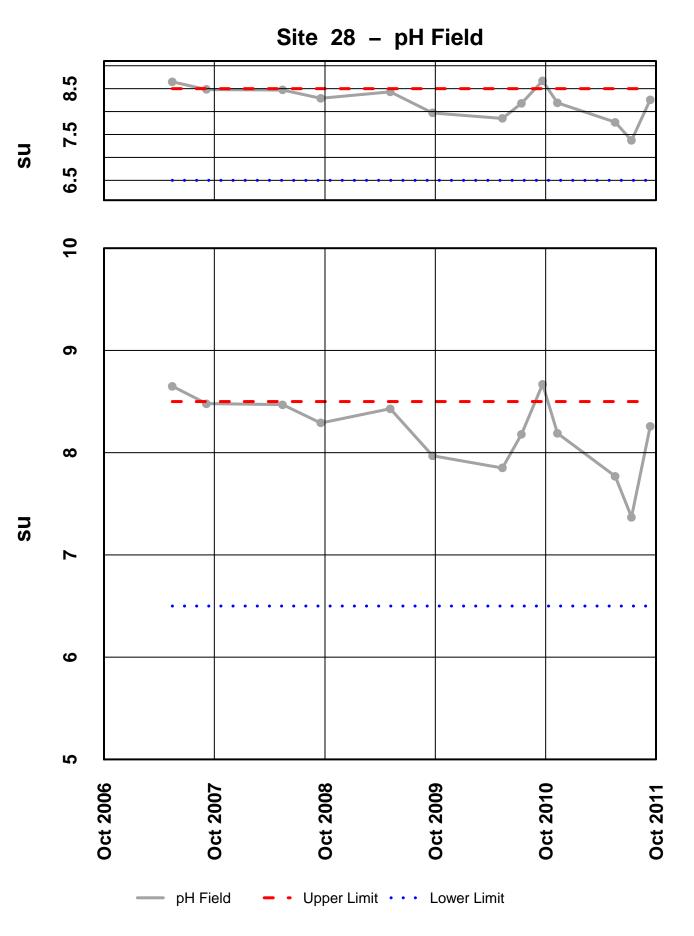

Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
28	11/9/2010	12:00 AM			-	
			Zn diss, µg/l	0.11	J	Below Quantitative Range
28	5/19/2011	12:00 AM				
			SO4 Tot, mg/l	11.1	J	Sample Reciept Temperature
			Cr diss, µg/l	0.145	J	Below Quantitative Range
			Zn diss, µg/l	0.0485	J	Below Quantitative Range
			pH Lab, su	8.28	J	Hold Time Violation
			Ni diss, µg/l	0.673	U	Field Blank Contamination
			Cu diss, µg/l	0.131	U	Field Blank Contamination
			Pb diss, µg/l	0.0104	U	Field Blank Contamination
28	7/12/2011	12:00 AM				
			Cr diss, µg/l	0.15	J	Below Quantitative Range
			Pb diss, μg/l	0.00782	J	Below Quantitative Range
			SO4 Tot, mg/l	11	J	Sample Reciept Temperature
			Cu diss, µg/l	0.25	U	Field Blank Contamination
			Zn diss, µg/l	0.41	U	Field Blank Contamination
			Hg diss, µg/l	0.000114	U	Field Blank Contamination
28	9/12/2011	12:00 AM				
			Se diss, µg/l	0.24	J	Below Quantitative Range
			SO4 Tot, mg/l	11.3	J	Sample Receipt Temperature
			Zn diss, µg/l	0.06	U	Trip Blank Contamination


Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit

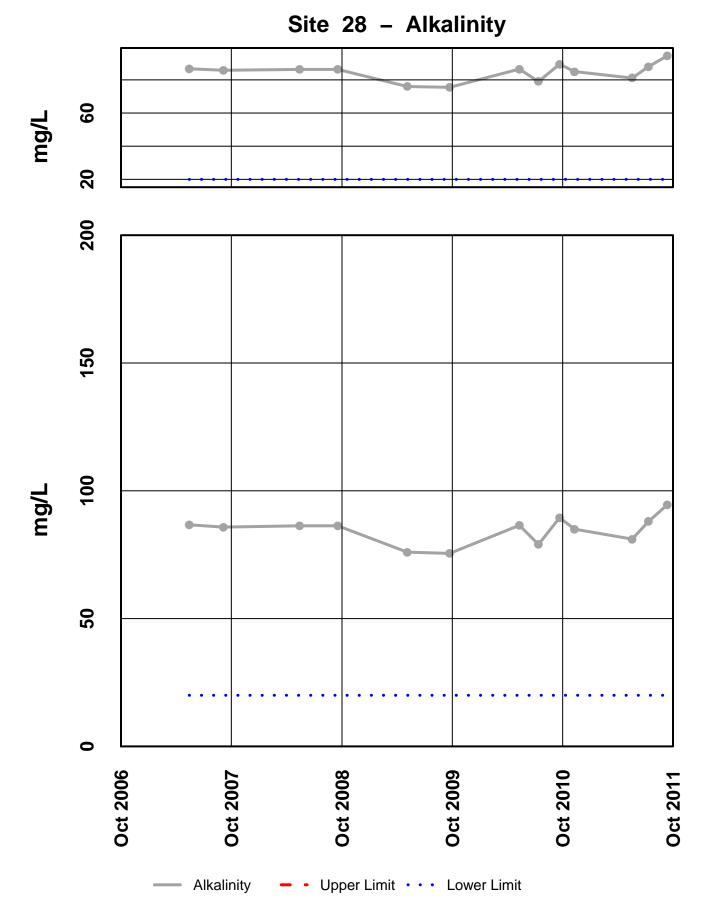



# Site 28 – Water Temperature

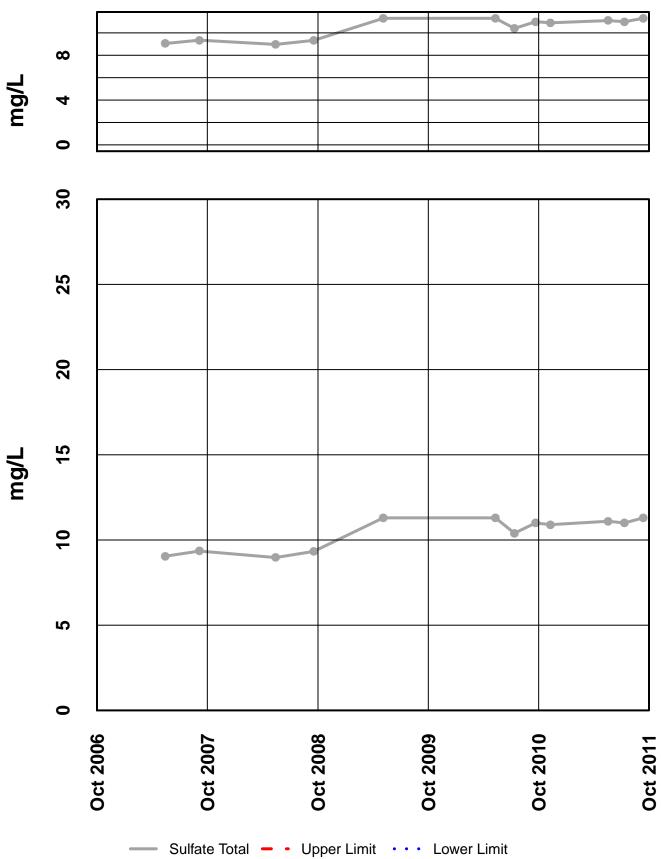
ပိ





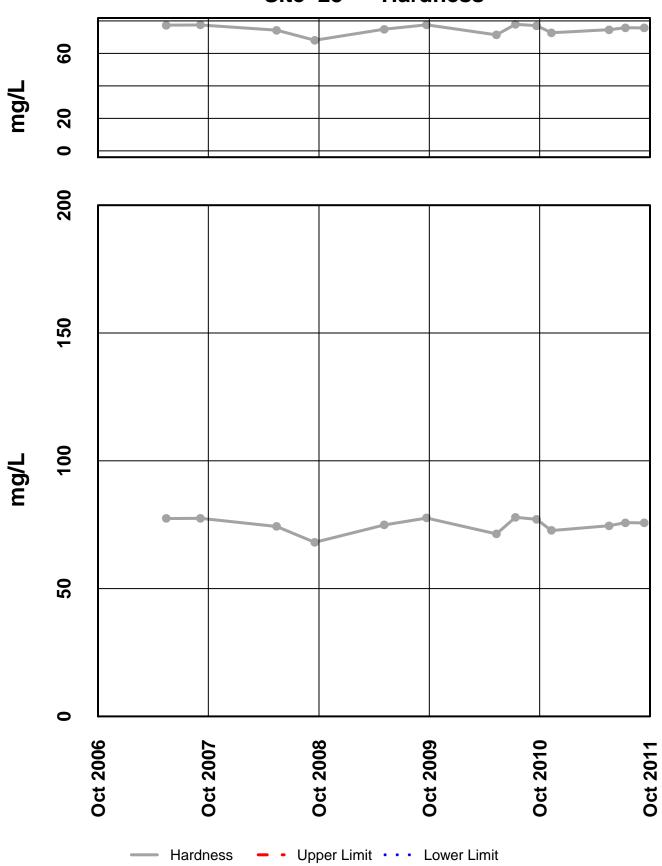


Site 28 – Conductivity Field



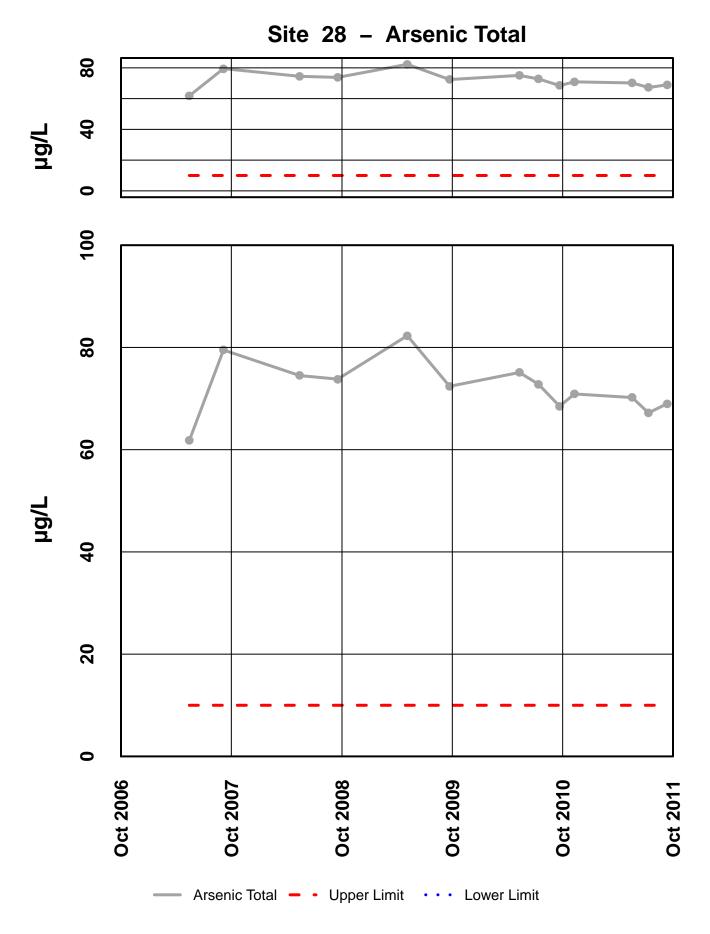

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



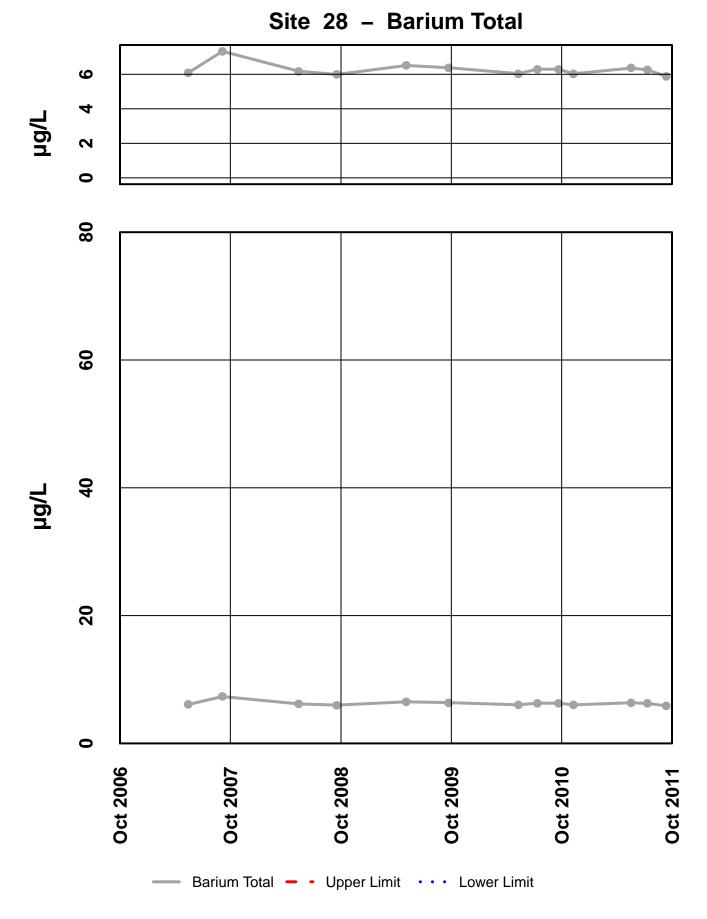
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



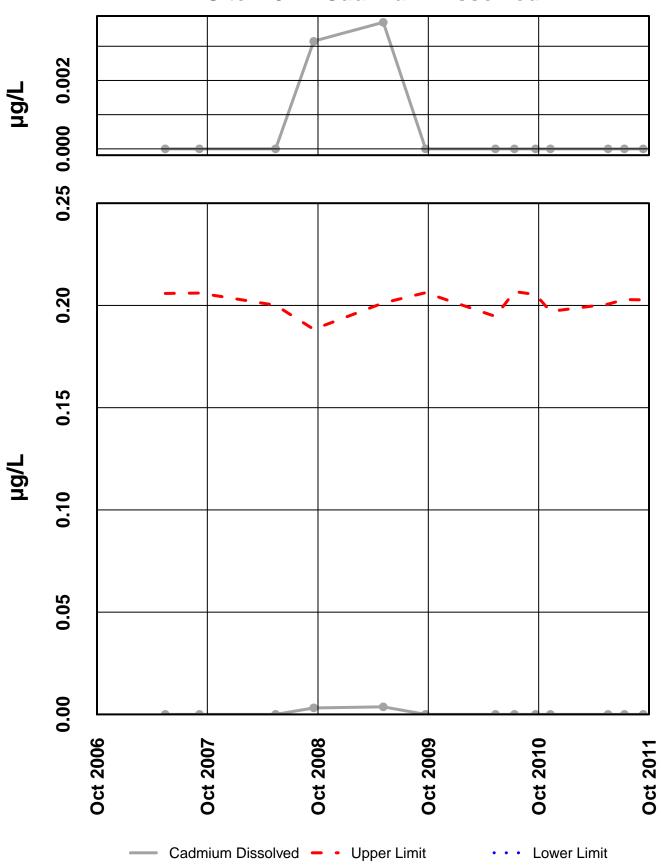

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

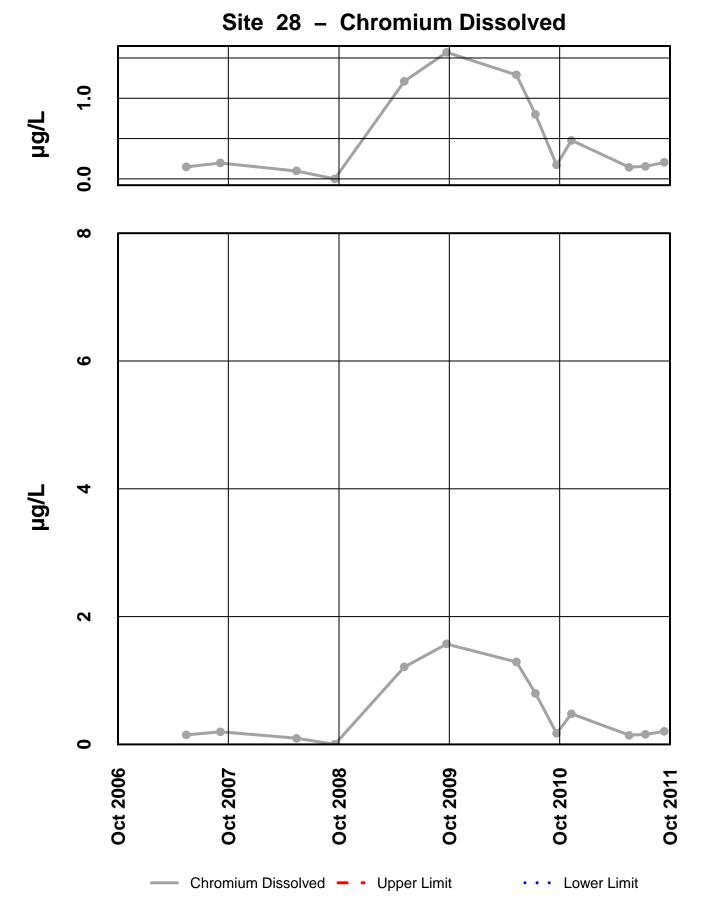

## Site 28 – Sulfate Total

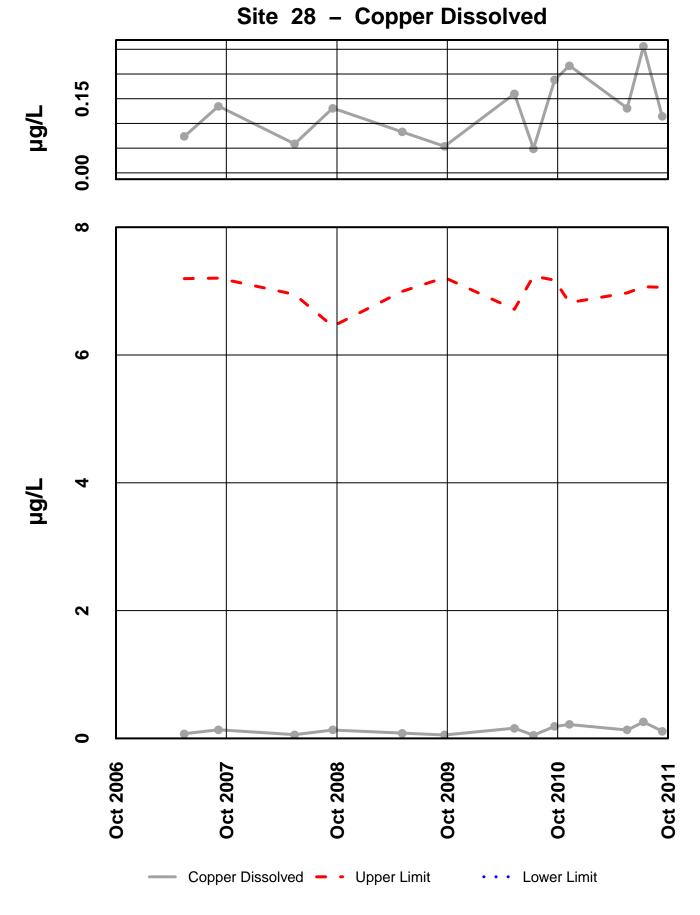


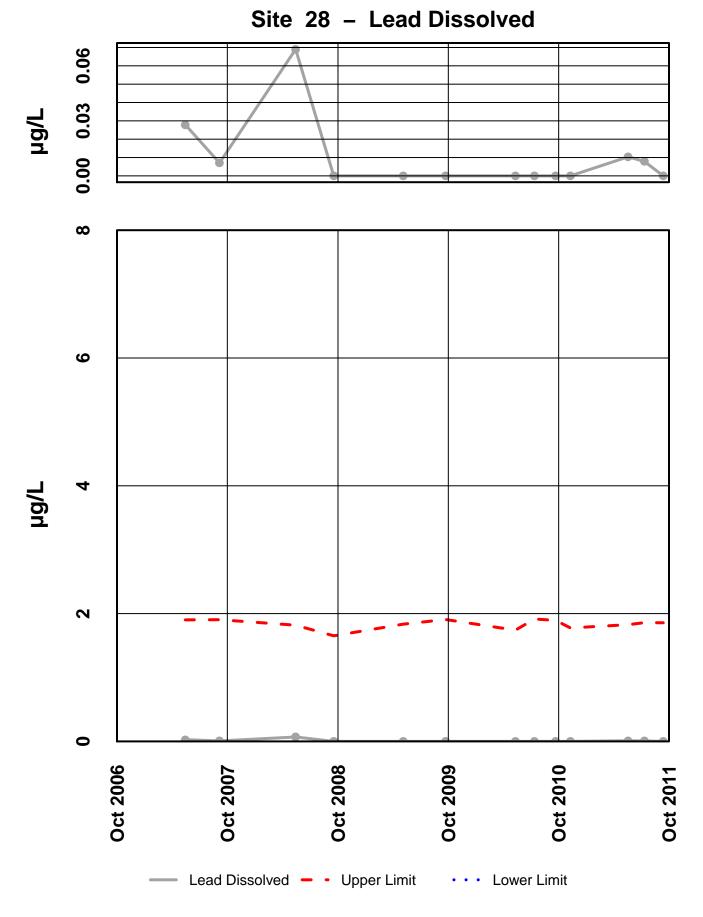

## Site 28 – Hardness



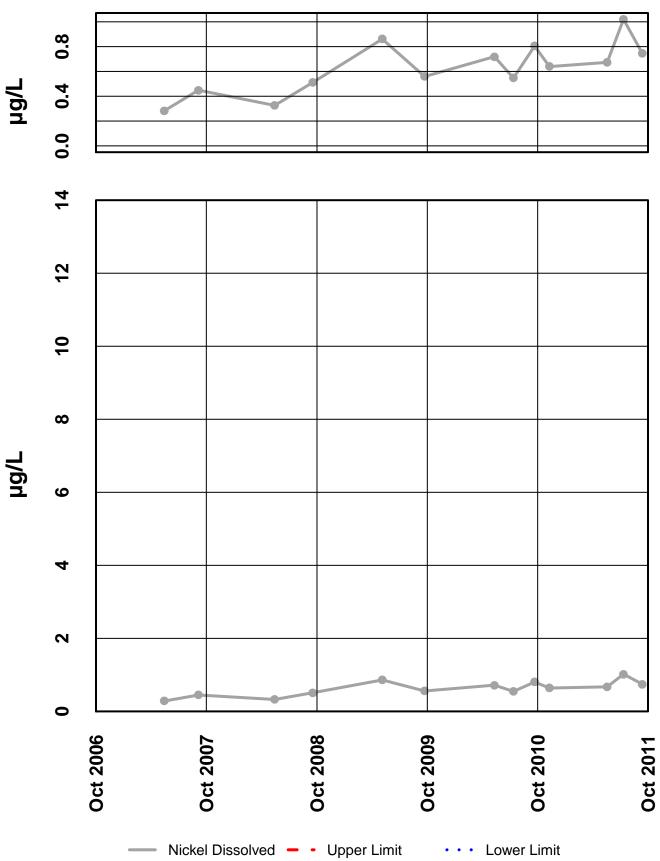
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

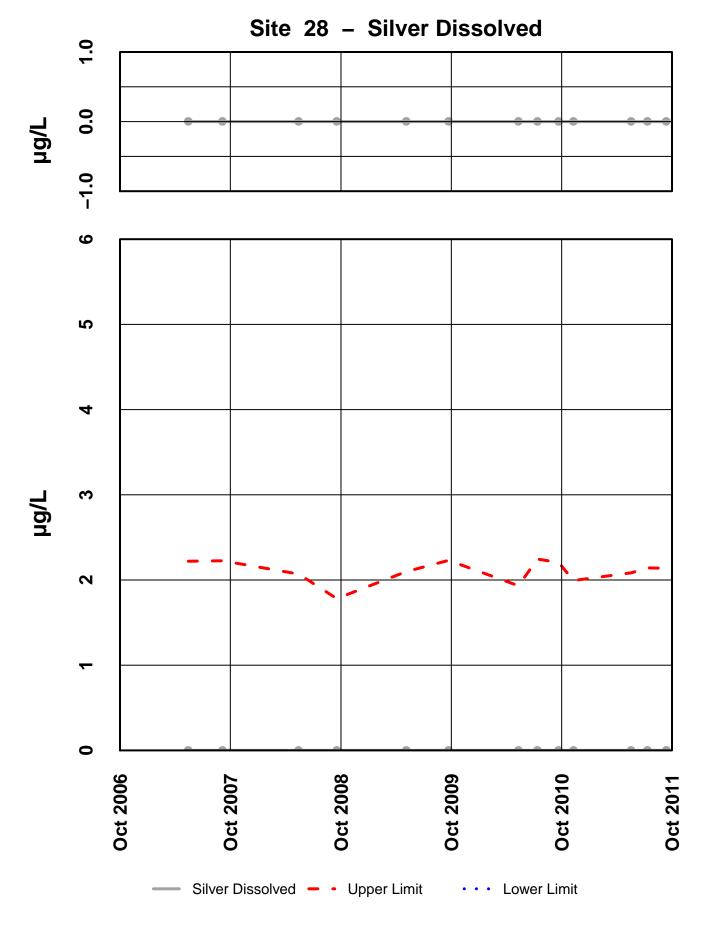


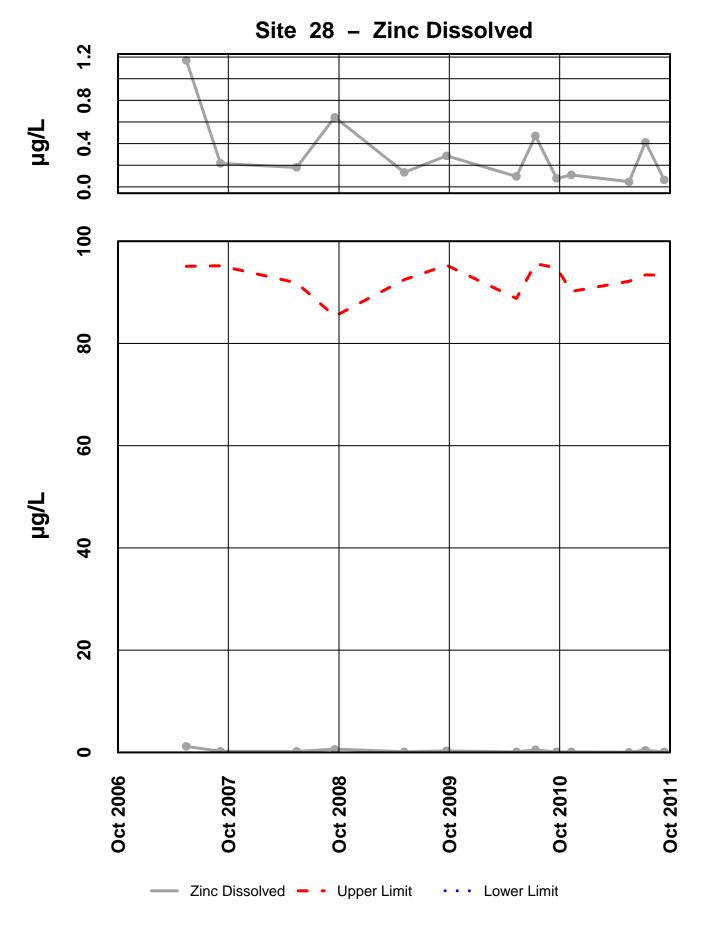

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Site 28 – Cadmium Dissolved

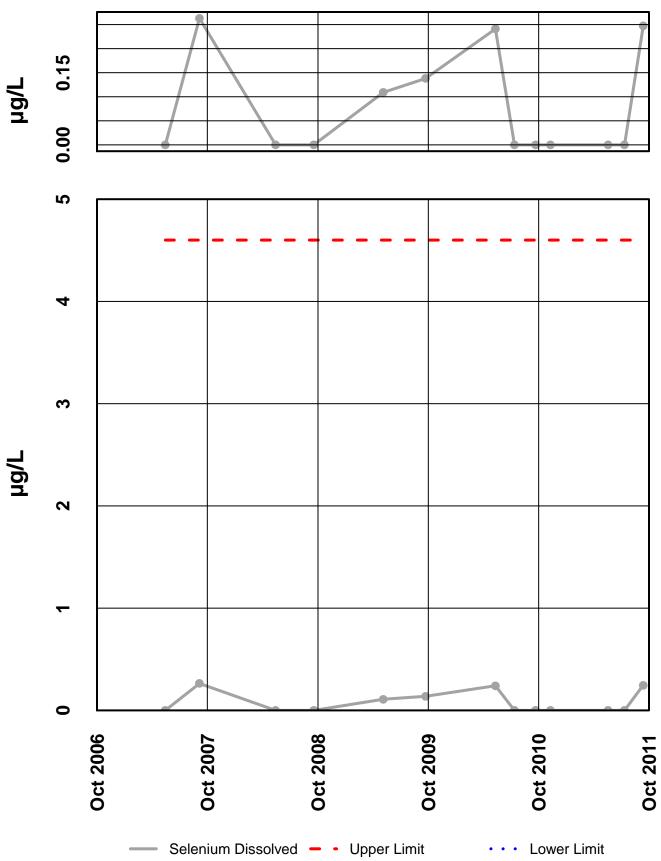




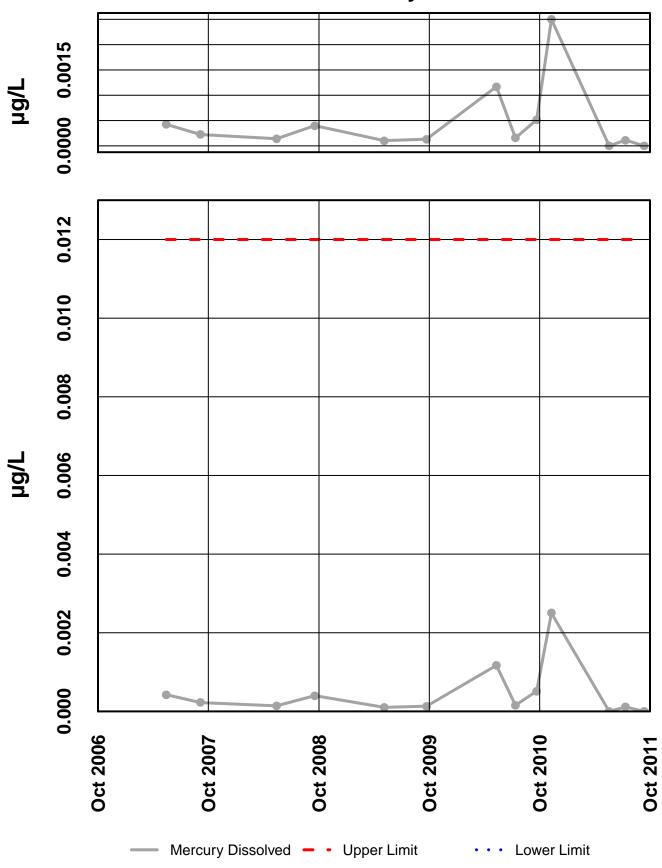




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



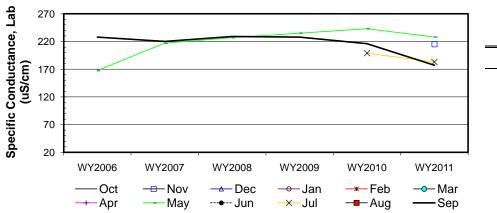

Site 28 – Nickel Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





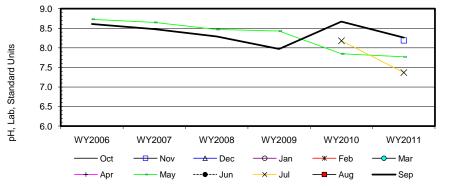

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 28 – Selenium Dissolved



ow label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006								167.7				22
b	WY2007								217				220
c d	WY2008 WY2009								227 235				229 228
e	WY2010								235		198.9		216
f	WY2011		215						243		183		177
	n	0	1	0	0	0	0	0	6	0	2	0	(
	t ₁	0	1	0	0	0	0	0	6	0	2	0	4
	t ₂	0	0	0	0	0	0	0	0	0	0	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	$t_4$	0	0	0	0	0	0	0	0	0	0	0	(
	t₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1				-*
	c-a								1				
	d-a								1				(
	e-a								1				-*
	f-a								1				-*
	c-b d-b								1				
	а-b e-b								1				-*
	f-b								1				-
	d-c								1				-
	e-c								1				-*
	f-c								1				-*
	e-d								1				-*
	f-d								-1				-*
	f-e								-1		-1		-*
	S _k	0	0	0	0	0	0	0	11	0	-1	0	-8
	Qm								8.7				
	² s=								28.33		1.00		27.33
	$S_k\!/\!\sigma_S$								2.07		-1.00		-1.53
2	Z ² _k								4.27		1.00		2.34
	$\Sigma Z_k =$	-0.46	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t₅			Σn	15
	$\Sigma Z_{k}^{2}$	7.61		Count	13	1	0	0	0			$\Sigma S_k$	2
_	Z-bar=∑Z _k /K=	-0.15	L	Count	10	1	U	U	U			20 _k	2


$\chi^2_h = \Sigma Z^2_k$	-K(Z-bar) ² =	7.54	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
	р	0.023	· · · · · · · · · · · · · · · · · · ·		$\chi^2_h < \chi^2_{(K-1)}$	REJECT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	0.13	@a/2=2.5% Z=	1.96	H ₀ (No trend)	NA
56.67	р	0.553			H _A (± trend)	NA



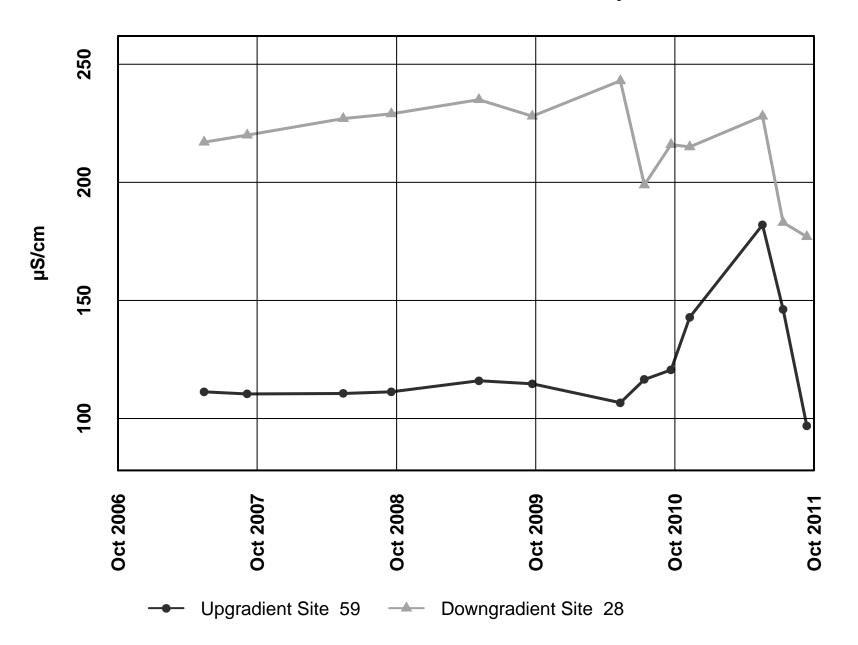
Season	al-Kendall Slop		
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-11.07		9.00
0.050	-7.54	0.33	8.00
0.100	-4.47	0.55	8.00
0.200	-2.45		3.58

	#28	-			asonal K		-	-					
Row label	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 8.7	Jun	Jul	Aug	<b>Sep</b> 8.6
a	WY2006 WY2007								8.7 8.7				
b c	WY2008								8.7 8.5				8.5 8.3
d	WY2009								8.4				8.0
e	WY2010								7.9		8.2		8.7
f	WY2011		8.2						7.8		7.4		8.3
	n	0	1	0	0	0	0	0	6	0	2	0	6
	t,	0	1	0	0	0	0	0	6	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1				-1
	c-a								-1				-1
	d-a								-1				-1
	e-a								-1				1
	f-a								-1				-1
	c-b d-b								-1				-1
	а-b e-b								-1 -1				-1 1
	f-b								-1				י 1-
	d-c								-1				-1
	e-c								-1				1
	f-c								-1				-1
	e-d								-1				1
	f-d								-1				1
	f-e								-1		-1		-1
	S _k	0	0	0	0	0	0	0	-15	0	-1	0	-5
σ	² s=								28.33		1.00		28.33
	S _k /\sigma _S								-2.82		-1.00		-0.94
	Z ² _k								7.94		1.00		0.88
	$\Sigma Z_k =$	-4.76	 F	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	15
	$\Sigma Z_{k}^{2}$	9.82											
	ΣΖ _k = -bar=ΣΖ _k /K=	9.82		Count	15	0	0	0	0			$\Sigma S_k$	-21

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	2.28	@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.320			χ ² h<χ ² (K-1)	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-2.63	@α/2=2.5% Z=	1.96	H ₀ (No trend)	REJECT
57.67	р	0.004			H _A (± trend)	ACCEPT

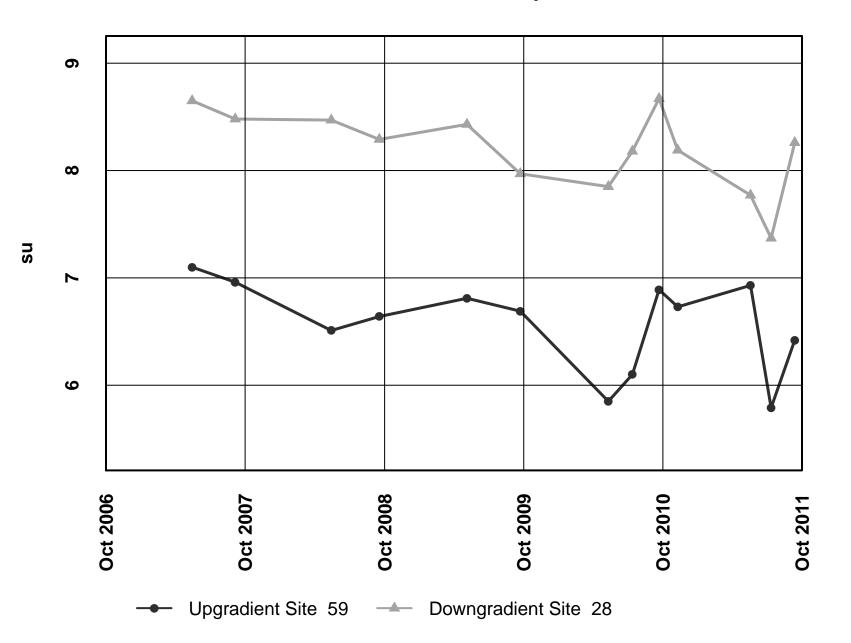


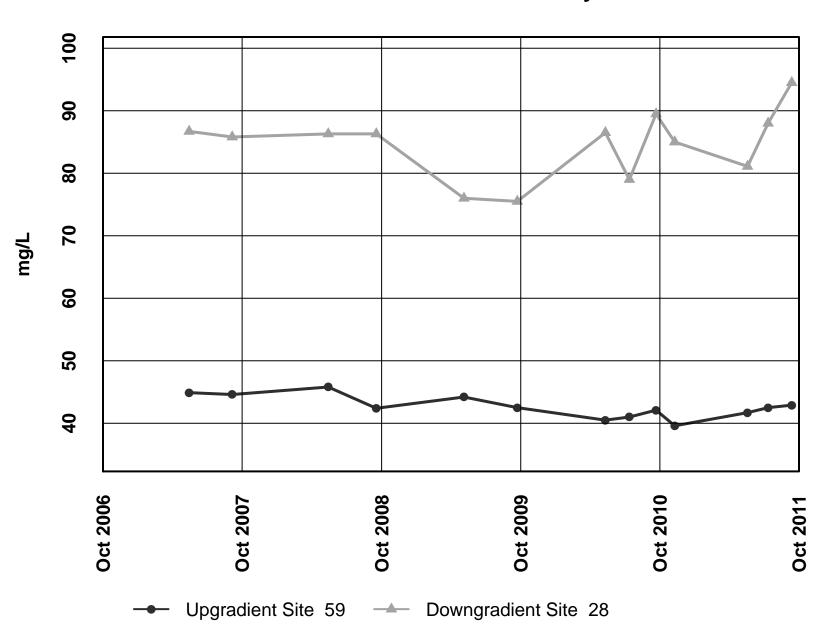
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.28		-0.05
0.050	-0.23	-0.16	-0.08
0.100	-0.22	-0.10	-0.09
0.200	-0.21		-0.12


-1.9%

w label	#28 Water Year	Oct	Nov	Dec	Jan	Feb	all analys Mar	Apr	May	Jun	Jul	Aug	Sep
a b c d e	WY2006 WY2007 WY2008 WY2009 WY2010							·	88.3 86.7 86.3 76.0 86.5		79.0		86.2 85.8 86.3 75.5 89.5
f	WY2011 n	0	85.0 1	0	0	0	0	0	81.1 6	0	88.0 2	0	94.5
	t,	0	1		0	0	0	0	6	0	2	0	6
	t ₂ t ₃	0	0	0	0 0	0	0 0	0	0	0	0	0	0
	t₄ t₅	0	0	0	0 0	0	0 0	0	0 0	0	0 0	0	0
	b-a				Ŭ	Ŭ		Ŭ	-1			Ŭ	-1
	c-a d-a								-1 -1				-1 -1
	e-a								-1				1
	f-a c-b								-1 -1				1
	d-b e-b								-1 -1				-1 1
	f-b d-c								-1 -1				1 -1
	e-c f-c								1 -1				1
	e-d f-d								1				1
	f-e S _k	0	0	0	0	0	0	0	-1 -9	0	1	0	1
		0	0	0	U	0	0	0	-9	0	1	0	1
	σ ² s= = S _k /σ _S								28.33 -1.69		1.00 1.00		28.33 1.32
	$Z_k^2$								2.86		1.00		1.73
	$\Sigma Z_k =$	0.62		Tie Extent	t1	t ₂	t ₃	t4	t _s			Σn	15
z	$\Sigma Z_{k}^{2}$ = Z-bar= $\Sigma Z_{k}/K$ =	5.59 0.21		Count	15	0	0	0	0			$\Sigma S_k$	-1
	2 572	<u>(17 L)</u> ²	5.40		- 50	,2	5.00			· .			
	$\chi^2_h = \Sigma Z^2_k +$	((Z-bar) ⁻ = <b>p</b>	5.46 <b>0.065</b>	I L	@α=5%	6 χ ² _(K-1) =	5.99		Γest for stat χ ² _h <χ ² _(K-1)		ACCEPT		
	$\Sigma VAR(S_k)$	$Z_{calc}$	0.00		@α/2=	2.5% Z=	1.96		H ₀ (No	trend)	ACCEPT		
	57.67	р	0.500						H _A (± t	rend)	REJECT		
100 - 90 -			-	_					•				
80 -					$\sim$		×			Seasonal	-Kendall Slope	e Confidence Ir	ntervals
70 -	-								=	α	Lower Limit	Sen's Slope	Upper Limit
	-								-	0.010 0.050	-3.74 -1.56		2.30 1.51
60 -	E									0.100	-1.41	-0.07	0.97
60 - 50 -	-									0.200	-0.83		0.38
60 - 50 - 40 - 30 -	- - - - - -												
60 - 50 -					1			1					
60 - 50 - 40 - 30 - 20 -	WY2006	WY2	2007	WY2008	WY2	009	WY2010	WY2	2011				

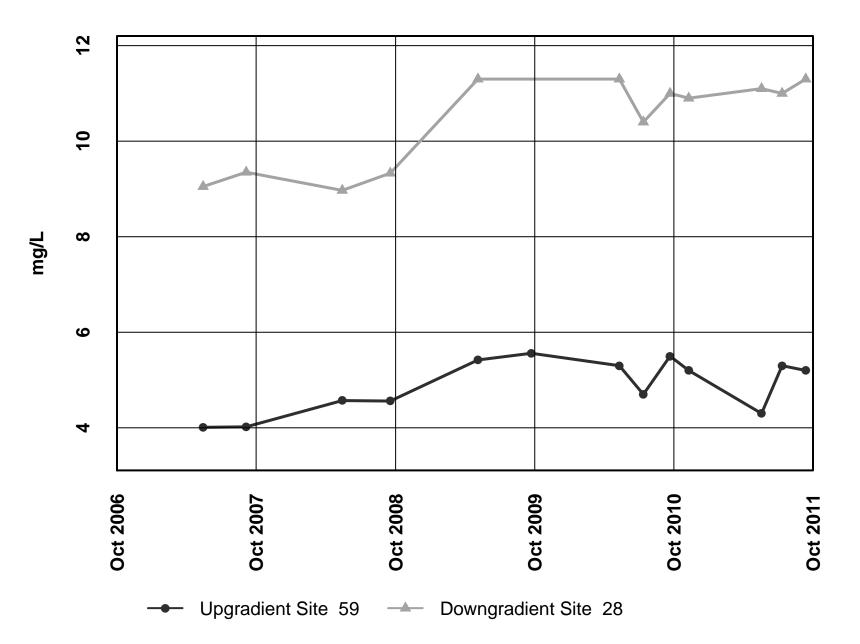
		0.04	Nov	Dee	Jan	Feb	Mar	A	Max	Jun	Jul	A	Com
ow label a	Water Year WY2006	Oct	NOV	Dec	Jan	rep	Mai	Apr	<b>May</b> 8.7	Juli	Jui	Aug	<b>Sep</b> 9.
b	WY2007								9.1				9.
C	WY2008								9.0				9.
d e	WY2009 WY2010								11.3 11.3		10.4		11.
f	WY2011		10.9						11.3		11.0		11.
	n	0	1	0	0	0	0	0	6	0	2	0	:
	t,	0 0	1 0	0 0	0 0	0 0	0 0	0 0	4 1	0 0	2 0	0 0	:
	t₂ t₃	0	0	0	0	0	0	0	0	0	0	0	
	t4	0	0	0	0	0 0	0	0	0	0 0	0	Ő	
	t ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a								1				-
	c-a d-a								1				-
	e-a								1				
	f-a								1				
	c-b								-1				-'
	d-b e-b								1				
	f-b								1				· ·
	d-c								1				
	e-c								1				-
	f-c								1 0				1
	e-d f-d								-1				
	f-e								-1		1		
	S _k	0	0	0	0	0	0	0	8	0	1	0	4
c	5 ² s=								27.33		1.00		16.67
	s S _k /σ _s								1.53		1.00		0.98
	Z ² _k								2.34		1.00		0.96
	$\Sigma Z_k =$	3.51	Г	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	14
	$\Sigma Z_{k}^{2} =$	4.30		Count	12	1	0	0	0			$\Sigma S_k$	13
Z	Z-bar=ΣZ _k /K=	1.17	L				-	-	-			i.	
	<u>2</u> ∑ <b>7</b> ² µ	( <b>7</b> h a r) ² -	0.40		or 50	/ w ²	F 00		a at fax at at	ion homoga	n oit i		
	$\chi^2_h = \Sigma Z^2_k - k$	r(z-bar) = p	0.19 <b>0.907</b>	L	@α=57	6 χ ² _(K-1) =	5.99		$\chi^2_h < \chi^2_{(K-1)}$	ion homoge	ACCEPT		
	$\Sigma VAR(S_k)$	Z _{calc}	1.79		00	ε=5% Z=	1.64	,	H₀ (No t		REJECT		
	45.00	P carc	0.963			0/0 2	1.01		H _A (± t		ACCEPT		
	L	•	ł						~ `				
	12									1			
€	10						×		X				
bm			-							Seasona	I-Kendall Slope	Confidence Int	
	8	-								α	Limit	Slope	Upper Limit
ŭ	-									0.010	-0.04		0.74
Ĕ.	6 [									0.050	0.07	0.49	0.66
ate										0.100 0.200	0.25 0.37		0.62 0.54
<u> </u>	4											4.6%	
<u>i</u>	Г											4.0 %	
Sulfate, Total (mg/l)	2												
Sul	2												


— Oct → Nov → Dec → Jan → Feb → Mar
 Apr → May → Jun → Jul → Aug → Sep

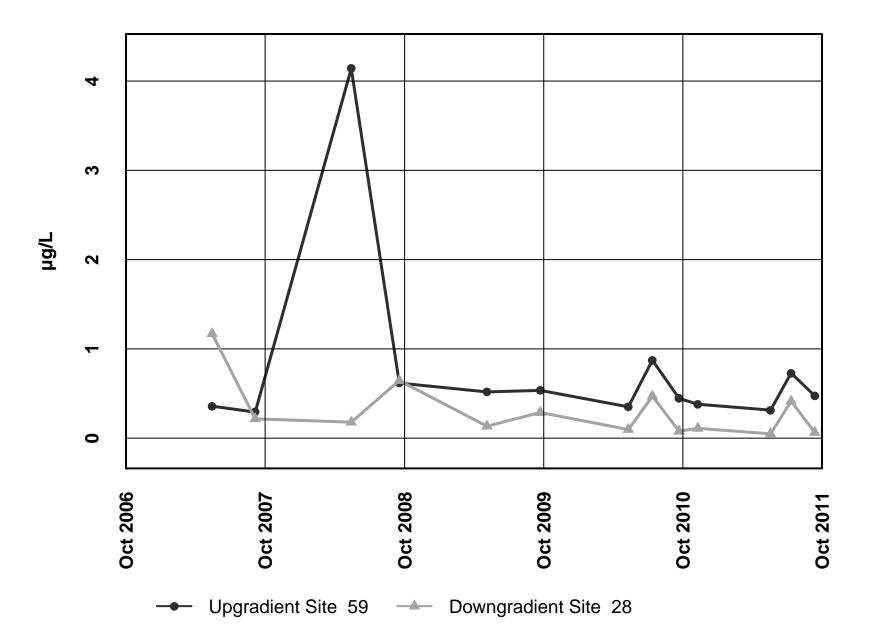

low label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a b c d	WY2006 WY2007 WY2008 WY2009								14.1 1.2 0.2 0.1		0.5		3.5 0.2 0.6 0.3
e f	WY2010 WY2011		0.1						0.1 0.0		0.5 0.4		0.1 0.1
-	n	0	1	0	0	0	0	0	6	0		0	6
	t,	0	1	0	0	0	0	0	6	0	2	0	6
	$t_1$	0	0	0	0	0	0	0	0	0		0	0
	t ₃	0	0	0	0	0	0	0	0	0		0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		0 0	0 0
	b-a c-a								-1 -1				-1 -1
	d-a								-1				-1
	e-a								-1				-1
	f-a c-b								-1 -1				-1 1
	d-b								-1				1
	e-b f-b								-1 -1				-1 -1
	d-c								-1				-1
	e-c								-1				-1
	f-c e-d								-1 -1				-1 -1
	f-d								-1				-1
	f-e S _k	0	0	0	0	0	0	0	-1 -15	0	-1 -1	0	-1 -11
		-	-	-	-	-	-	-			-	-	
	$\sigma_{S}^{2}$ =								28.33		1.00		28.33
	= S _k /σ _S								-2.82		-1.00		-2.07
	Z ² _k								7.94		1.00		4.27
	$\Sigma Z_k =$	-5.88	Γ	Tie Extent	t,	t ₂	t ₃	t4	t ₅			Σn	15
	$\Sigma Z_k^2 =$	13.21		Count	15	0	0	0	0			$\Sigma S_k$	-27
2	Z-bar=ΣZ _k /K=	-1.96											
	$\chi^2_h = \Sigma Z^2_k$ -I	((7-bar) ² -	1.67		@4-5	% χ ² _(K-1) =	5.99		Test for stat	ion homor	neneity		
	λ h k-	( <u>2-bai)</u> =	0.434	L	@u=J	70 λ (K-1)-	5.55		$\chi^2_h < \chi^2_{(K-1)}$	lon nomog	ACCEPT		
	$\Sigma VAR(S_k)$	Z _{calc}	-3.42		@α/2=	=2.5% Z=	1.96		H₀ (No	trend)	REJECT		
	57.67	р	0.000	L					H _A (± t		ACCEPT		
16													
<b>1</b> 4													
<b>1</b> 2	$+ \rightarrow$								=	Seasona	al-Kendall Slop		
14         12         10         8         6         4         2           10         8         6         4         2         2	·`	\								α	Lower Limit	Sen's Slope	Upper Limit
8		$\mathbf{A}$							-	0.010	-1.88		-0.04
n o										0.050 0.100	-0.95 -0.74	-0.28	-0.05 -0.05
<b>6</b>		$\overline{}$								0.200	-0.74 -0.47		-0.05 -0.14
4 کے	+	<u>_</u>										120.00/	
<b>5</b> 2		$\searrow$										-129.2%	
						-	X		<u> </u>				
0	-												



Site 59 vs. Site 28 – Conductivity Field


Site 59 vs. Site 28 – pH Field






Site 59 vs. Site 28 – Alkalinity Total

Site 59 vs. Site 28 – Sulfate Total







## **INTERPRETIVE REPORT SITE 9 "TRIBUTARY CREEK"**

The Tributary Creek site was initially chosen to monitor the effects on water quality caused by the originally planned, larger slurry tailings impoundment. It is approximately one mile downstream from the present dry stack tailings site. The site was monitored from 1981 – 1993 when it was temporarily suspended by administrative agreement with the USFS. The site was reactivated in 2001 as a biological monitoring site for the Tailings Pile. HGCMC recommenced collection of water chemistry samples after receiving a suggestion to do so from ADNR personnel. It was noted that should the required annual biomonitoring show significant changes, an understanding of any related water chemistry variations would enhance the interpretation of those results. During the 2011 water year, samples were collected in conjunction with the normal monthly FWMP sampling run during the months of November, May, July, and September and analyzed for Suite Q analytes.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Routine water chemistry data collection was reinstated May 2006. All data collected at the site since then are included in the data analyses. As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes
No outliers hav	ve been identified by I	HGCMC for tl	he period of	October 2006 through September 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Four results exceeding these criteria have been identified, and listed in the table below. Three data points are for the total alkalinity values of 14.1 mg/L, 13.0 mg/L, and 18.6 mg/L for the November 2010, May 2011 and September 2011 sampling events respectively, which exceeds the AWQS lower limit of 20 mg/L. Also, the July field pH value was 5.88 su where as the AWQS is 6.5 su.

#### Limits Lower Upper Value Hardness Sample Date Parameter 9-Nov-10 Alkalinity 14.1 mg/L 20 19-May-11 Alkalinity 13.0 mg/L 20 12-Sep-11 Alkalinity 18.6 mg/L 20 12-Jul-11 pH Field 5.88 su 6.5 8.50

#### **Table of Exceedance for Water Year 2011**

As stated in past reports, the currently limited dataset for this site makes definitive interpretation of these exceedances difficult. Site 29 (MW-3S), located in the headwaters of Tributary Creek, also had exceedances for these two analytes. For the second consecutive year there have been no dissolved lead exceedances. In the previous four water years there had been dissolved lead exceedances recorded in each year. This water year all of the dissolved lead values were approximately half the AWQS, which was ~1.0  $\mu$ g/L.

X-Y plots have been generated to graphically present the data for each of the analytes that are listed in Suite Q. Given the short record, no clear determination can be made as to if any trends are present. Comparisons made between the current dataset and an analysis of data from the prior monitoring period from 1981 to 1993 indicates that no major changes in water chemistry for the listed analytes appears to have occurred.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). There were no statistically significant ( $\alpha/2=2.5\%$ ) trends identified for the current water year. This marks the first time that there were a sufficient number years (n=6) of data for conducting these calculations.

	Mann-Ker	ndall test st	atistics	Sen's slope	e estimate
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.06			
pH Field	6	0.06			
Alkalinity, Total	6	0.41			
Sulfate, Total	6	0.06			
Zinc, Dissolved	6	0.33			

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

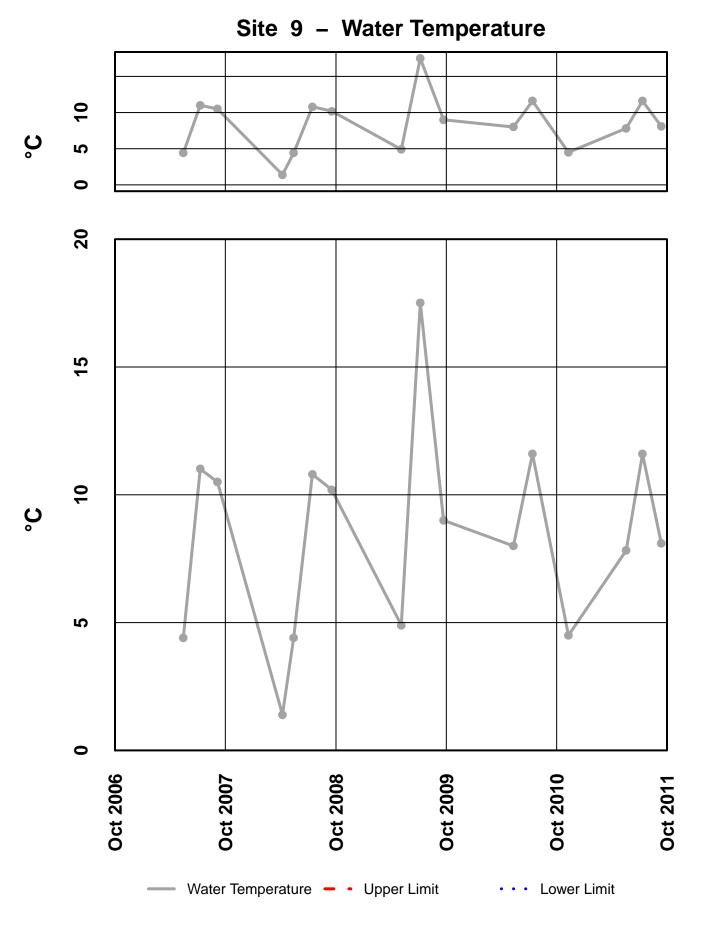
HGCMC will continue to monitor Site 9 during May, July, September, and November for the Suite Q analytes. This sampling is in addition to the already scheduled July biomonitoring. HGCMC feels that this schedule will adequately characterize the water quality parameters while addressing safety concerns associated with winter access down the steep slope that leads to the site and the increased potential for bear encounters during salmon spawning season.

			3		1VI3 - LO	ower Iri	butary (	Jreek					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		4.5						7.8		11.6		8.1	8.0
Conductivity-Field(µmho)		95.6						96		132.7		85	95.8
Conductivity-Lab (µmho)		90						96		111		103	100
pH Lab (standard units)		6.39						6.77		6.58		6.74	6.66
pH Field (standard units)		6.84						6.78		5.88		6.69	6.74
Total Alkalinity (mg/L)		14.1						13		20.9		18.6	16.4
Total Sulfate (mg/L)		19.3						16.5		18		18	18.0
Hardness (mg/L)		40.7						35.2		45.7		41.9	41.3
Dissolved As (ug/L)		0.854						0.586		0.869		0.873	0.862
Dissolved Ba (ug/L)		37						36		44.7		42.7	39.9
Dissolved Cd (ug/L)		0.0393						0.0386		0.0304		0.0344	0.0365
Dissolved Cr (ug/L)		0.609						0.45		0.513		0.667	0.561
Dissolved Cu (ug/L)		1.86						1.85		3.36		2.05	1.955
Dissolved Pb (ug/L)		0.503						0.261		0.317		0.474	0.3955
Dissolved Ni (ug/L)		2.94						2.56		3.01		3.1	2.975
Dissolved Ag (ug/L)		0.004						0.007		0.007		0.005	0.006
Dissolved Zn (ug/L)		6.91						6.21		5.97		6.59	6.40
Dissolved Se (ug/L)		0.23						0.162		0.057		0.373	0.196
Dissolved Hg (ug/L)		0.00322						0.00227		0.00262		0.00405	0.002920

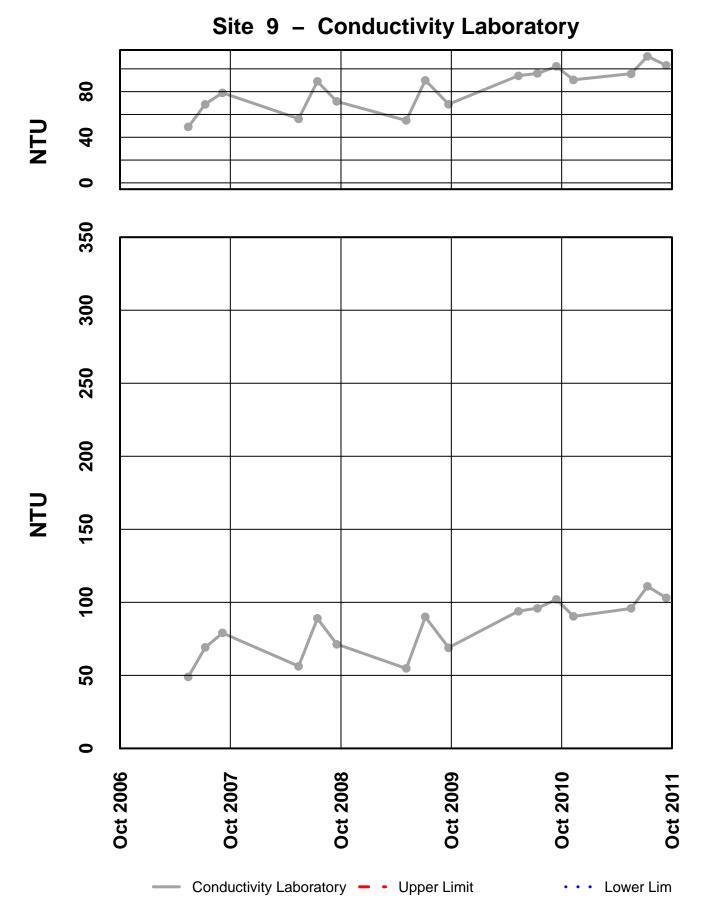
### Site 009FMS - 'Lower Tributary Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

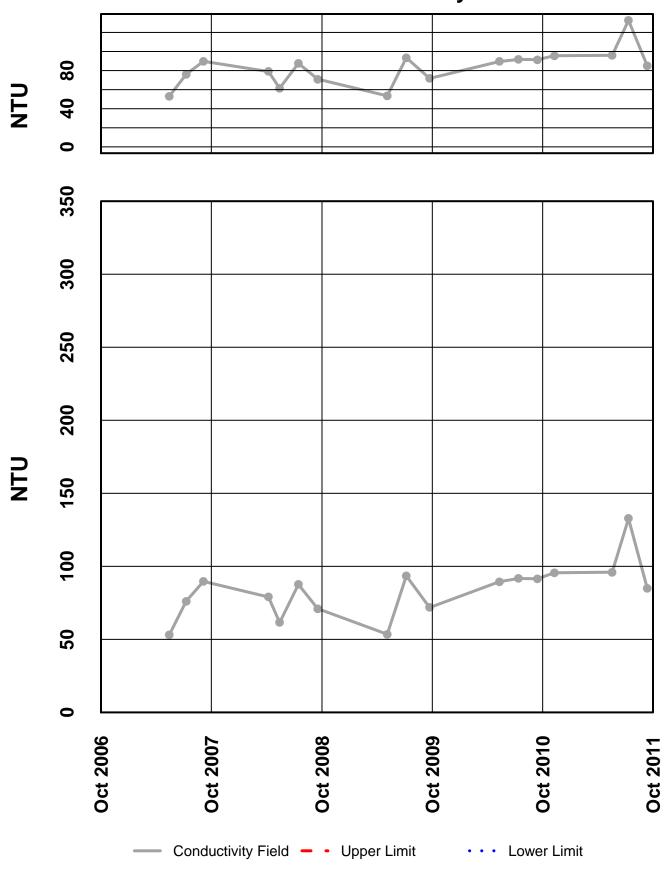
Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

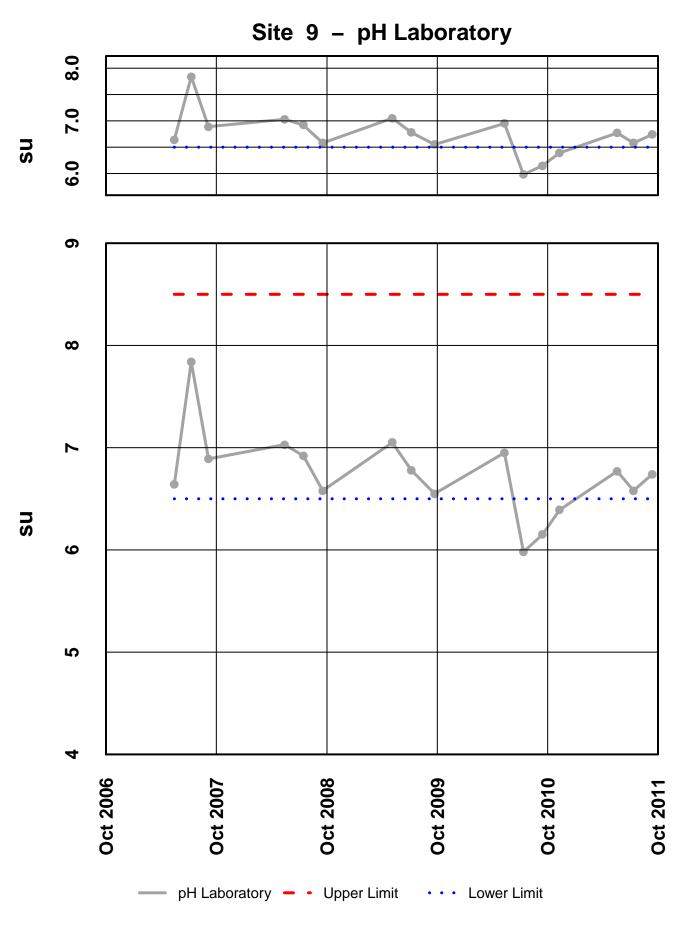

# Date Range: 10/01/2010 to 09/30/2011

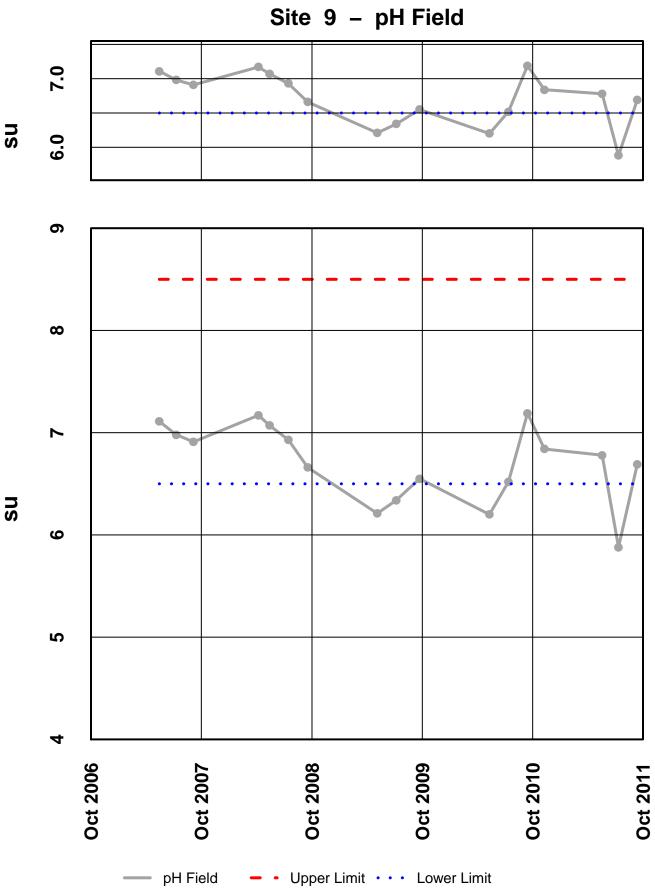
Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
9	11/9/2010	12:00 AM				
			Se diss, µg/l	0.23	J	Below Quantitative Range
)	5/19/2011	12:00 AM				
			SO4 Tot, mg/l	16.5	J	Sample Reciept Temperature
			Se diss, µg/l	0.162	J	Below Quantitative Range
			Ag diss, µg/l	0.00715	J	Below Quantitative Range
			pH Lab, su	6.77	J	Hold Time Violation
			Cd diss, µg/l	0.0386	U	Trip Blank Contamination
	7/12/2011	12:00 AM				
			Ag diss, µg/l	0.00716	J	Below Quantitative Range
			SO4 Tot, mg/l	18	J	Sample Reciept Temperature
)	9/12/2011	12:00 AM				-
			Ag diss, µg/l	0.0054	J	Below Quantitative Range
			SO4 Tot, mg/l	18	J	Sample Receipt Temperature


Qualifier	Description		
J	Positively Identified - Approximate concentration		
Ν	Presumptive Evidence For Tentative Identification		
NJ	Tentatively Identified - Approximate Concentration		
R	Rejected - Cannot be Verified		
U	Not Detected Above Quantitation Limit		
UJ	Not Detected Above Approximate Qu		



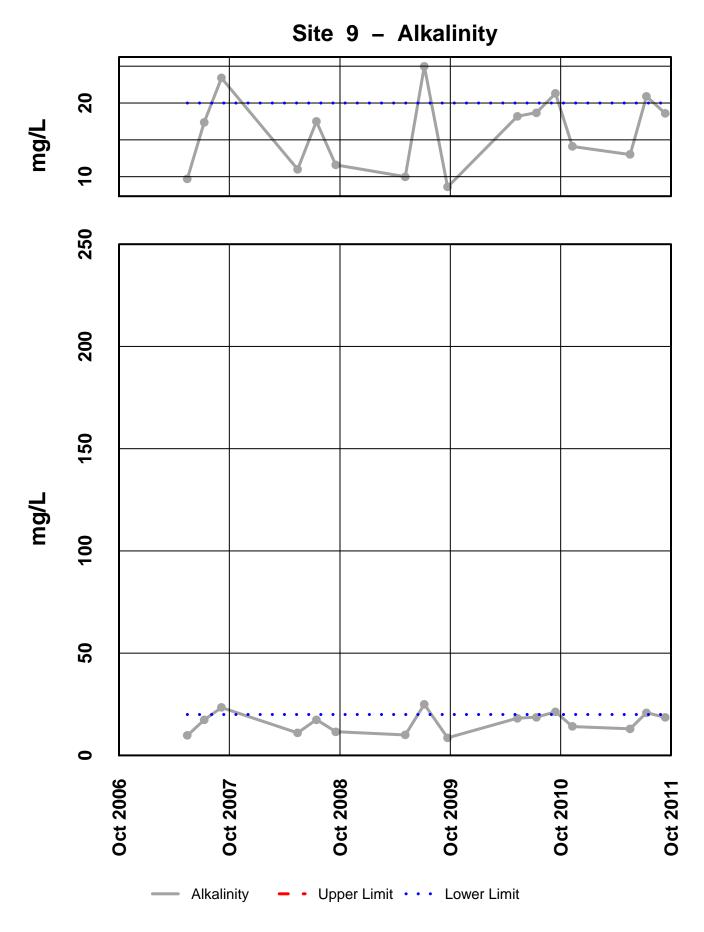
Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



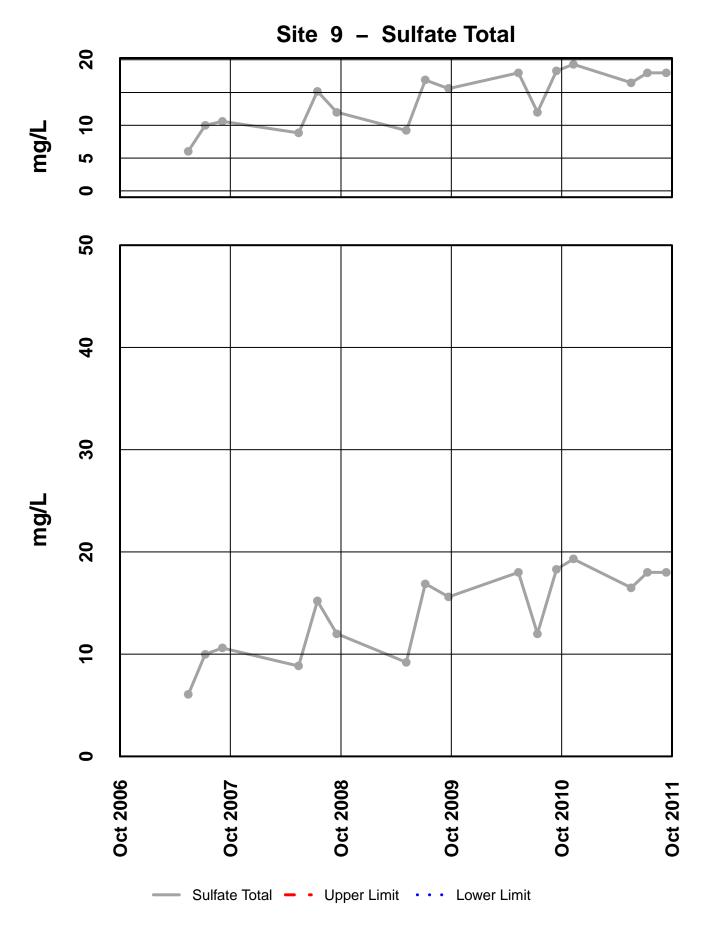


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

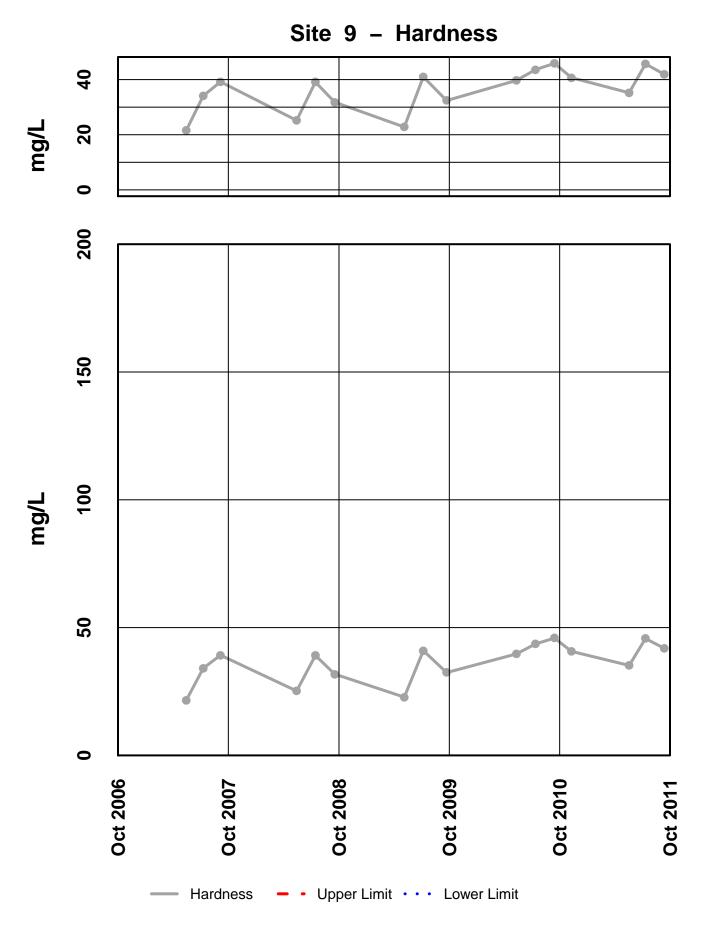


Site 9 – Conductivity Field

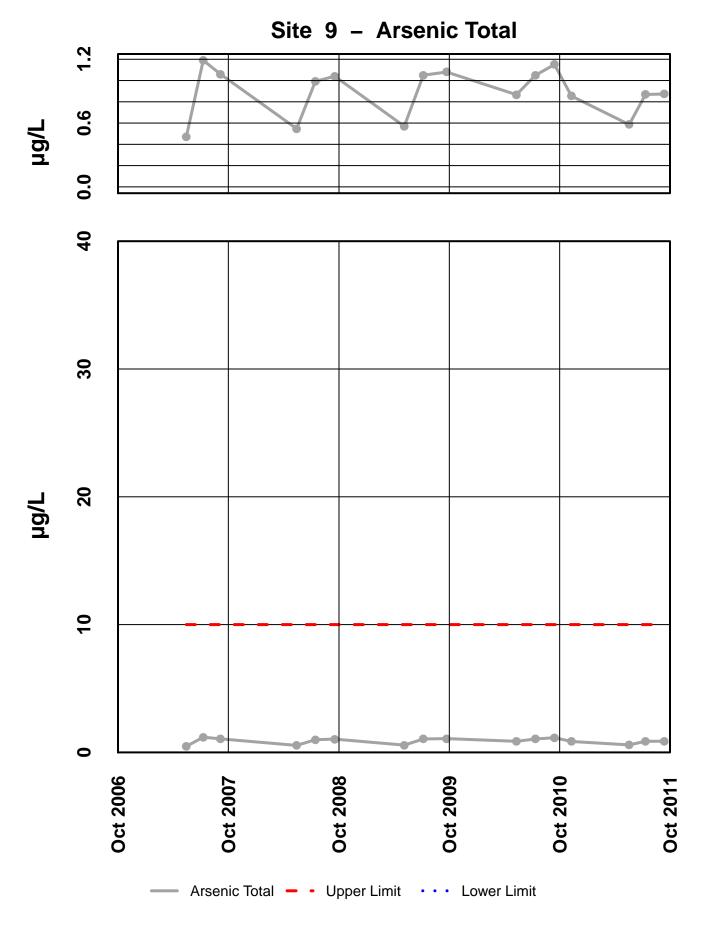

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

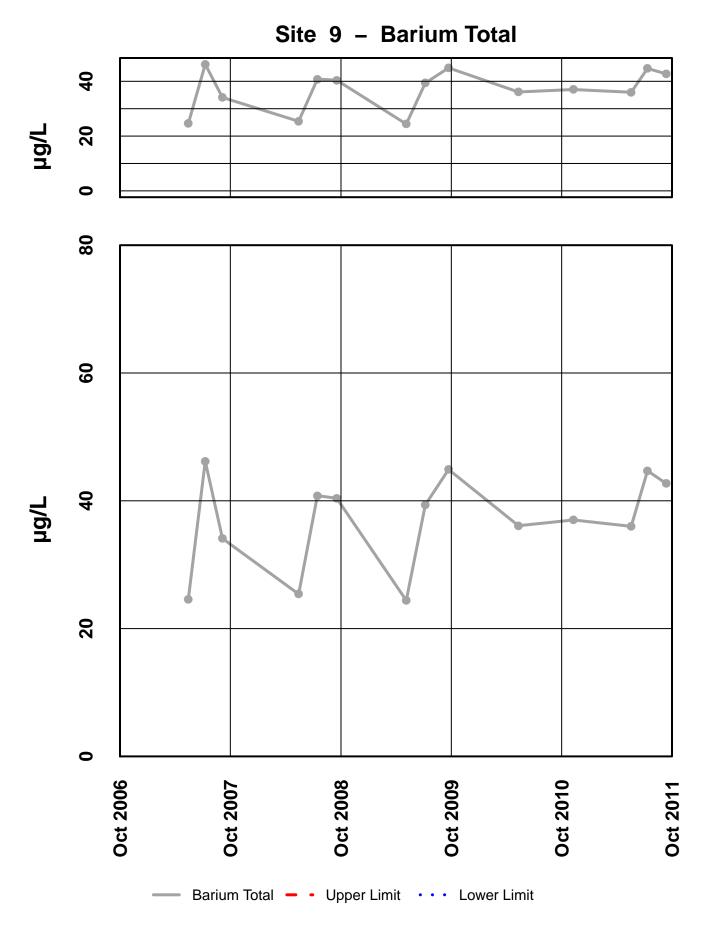




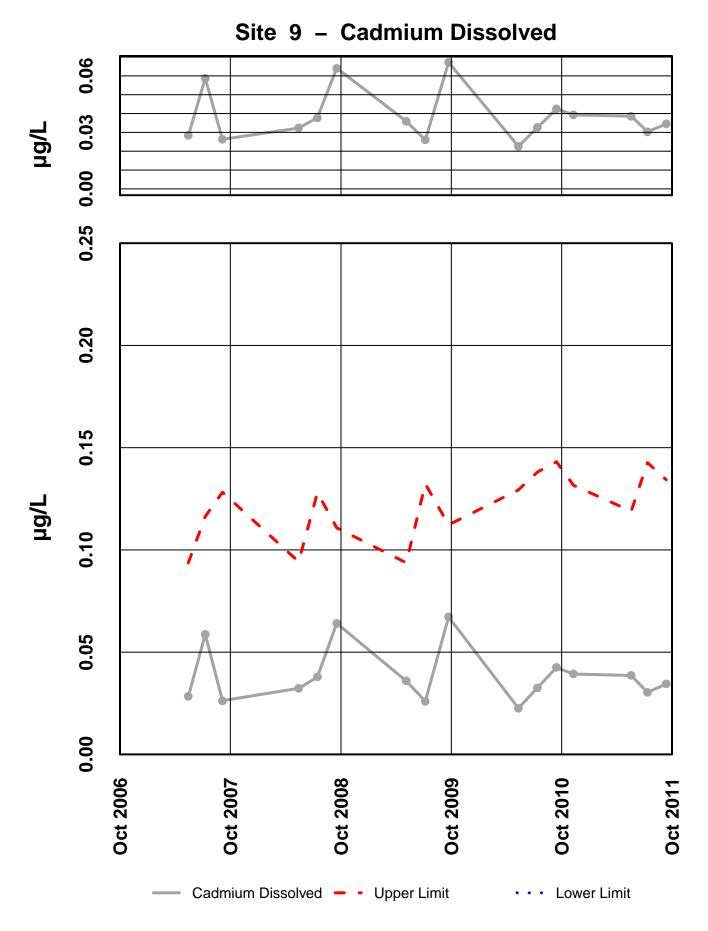


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

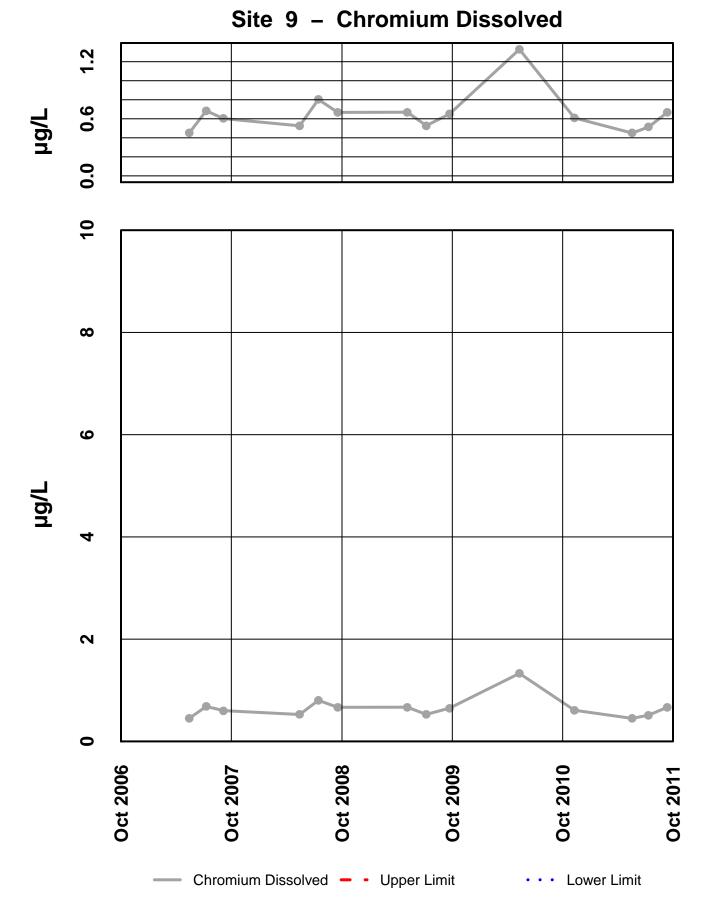
SU



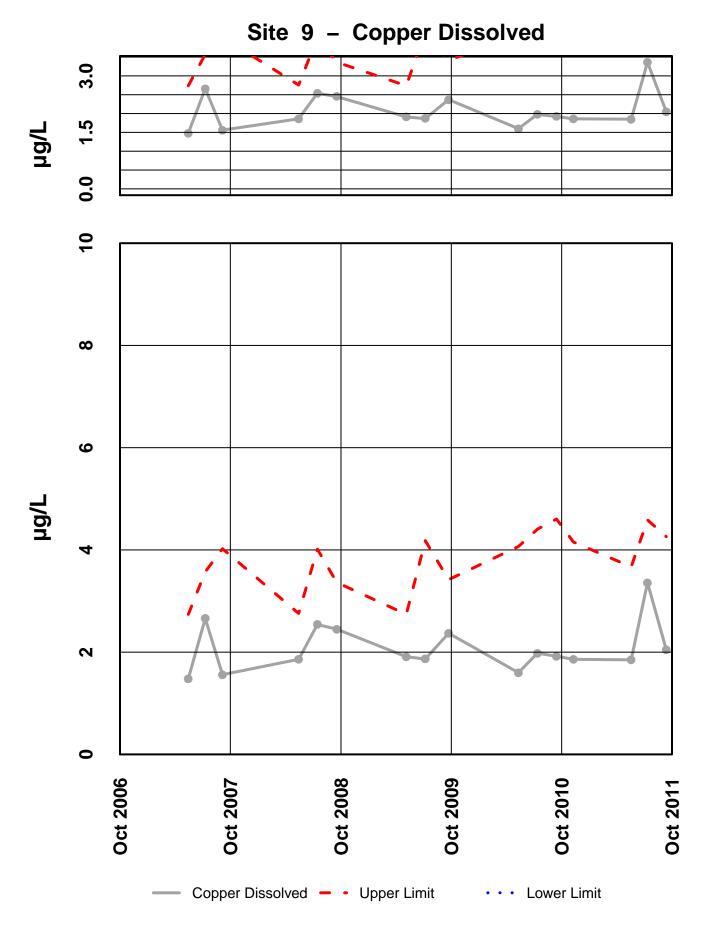


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

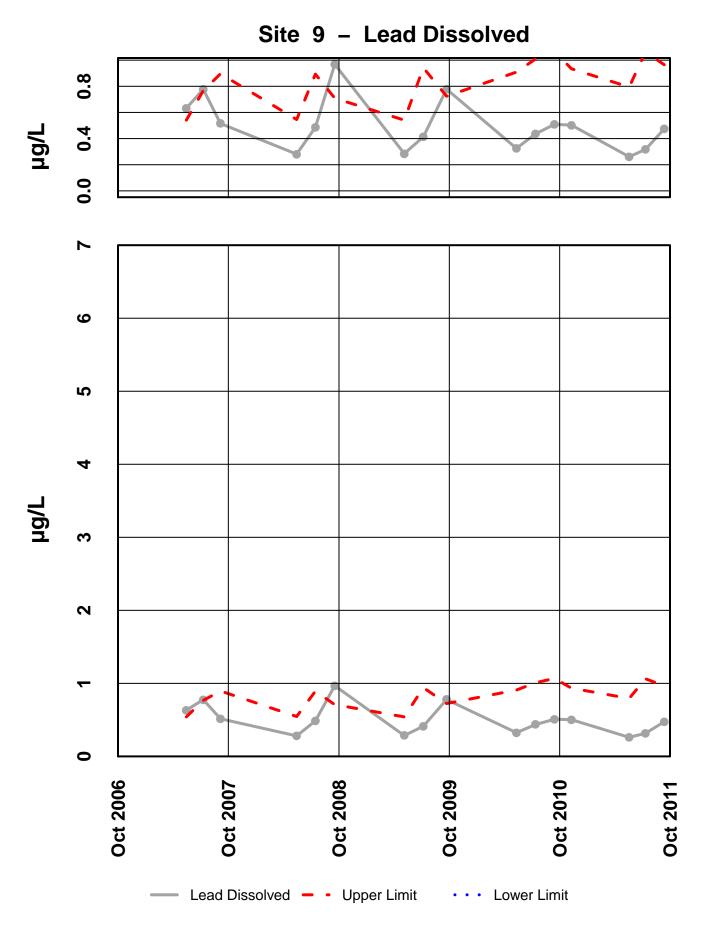




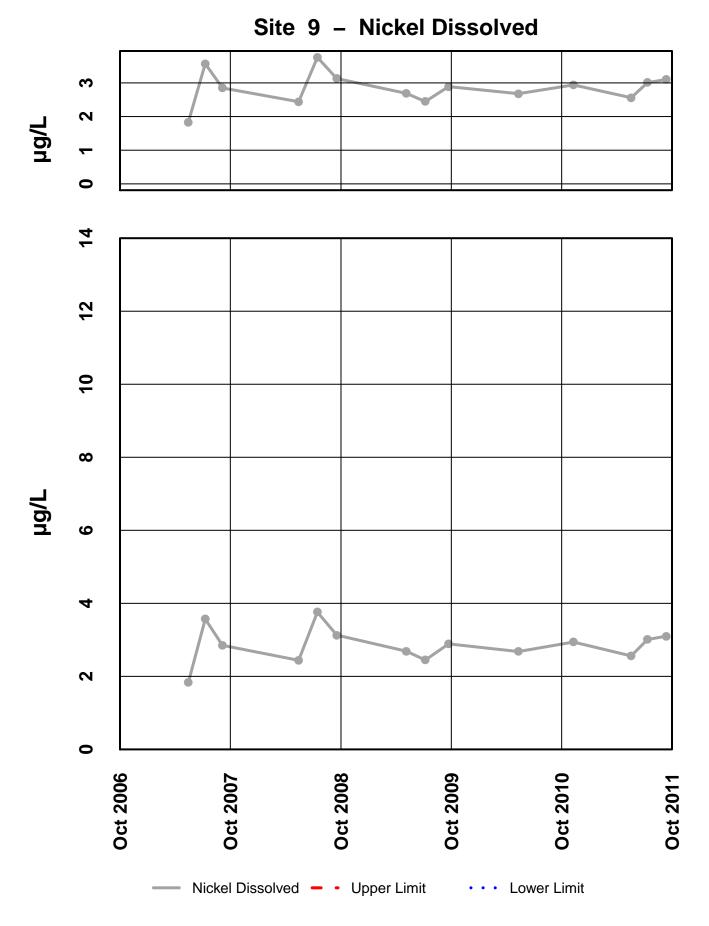


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



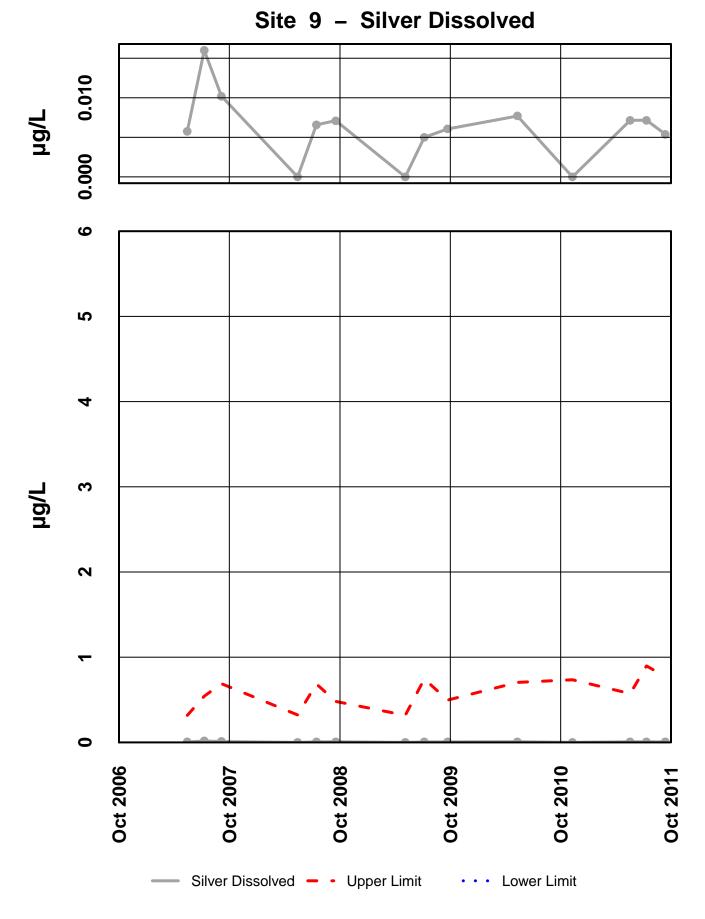




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

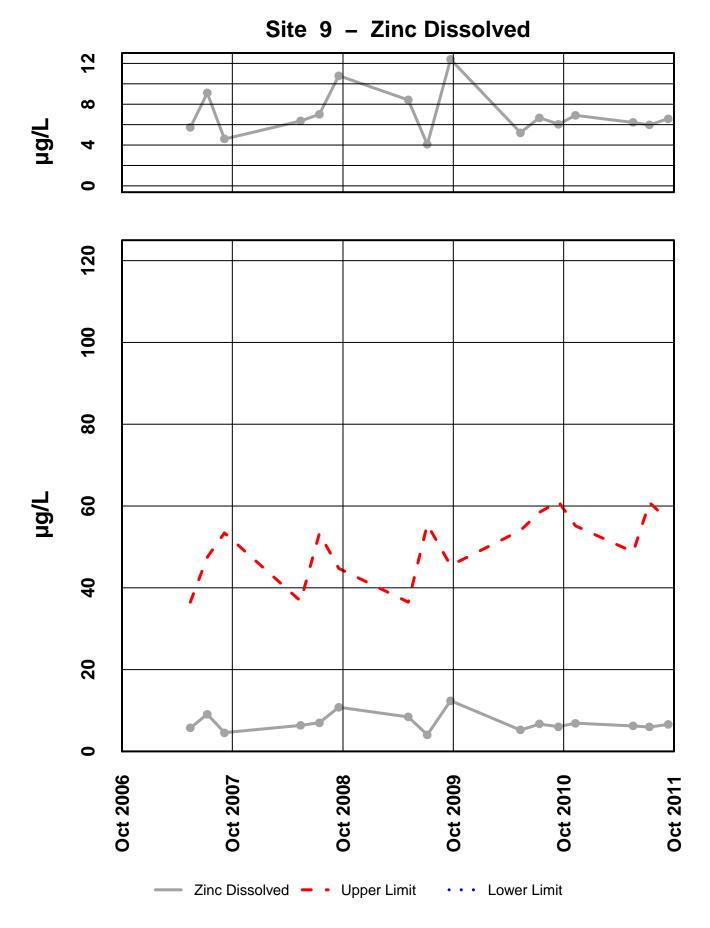




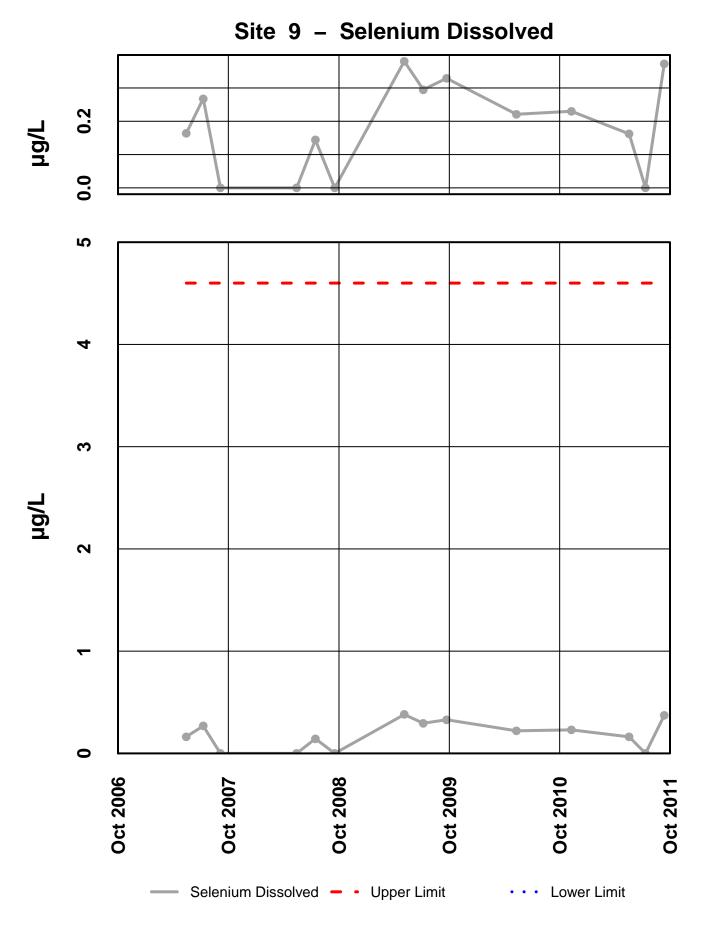

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



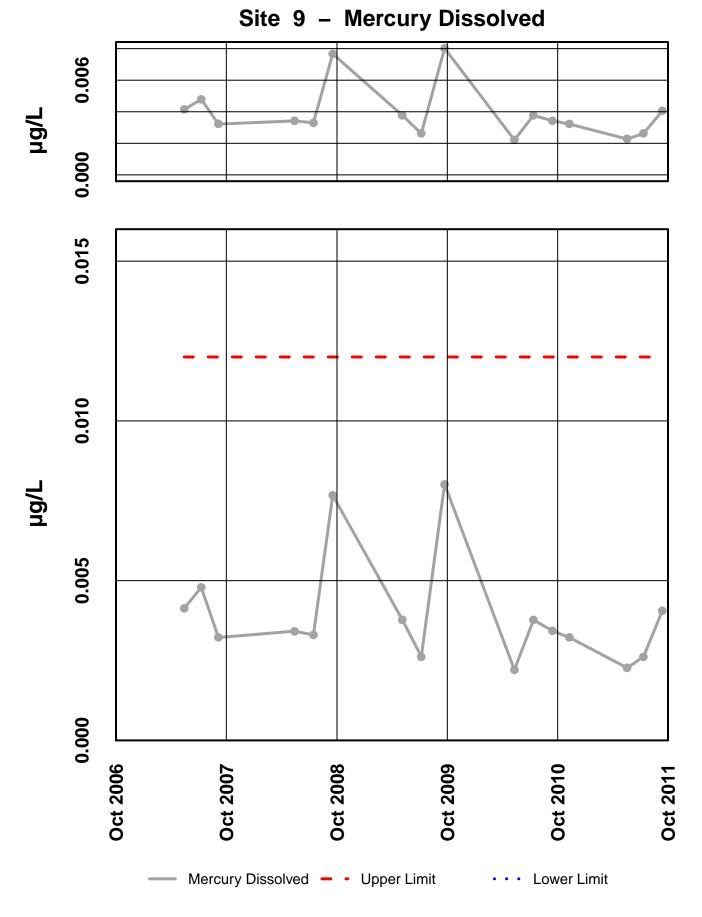




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



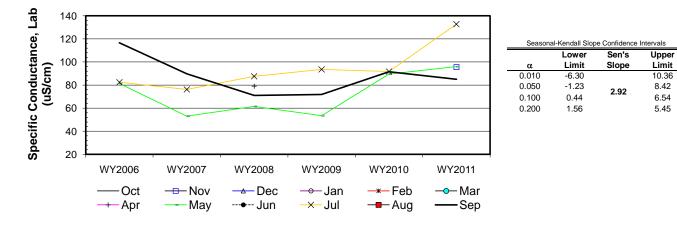

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

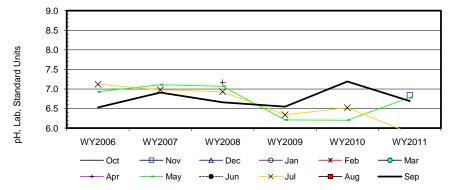



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Site	#9								ductance, L			-	_
Row label	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 81.4	Jun	Jul 82.5	Aug	Sep 116.6
a	WY2006 WY2007										82.5 76.2		
b								70	53.1				89.7
C	WY2008							79	61.5 53.5		87.6 93.5		71 71.8
d	WY2009												
e	WY2010		95.6						89.5		91.7 132.7		91.5
I	WY2011 n	0	95.6	0	0	0	0	1	96 6	0	132.7	0	85
		0		0	Ū	0	Ŭ		0	0	Ũ	Ŭ	
	t1	0	1	0	0	0	0	1	6	0	6	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								-1		-1		-1
	c-a								-1		1		-1
	d-a								-1		1		-1
	e-a								1		1		-1
	f-a								1		1		-1
	c-b								1		1		-1
	d-b								1		1		-1
	e-b								1		1		1
	f-b								1		1		-1
	d-c								-1		1		1
	e-c								1		1		1
	f-c								1		1		1
	e-d								1		-1		1
	f-d								1		1		1
	f-e								1		1		-1
	S _k	0	0	0	0	0	0	0	7	0	11	0	-3
	² s=								28.33		28.33		28.33
	s- S _k /σ _s								1.32		2.07		-0.56
	Z ² _k								1.73		4.27		0.32
	$\Sigma Z_k =$	2.82	Г	Tie Extent	t,	t ₂	t ₃	t4	t₅			Σn	20
	$\Sigma Z_{k}^{2}$	6.32							0			ΣS _k	15
	∠∠_ _k = Z-bar=∑Z _k /K=	6.32 0.94		Count	20	0	0	0	U			∠o _k	15

ite	#9	Seasonal Kendall analysis for Specific Conductance, Lab (uS/cm)	
-----	----	-----------------------------------------------------------------	--

	$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	3.67	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneity	
		р	0.160			χ ² h<χ ² (K-1)	ACCEPT
Σ	EVAR(S _k )	$\mathbf{Z}_{calc}$	1.52	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
	85.00	р	0.936			H _A (± trend)	REJECT

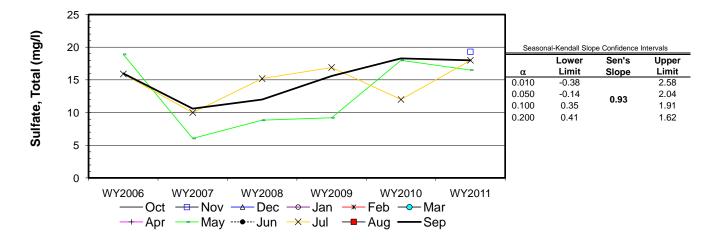



10.36 8.42 6.54 5.45

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006								6.9		7.1		6.5
b	WY2007								7.1		7.0		6.9
С	WY2008							7.2	7.1		6.9		6.7
d	WY2009								6.2		6.3		6.6
е	WY2010								6.2		6.5		7.2
f	WY2011		6.8						6.8		5.9		6.7
	n	0	1	0	0	0	0	1	6	0	6	0	6
	t,	0	1	0	0	0	0	1	6	0	6	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	(
	t ₃	0	0	0	0	0	0	0	0	0	0	0	(
	t ₄	0	0	0	0	0	0	0	0	0	0	0	(
	t₅	0	0	0	0	0	0	0	0	0	0	0	(
	b-a								1		-1		1
	c-a								1		-1		1
	d-a								-1		-1		1
	e-a								-1		-1		1
	f-a								-1		-1		1
	c-b								-1		-1		-1
	d-b								-1		-1		-1
	e-b								-1		-1		1
	f-b								-1		-1		-1
	d-c								-1		-1		-1
	e-c								-1		-1		1
	f-c e-d								-1 -1		-1 1		1
	f-d								-1		-1		
	f-e								1		-1		-1
	S _k	0	0	0	0	0	0	0	-7	0	-13	0	5
	² s=								28.33		28.33		28.33
	s- S _k /σ _s								-1.32		-2.44		0.94
2	<b>z</b> ² k								1.73		5.96		0.88
	$\Sigma Z_k =$	-2.82	F	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	20
	$\Sigma Z_{k}^{2}$	8.58		Count	20	0	0	0	0			$\Sigma S_k$	-15

Seasonal Kendall	l analysis for	pH, Lab,	Standard	Units
------------------	----------------	----------	----------	-------

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	5.93		@α=5% χ ² _(K-1) =	5.99	Test for station homo	ogeneity
	р	0.052				$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.52		@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
85.00	р	0.064	-			H _A (± trend)	REJECT




Seasona	Seasonal-Kendall Slope Confidence Intervals											
	Lower	Sen's	Upper									
α	Limit	Slope	Limit									
0.010	-0.25		0.04									
0.050	-0.23	-0.10	-0.01									
0.100	-0.19	-0.10	-0.04									
0.200	-0.16		-0.05									

label		-			Seasona		-				-	-	_
а	Water Year WY2006	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 14.1	Jun	Jul 24.5	Aug	<b>Sep</b> 20.2
с С	WY2007 WY2008								9.7 11.0		17.4 17.5		23.4 11.6
b	WY2009								10.0		25.0		8.6
e f	WY2010 WY2011		14.1						18.2 13.0		18.7 20.9		21.3 18.6
1	n	0	14.1	0	0	0	0	0	6	0	6	0	6
	t ₁	0	1	0	0	0	0	0	6	0	6	0	6
	t ₂ t ₃	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a c-a								-1 -1		-1 -1		1 -1
	d-a								-1		-1		-1
	e-a								1		-1		1
	f-a c-b								-1 1		-1 1		-1 -1
	d-b								1		1		-1 -1
	e-b								1		1		-1
	f-b d-c								-1		1		-1 -1
	e-c								1		1		1
	f-c								1		1		1
	e-d f-d								1		-1 -1		1
	f-e								-1		1		-1
	S _k	0	0	0	0	0	0	0	3	0	3	0	-3
	σ ² s=								28.33		28.33		28.33
	$= S_k / \sigma_S$								0.56		0.56		-0.56
	$Z_{k}^{2}$								0.32		0.32		0.32
	$\Sigma Z_k =$	0.56	Т	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			Σn	19
	$\Sigma Z_{k}^{2}$ = Z-bar= $\Sigma Z_{k}/K$ =	0.95 0.19		Count	19	0	0	0	0			$\Sigma S_k$	3
	$\chi^2_h = \Sigma Z^2_k$ -h	K(Z-bar) ² =	0.85		@α=5%	6 χ ² _(K-1) =	5.99		est for stat	ion homog	eneity		
				-					0 0				
		р	0.655					χ	$\chi^2_h < \chi^2_{(K-1)}$		ACCEPT		
	ΣVAR(S _k )		0.22		@α/2=2	2.5% Z=	1.96	λ	H ₀ (No t	rend)	ACCEPT		
	ΣVAR(S _k ) 85.00	p Z _{calc} p			@α/2=2	2.5% Z=	1.96	λ		rend)			
	85.00	$Z_{calc}$	0.22		@α/2=;	2.5% Z=	1.96	λ	H ₀ (No t	rend)	ACCEPT		
26 · 24 ·		$Z_{calc}$	0.22		@α/2=:	2.5% Z=	1.96	λ	H ₀ (No t	rend)	ACCEPT		
24 · 22 ·	85.00	$Z_{calc}$	0.22		@α/2=:	2.5% Z=	1.96	) 	H ₀ (No t H _A (± tr	rend) rend)	ACCEPT REJECT		
4 2	85.00	$Z_{calc}$	0.22		@α/2=:	2.5% Z=	1.96		H ₀ (No t H _A (± tr	rend) rend) Seasona	ACCEPT REJECT I-Kendall Slope Lower	Sen's	Upper
24 22 20	85.00	Z _{calc} p	0.22 0.586		@α/2=:	2.5% Z=	1.96		H ₀ (No t H _A (± tr	rrend) rend) Seasona α 0.010	ACCEPT REJECT I-Kendall Slope Lower Limit -2.20		Upper Limit 1.34
24 22 20 8	85.00	$Z_{calc}$	0.22 0.586		@α/2=; ×	2.5% Z=	1.96		H ₀ (No t H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050	ACCEPT REJECT Lower Limit -2.20 -1.37	Sen's	Upper Limit 1.34 0.89
24 · 22 · 20 · 18 ·	85.00	Z _{calc} p	0.22 0.586		@a/2=: ×	2.5% Z=	1.96		H ₀ (No † H _A (± tr	rrend) rend) Seasona α 0.010	ACCEPT REJECT I-Kendall Slope Lower Limit -2.20	Sen's Slope	Upper Limit 1.34
24 · 22 · 20 · 18 · 16 ·	85.00	Z _{calc} p	0.22 0.586		@α/2=: ×	2.5% Z=	1.96		H ₀ (No † H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT REJECT Lower Limit -2.20 -1.37 -1.08	Sen's Slope	Upper Limit 1.34 0.89 0.73
24 22 18 16 14	85.00	Z _{calc} p	0.22 0.586		@α/2=:	2.5% Z=	1.96		H ₀ (No † H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT REJECT Lower Limit -2.20 -1.37 -1.08	Sen's Slope	Upper Limit 1.34 0.89 0.73
24	85.00	Z _{calc} p	0.22 0.586	×	@α/2=:		1.96		H ₀ (No t H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT REJECT Lower Limit -2.20 -1.37 -1.08	Sen's Slope	Upper Limit 1.34 0.89 0.73
24 22 20 18 16 14	85.00	Z _{calc} p	0.22 0.586	WY2008	WY2	009	WY2010	WY2	H ₀ (No † H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT REJECT Lower Limit -2.20 -1.37 -1.08	Sen's Slope	Upper Limit 1.34 0.89 0.73
224 · 222 · 18 · 16 · 14 ·	85.00	Z _{calc} p	0.22 0.586		WY2	009 Jan		WY2	H ₀ (No t H _A (± tr	rend) rend) <u>Seasona</u> <u>α</u> 0.010 0.050 0.100	ACCEPT REJECT Lower Limit -2.20 -1.37 -1.08	Sen's Slope	Upper Limit 1.34 0.89 0.73

Site	#9			3	easonai	Kendall	anarysi	s ior Suir		u (mg/i)			
Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
а	WY2006								18.9		15.9		16.
b	WY2007								6.1		10.0		10.0
c	WY2008								8.8		15.2		12.0
d	WY2009								9.2		16.9		15.6
e f	WY2010 WY2011		10.2						18.0		12.0 18.0		18.3
I	n	0	<u>19.3</u> 1	0	0	0	0	0	16.5 6	0	6	0	18.0
	t,	0	1	0	0	0	0	0	6	0	6	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	0
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	C
	L ₅	0	0	0	0	0	0	0	0	0	0	0	
	b-a								-1		-1		-1
	c-a								-1		-1		-1
	d-a								-1		1		-1
	e-a								-1		-1		1
	f-a								-1		1		1
	c-b d-b								1		1		1
	а-b e-b								1		1		1
	f-b								1		1		1
	d-c								1		1		1
	e-c								1		-1		1
	f-c								1		1		1
	e-d								1		-1		1
	f-d								1		1		1
	f-e								-1		1		-1
	S _k	0	0	0	0	0	0	0	3	0	5	0	7
σ	° _s =								28.33		28.33		28.33
	S _k /σ _s								0.56		0.94		1.32
	$Z^2_k$								0.32		0.88		1.73
4	k								0.32		0.00		1.73
	$\Sigma Z_k =$	2.82	Γ	Tie Extent	t ₁	t ₂	t ₃	t ₄	t ₅			$\Sigma$ n	19
	$\Sigma Z_{k}^{2}$ =	2.93		Count	19	0	0	0	0			$\Sigma S_k$	15
7	-bar=ΣZ _k /K=	0.94	-										

$\chi^2_h = \Sigma Z^2_k - k$	$\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 0.28$		$K(Z-bar)^2 = 0.28$ @ $\alpha = 5\% \chi^2_{(K-1)} = 5.99$		Test for station homoge	eneity
	р	0.868			$\chi^2_h < \chi^2_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$\mathbf{Z}_{calc}$	1.52	@α=5% Z=	1.64	H ₀ (No trend)	ACCEPT
85.00	р	0.936			H _A (± trend)	REJECT



low label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
а	WY2006								5.5		3.7		6.2
b	WY2007								5.7		9.1		4.6
c d	WY2008 WY2009								6.4 8.4		7.0 4.1		10.8 12.4
e	WY2010								5.2		6.7		6.0
f	WY2011		6.9						6.2		6.0		6.6
	n	0	1	0	0	0	0	0	6	0	6	0	6
	t ₁	0	1	0	0	0	0	0	6	0	6	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	0
	t₃ ≁	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	t₄ t₅	0	0	0	0	0	0	0	0	0	0	0	0
	b-a								1		1		-1
	c-a								1		1		-1
	d-a								1		1		1
	e-a								-1		1		-1
	f-a c-b								1		1 -1		1
	c-b d-b								1		-1 -1		1
	e-b								-1		-1		1
	f-b								1		-1		1
	d-c								1		-1		1
	e-c f-c								-1 -1		-1 -1		-1 -1
	e-d								-1 -1		-1		-1 -1
	f-d								-1		1		-1
	f-e								1		-1		1
	S _k	0	0	0	0	0	0	0	3	0	-1	0	3
c	5 ² s=								28.33		28.33		28.33
Z _k =	Sk/OS								0.56		-0.19		0.56
	Z ² _k								0.32		0.04		0.32
												5	
	$\Sigma Z_k =$	0.94		Fie Extent	t ₁	t ₂	t ₃	t4	t ₅			Σn	19
-	$\Sigma Z_{k}^{2} =$	0.67	L	Count	19	0	0	0	0			$\Sigma S_k$	5
2	Z-bar=ΣZ _k /K=	0.31											
	$\chi^2_h = \Sigma Z^2_k - I$	(Z-bar) ² =	0.38		@α=5%	⁄ω χ ² _(K-1) =	5.99	Т	est for stati	on homoae	neitv		
	70 H K	p	0.828	L		- 70 (R-1)			χ ² _h <χ ² _(K-1)	-	CCEPT		
	$\Sigma VAR(S_k)$	Z _{calc}	0.43		@α/2=	2.5% Z=	1.96	,	<b>H</b> ₀ (No t		CCEPT		
	85.00	P caic	0.668	L	8002-	2.070 2	1.00		$H_A$ (± tr		REJECT		
	<u> </u>	•							A (	,			
14													
<b>E</b> 12	-												
<b>6</b> n) 10				$\frown$	-				=	Seasonal-		Confidence Ir	
ອີ່		>	×	/						α	Lower Limit	Sen's Slope	Upper Limit
8	+		$\rightarrow$							0.010	-0.79	orope	0.96
S S				×			X			0.050	-0.37	0.13	0.56
6 Si		$\boldsymbol{\leftarrow}$	1		$\overline{}$			X	`	0.100	-0.16	0.15	0.49
ີ 4	$\vdash$		/		×	$\checkmark$				0.200	-0.05		0.45
Ĕ													
<b>√</b> 2													
0	Ļ		· · · · ·		-			-					
0	WY2006	5 WY:	2007	WY2008	WY2	2009	WY2010	WY2	011				
0													
U		—Oct -		<u> </u>	c — J	an <del></del>	-Feb —	⊃— Mar					

## INTERPRETIVE REPORT SITE 60 "-LOWER ALTHEA CREEK"

Sampling at this site was initiated during background investigations conducted by HGCMC for the Stage II Tailings EIS. The two sampling events that occurred in 2003 were submitted to Analytica Alaska Laboratories for analysis and subject to standard QAQC procedures. The detection limits achieved during this analysis were slightly higher for some analytes than are currently achieved under FWMP sampling protocols. The two sample events that occurred in the 2006 water year were analyzed in parallel with standard FWMP samples and thus subject to the same analytical procedures.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Both ADEC and the USFS requested during the WY2006 annual meeting that an additional monitoring point be added to monitor potential impacts from Pond 7 on the western, downgradient drainage. Greens Creek proposed the current site on lower Althea, and after review by ADEC and USFS during a site visit (June 2, 2007 – USFS Inspection #259) the new site was added to the routine monitoring schedule.

As shown in the table below, there were no data outliers.

Sample Date	Parameter	Value	Qualifier	Notes
No outliers have	been identified by HG	CMC for the peri	od of Octobe	r 2006 through September 2011.

The data for water year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. Eight results exceeding these criteria have been identified, as listed in the table below. Two of the datum are for field pHs with values of 6.43 su (November 2010) and 4.99 su (September 2011), both of which are below the AWQS limit of 6.50 su. Historical sampling for this site in 2003, prior to any disturbance that would directly impact Althea Creek, indicates that the natural background pH ranged from 4.1 su to 4.8 su. For all four sampling events total alkalinity was in exceedance at Site 60, however this is a continuation of the visual trend of decreasing alkalinity, towards pre-disturbance values.

### **Table of Exceedance for Water Year 2011**

			Lin	nits	
Sample Date	Parameter	Value	Lower	Upper	Hardness
2-Nov-10	Alkalinity	5.6 mg/L	20		
19-May-11	Alkalinity	7.9 mg/L	20		
12-Jul-11	Alkalinity	10.3 mg/L	20		
12-Sep-11	Alkalinity	9.9 mg/L	20		
12-Jul-11	Mercury Dissolved	0.0148 µg/L		0.01	
12-Sep-11	Mercury Dissolved	0.0183 µg/L		0.01	
2-Nov-10	pH Field	6.43 su	6.5	8.50	
12-Sep-11	pH Field	4.99 su	6.5	8.50	

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Site 60 was added to the FWMP as a monitoring point for potential impacts from Pond 7. Some analytes (*e.g.* sulfate, barium) and measurements (*e.g.* pH, conductivity, hardness, and alkalinity) have similar decreasing visual trends over water years 2007 - 2011. Initially, after the construction of Pond 7 there was a spike in these analytes and measurements. With the completion of the Pond 7 under drain caisson pump back system, these values have begun to decrease and normalize.

The notable exception to this is the elevated dissolved mercury levels seen in the past several years. It is theorized that this too is an artifact from the construction of Pond 7. When the natural waters shifted to a more alkaline state after the disturbance caused by Pond 7 construction, this caused dissolved mercury that naturally existed at a low level to adsorb on to other particles and come out of solution. With the success of the pump back system the area is beginning to return to its natural state as previously mentioned. Because there is this fundamental chemistry shift in the pH the adsorbed mercury is now going back into solution causing the increased values. As the 'pool' of adsorbed mercury is depleted, mercury levels should return to levels recorded in 2006 (mean =  $0.00395\mu g/L$ ).

Though two of the four sampling events from the 2011water year had dissolved mercury levels that were below the AWQS, the other two samples were above the AWQS. The highest concentration reached during the current water year was  $0.0183 \ \mu g/L$  in September 2011 which was less than the highest value ever recorded of  $0.0227 \mu g/L$  from September 2010. Additional sampling in adjacent drainages during WY2009 showed that this issue was isolated to only the Althea watershed.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-05 and Sep-11 (WY2006-WY2011). This marks the first time that there were a sufficient number of years (n=6) of data for conducting these calculations.

	Mann-Kei	ndall test sta	Sen's slope estimate		
Parameter	n*	<b>p</b> **	Trend	Q	Q(%)
Conductivity Field	6	0.03			
pH Field	6	0.05			
Alkalinity, Total	6	< 0.01	-	-12.64	-105.8
Sulfate, Total	6	< 0.01	-	-16.45	-265.1
Zinc, Dissolved	6	< 0.01	+	0.68	12.8

#### **Table of Summary Statistics for Trend Analysis**

* Number of Years ** Significance level

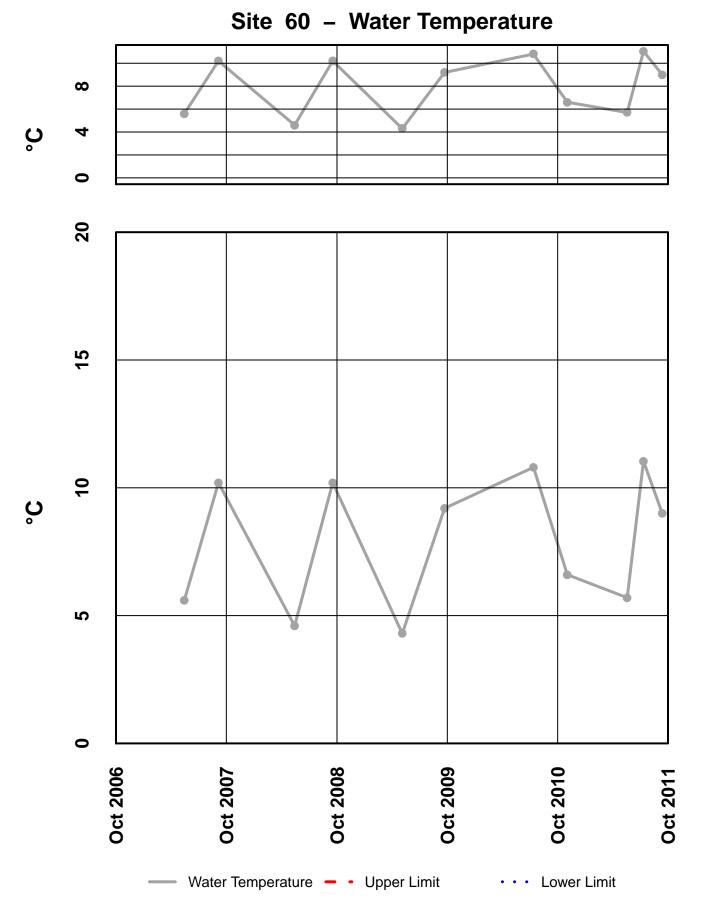
There were three statistically significant ( $\alpha/2=2.5\%$ ) trends identified for the current water year. The statistical analysis for trends in field pH and total sulfate supports the visual observations of trends discussed previously. There also was a statistically significant increasing trend in dissolved zinc with a Sen's slope estimate of 0.675 µg/L/yr. The current zinc values are approximately 12% of the AWQS. HGCMC feels that the current sampling schedule adequately characterizes the water quality parameters at this site.

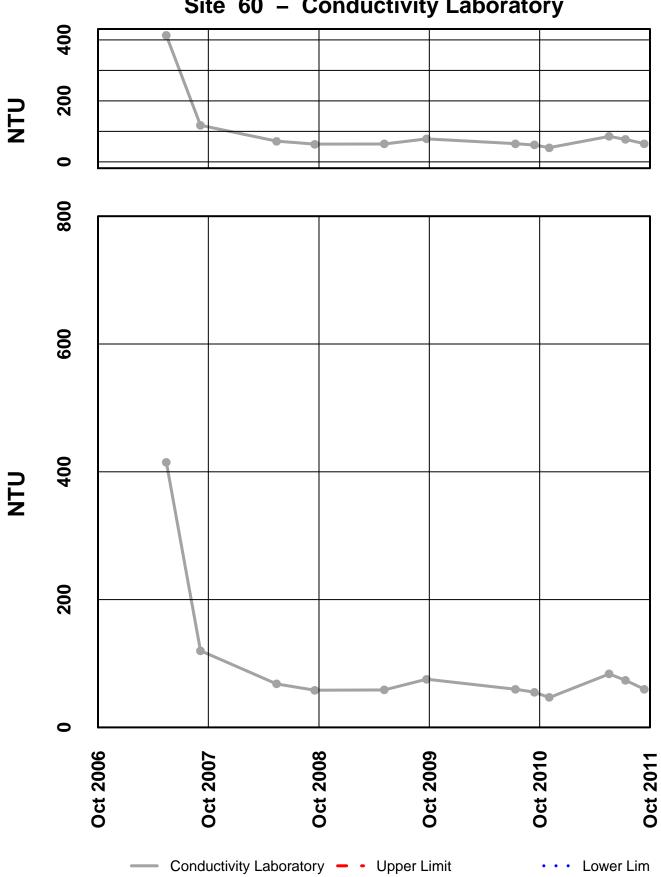
								CCK					
Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)		6.6						5.7		11		9	7.8
Conductivity-Field(µmho)		48.3						85		71		61	66.0
Conductivity-Lab (µmho)		47						84		74		60	67
pH Lab (standard units)		5.63						6.38		5.84		6.12	5.98
pH Field (standard units)		6.43						6.78		7.15		4.99	6.61
Total Alkalinity (mg/L)		5.6						7.9		10.3		9.9	8.9
Total Sulfate (mg/L)		2.5						6.2		15		5	5.6
Hardness (mg/L)		23.9						28.1		29.3		26	27.1
Dissolved As (ug/L)		2.45						1.28		1.79		2.49	2.120
Dissolved Ba (ug/L)		17.6						16.9		20		20.3	18.8
Dissolved Cd (ug/L)		0.0168						0.0169		0.0145		0.0235	0.0169
Dissolved Cr (ug/L)		1						1.16		1.68		1.47	1.315
Dissolved Cu (ug/L)		1.3						0.874		1.18		1.3	1.240
Dissolved Pb (ug/L)		0.421						0.151		0.292		0.249	0.2705
Dissolved Ni (ug/L)		1.5						1.28		1.65		1.84	1.575
Dissolved Ag (ug/L)		0.004						0.005		0.008		0.007	0.006
Dissolved Zn (ug/L)		5.48						5.45		5.66		7.13	5.57
Dissolved Se (ug/L)		0.289						0.146		0.177		0.304	0.233
Dissolved Hg (ug/L)		0.00622						0.0107		0.0148		0.0183	0.012750

### Site 060FMS - 'Lower Althea creek'

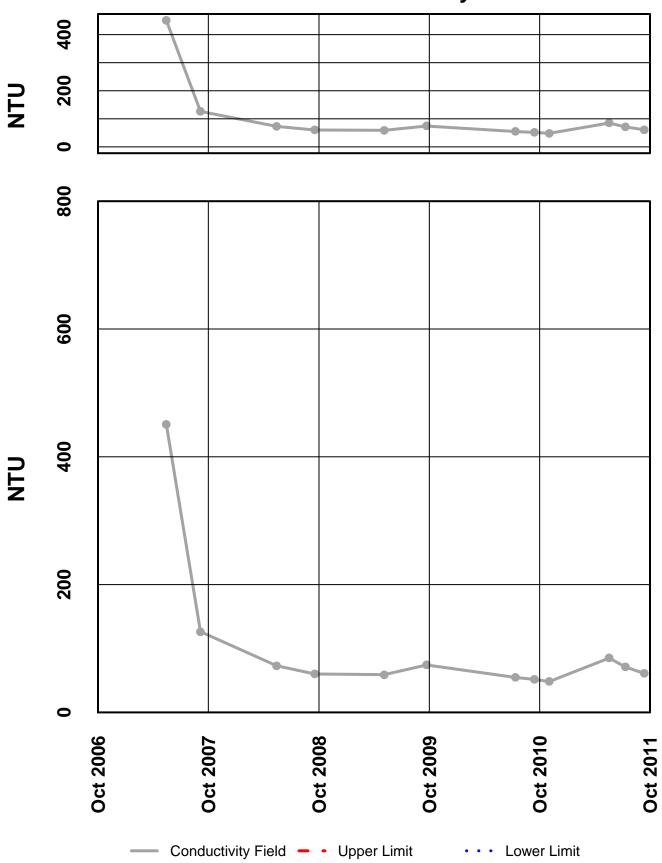
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

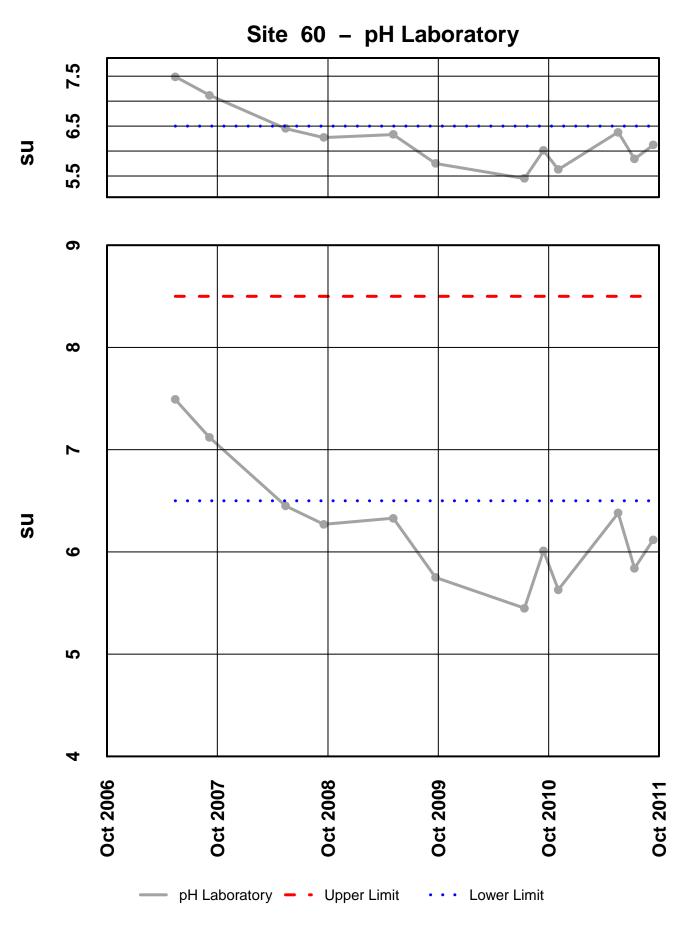

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median


# Qualified Data by QA Reviewer

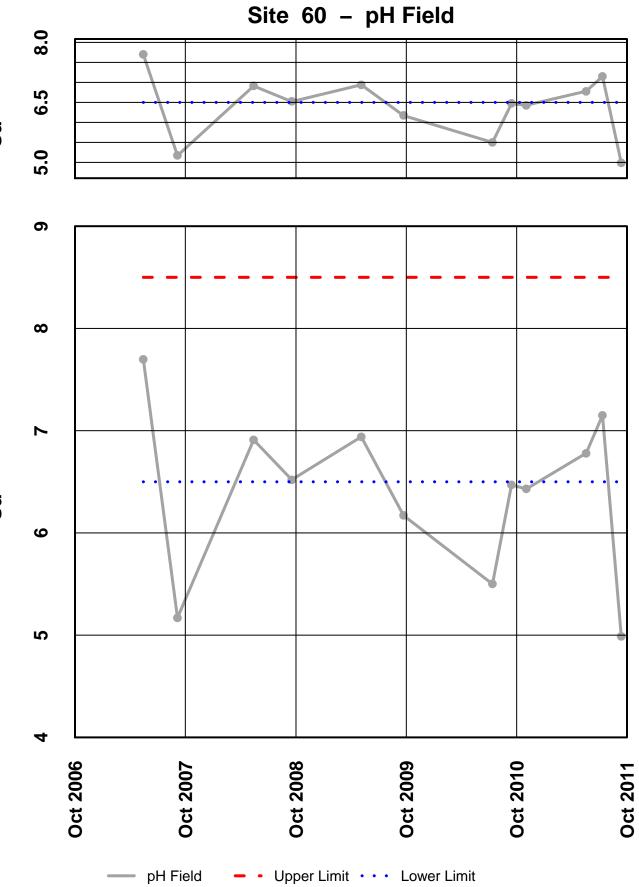
## Date Range: 10/01/2010 to 09/30/2011


Site No.	Sample Date	Sample Time	Parameter	Value	Qualifier	Reason for Qualifier
60	11/2/2010	12:00 AM				
			Se diss, µg/l	0.289	J	Below Quantitative Range
			Cd diss, µg/l	0.0168	J	Below Quantitative Range
60	5/19/2011	12:00 AM				
			SO4 Tot, mg/l	6.2	J	Sample Reciept Temperature
			Se diss, µg/l	0.146	J	Below Quantitative Range, Duplicate RPD
			Ag diss, µg/l	0.00487	J	Below Quantitative Range
			pH Lab, su	6.38	J	Hold Time Violation
			Cd diss, µg/l	0.0169	U	Trip Blank Contamination
			Pb diss, µg/l	0.151	U	Field Blank Contamination
60	7/12/2011	12:00 AM				
			Se diss, µg/l	0.17	J	Below Quantitative Range
			Ag diss, µg/l	0.00821	J	Below Quantitative Range
			SO4 Tot, mg/l	-30	R	Sample Reciept Temperature
60	9/12/2011	12:00 AM				
			Se diss, µg/l	0.3	J	Below Quantitative Range
			Ag diss, µg/l	0.00661	J	Below Quantitative Range
			SO4 Tot, mg/l	0	UJ	Sample Receipt Temperature

Qualifier	Description
J	Positively Identified - Approximate concentration
Ν	Presumptive Evidence For Tentative Identification
NJ	Tentatively Identified - Approximate Concentration
R	Rejected - Cannot be Verified
U	Not Detected Above Quantitation Limit
UJ	Not Detected Above Approximate Quantitation Limit



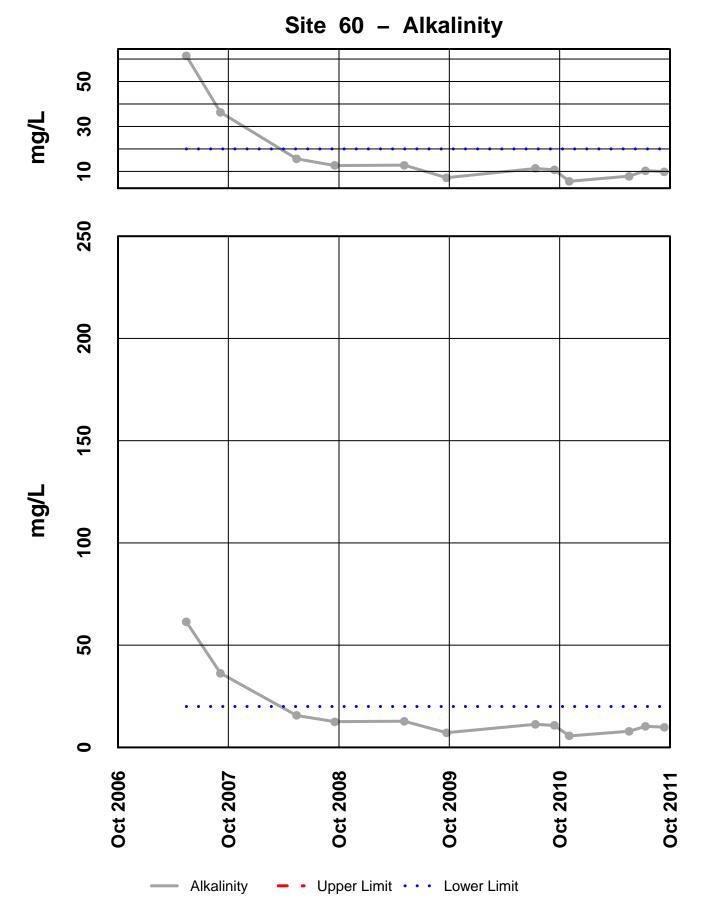




Site 60 – Conductivity Laboratory

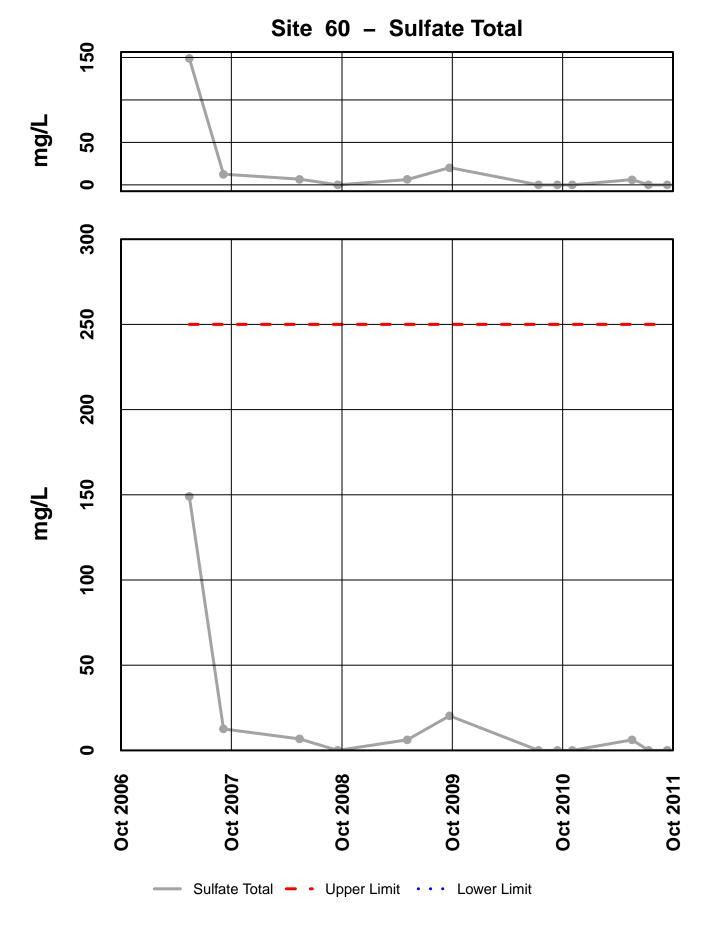


# Site 60 – Conductivity Field

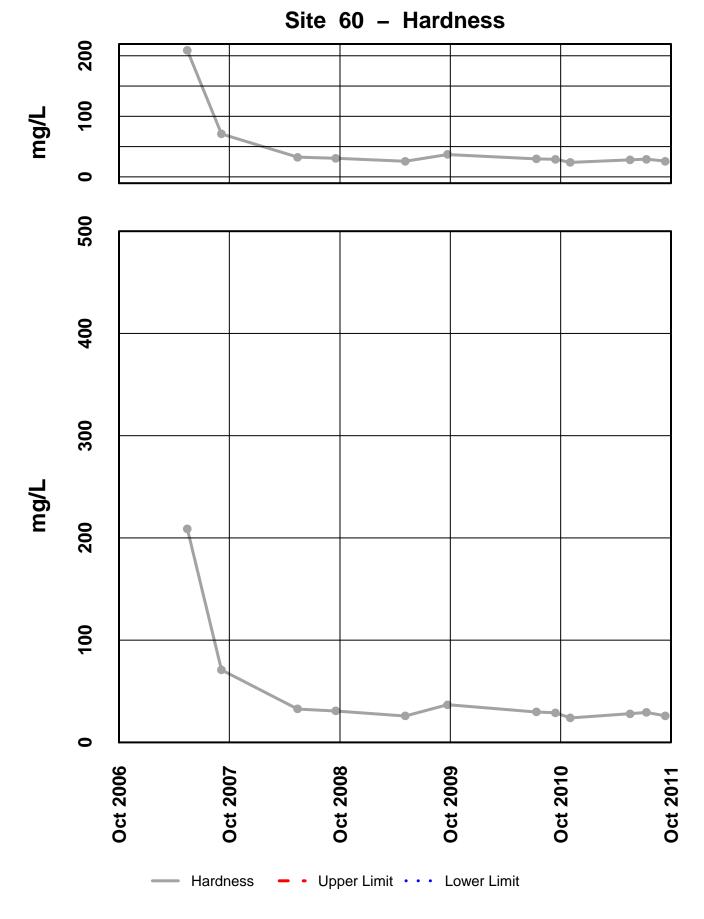



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

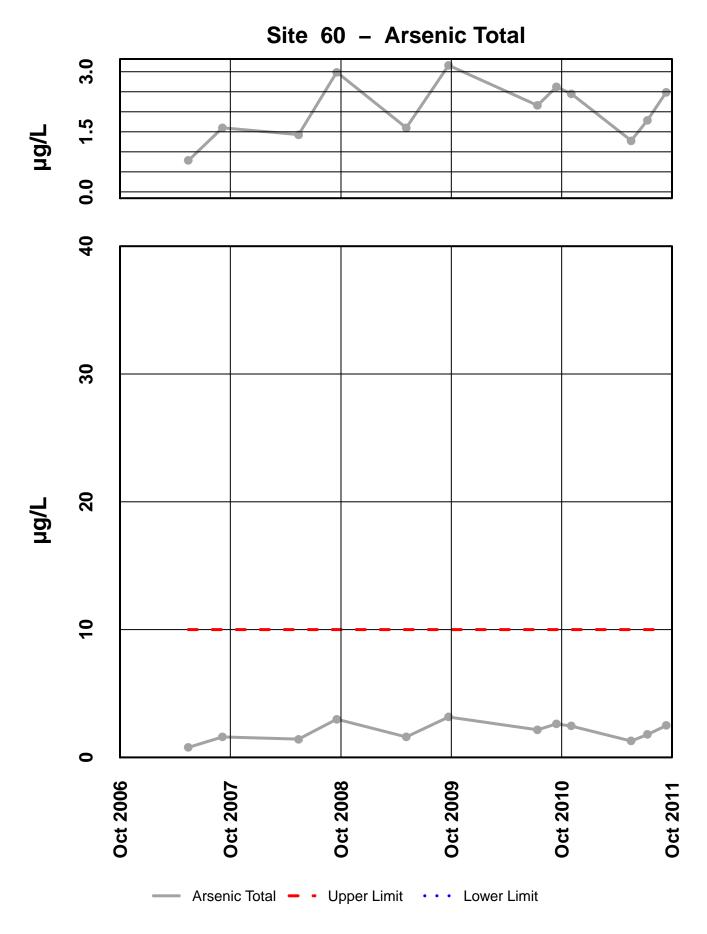


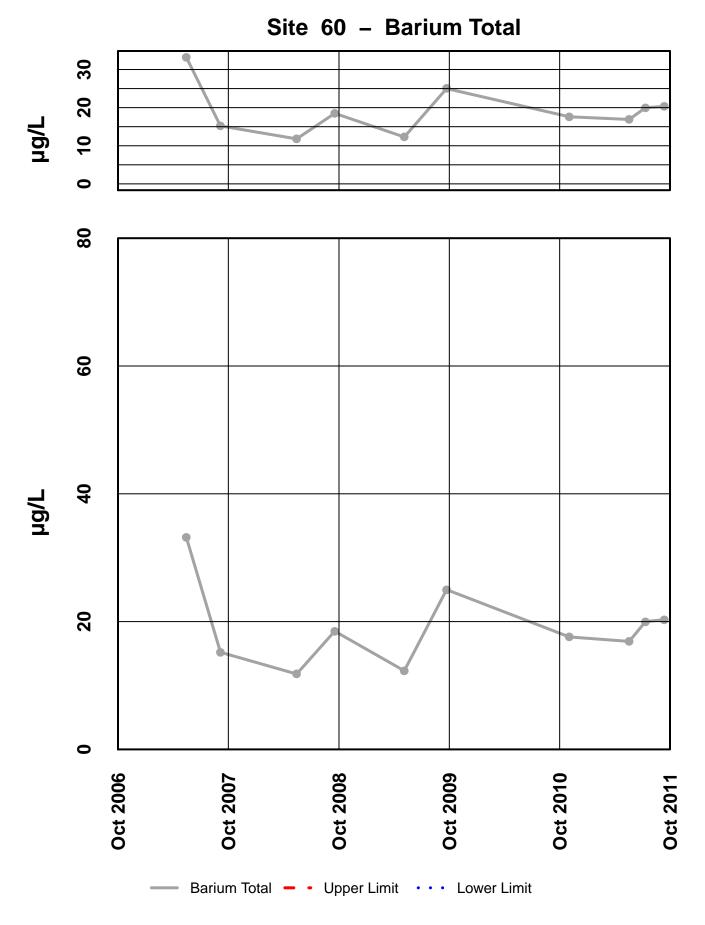

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

SU

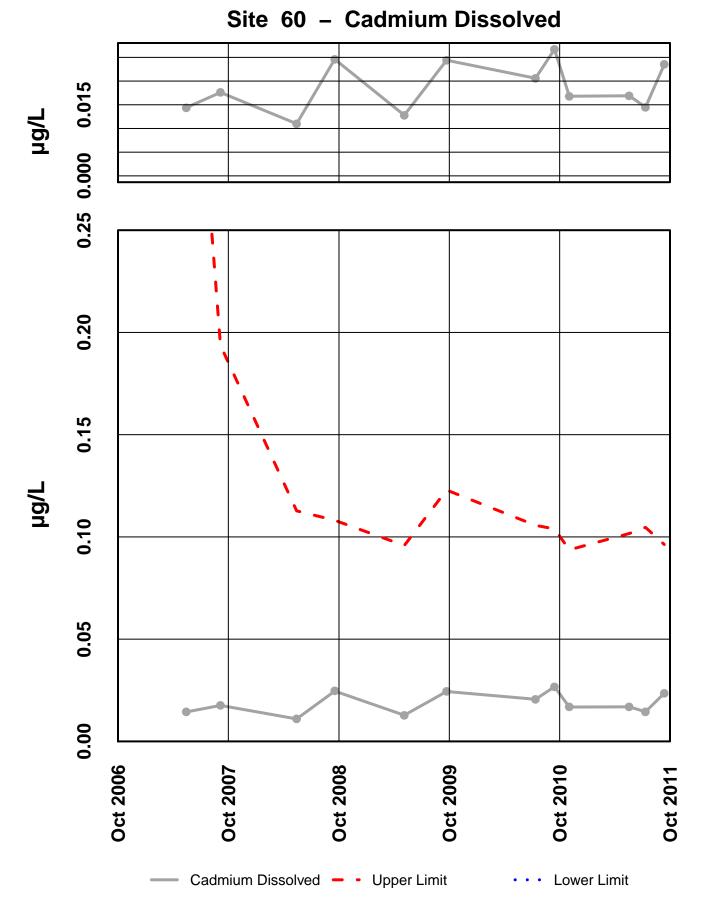

su



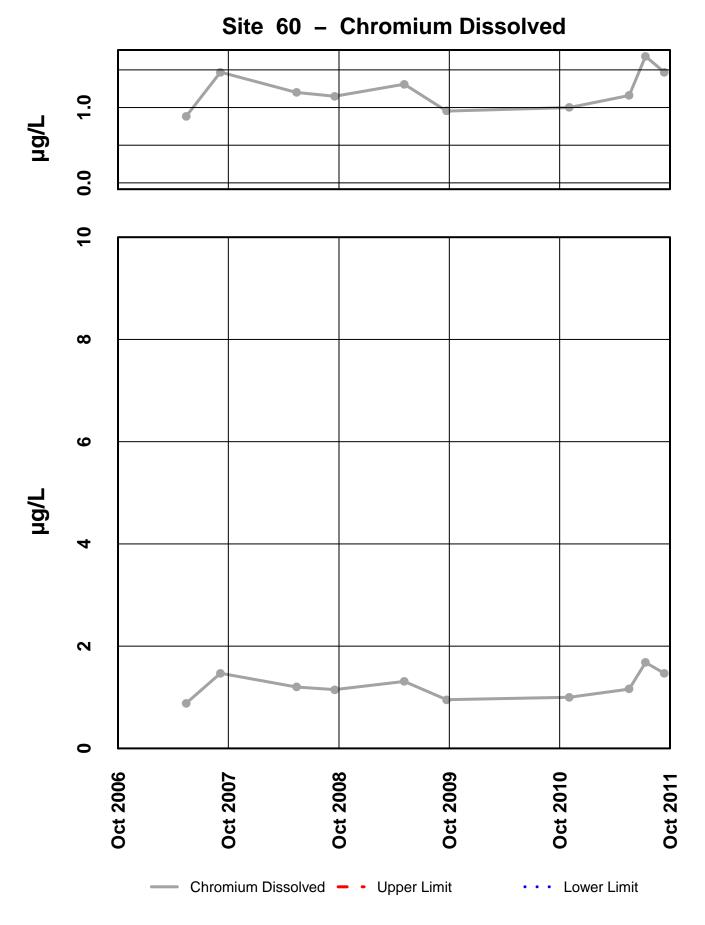

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



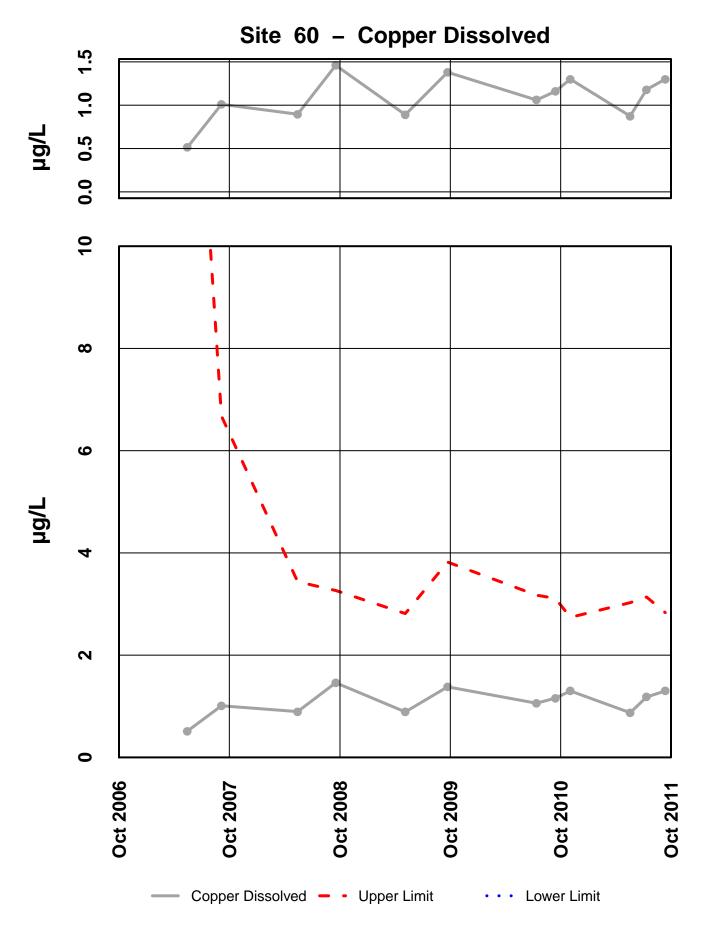

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



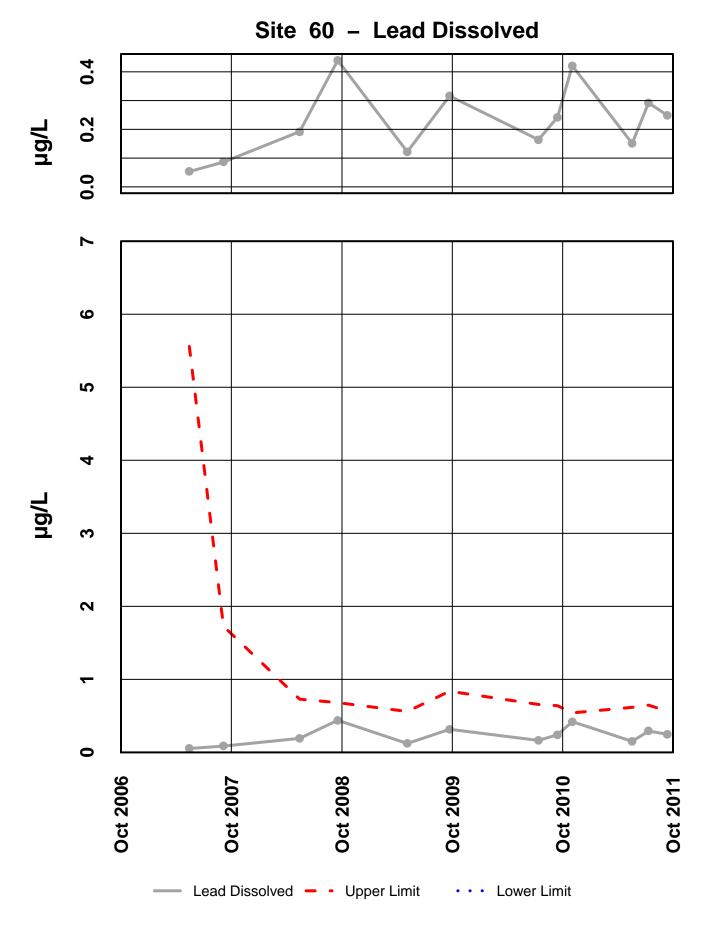

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



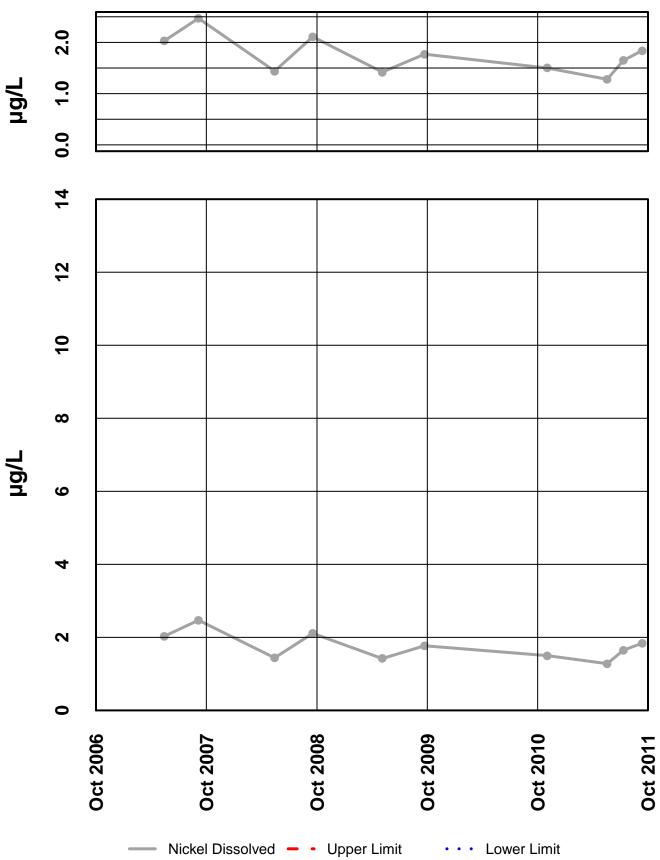




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

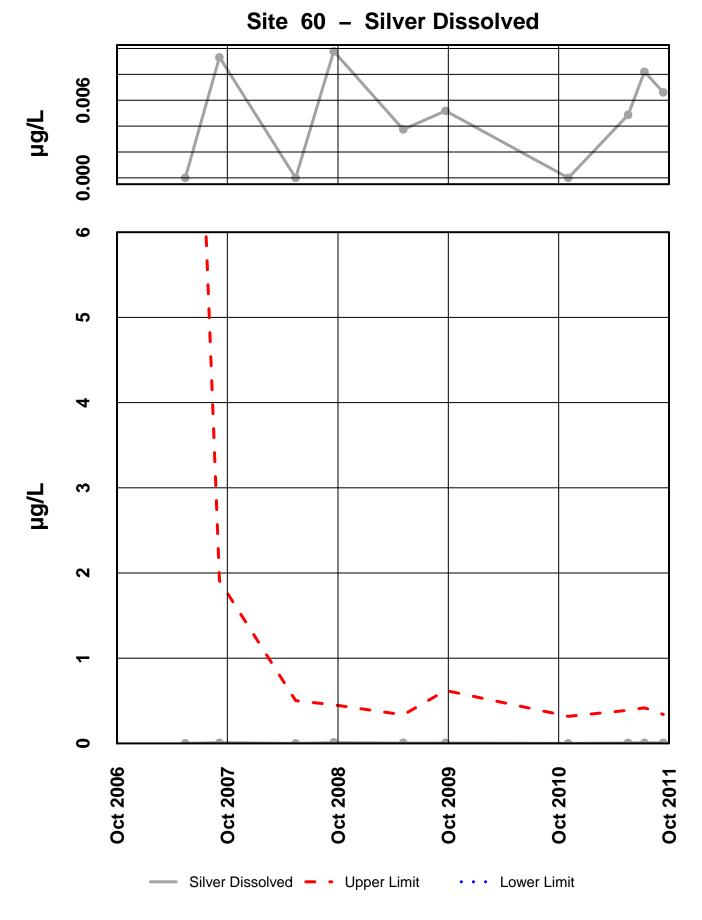


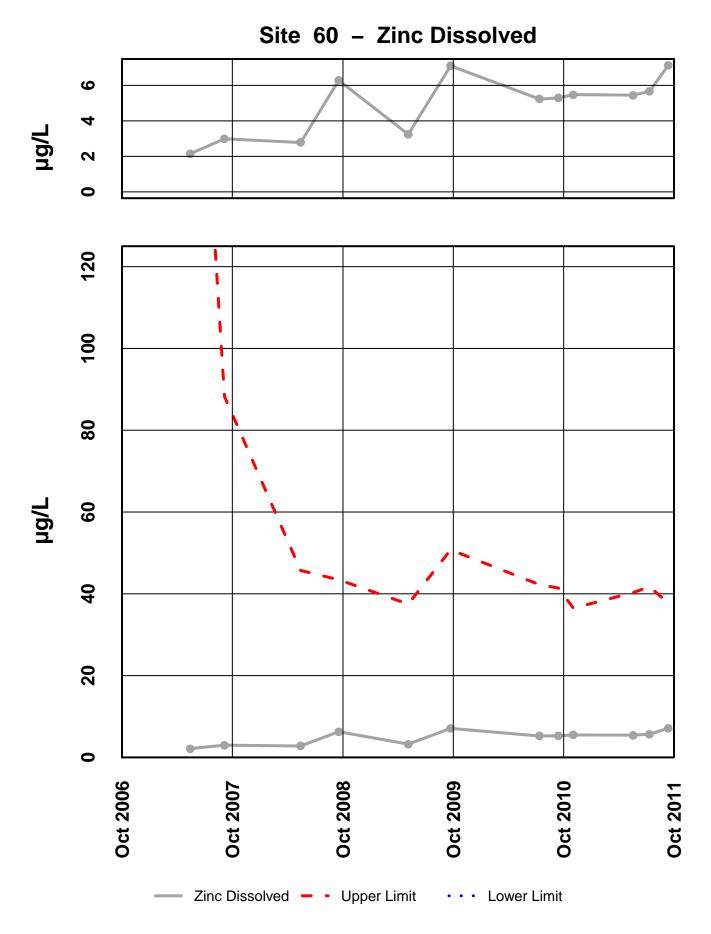

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



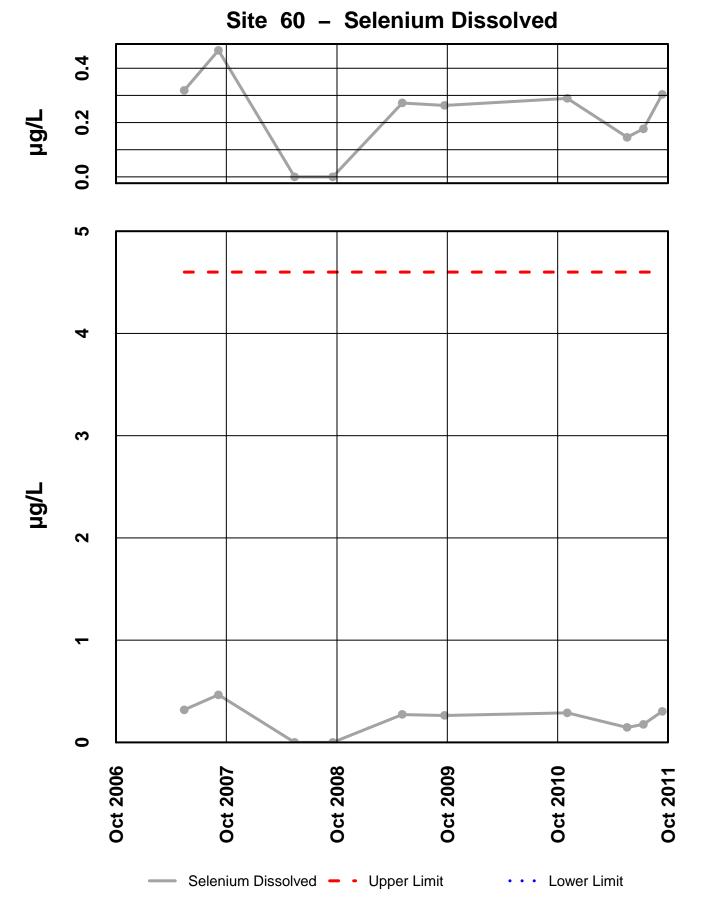

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



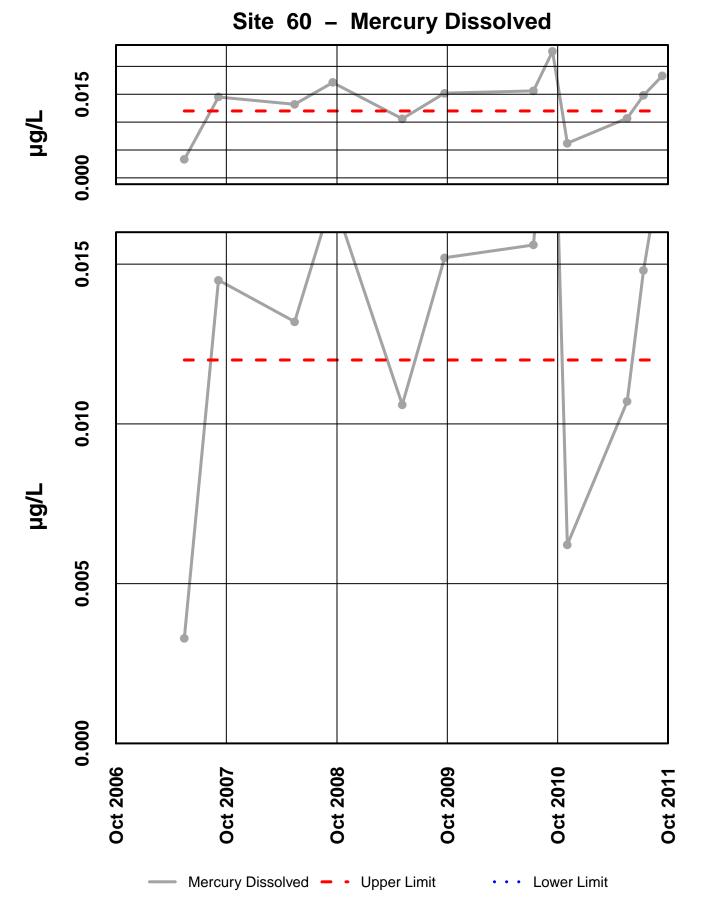

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



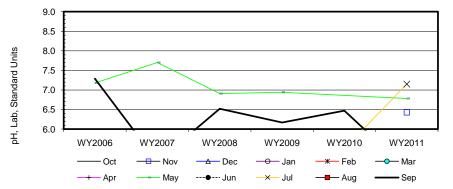

## Site 60 – Nickel Dissolved






Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



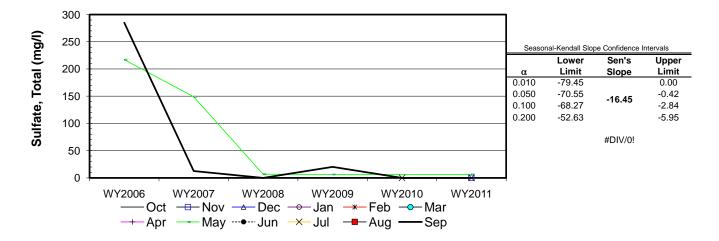

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

Row label	Water Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
a	WY2006	001	NOV	Dec	Jan	Teb	Mai	Арі	7.2	Juli	Jui	Aug	<u> </u>
b	WY2007								7.7				5.2
С	WY2008								6.9				6.5
d	WY2009								6.9				6.2
е	WY2010										5.5		6.5
f	WY2011		6.4						6.8		7.2		5.0
	n	0	1	0	0	0	0	0	5	0	2	0	6
	t,	0	1	0	0	0	0	0	5	0	2	0	6
	t ₂	0	0	0	0	0	0	0	0	0	0	0	C
	t ₃	0	0	0	0	0	0	0	0	0	0	0	C
	t ₄	0	0	0	0	0	0	0	0	0	0	0	C
	t ₅	0	0	0	0	0	0	0	0	0	0	0	C
	b-a								1				-1
	c-a								-1				-1
	d-a								-1				-1
	e-a												-1
	f-a								-1				-1
	c-b d-b								-1 -1				1
	а-b e-b								-1				1
	f-b								-1				-1
	d-c								1				-1
	e-c												-1
	f-c								-1				-1
	e-d												1
	f-d								-1				-1
	f-e S _k										1		-1
	Sk	0	0	0	0	0	0	0	-6	0	1	0	-7
σ	2 _s =								16.67		1.00		28.33
Z _k =	$S_k/\sigma_s$								-1.47		1.00		-1.32
	Z ² _k								2.16		1.00		1.73
	$\Sigma Z_k =$	-1.78		Tie Extent	t,	t ₂	t ₃	t₄	t₅			Σn	14
	$\Sigma Z_{k}^{2}$												
	$\Sigma Z_{k} = \frac{1}{2}$ -bar= $\Sigma Z_{k}/K =$	4.89		Count	14	0	0	0	0			$\Sigma S_k$	-12

$\chi^2_h = \Sigma Z^2_k$	K(Z-bar) ² =	3.83	@α=5% χ ² _(K-1) =	5.99	Test for station home	ogeneity
	р	0.148			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$	ACCEPT
$\Sigma VAR(S_k)$	$Z_{calc}$	-1.62	@α/2=2.5% Z=	1.96	H ₀ (No trend)	ACCEPT
46.00	р	0.052			H _A (± trend)	REJECT




Seasona	al-Kendall Slop	e Confidence	Intervals
	Lower	Sen's	Upper
α	Limit	Slope	Limit
0.010	-0.50		0.27
0.050	-0.38	-0.11	-0.03
0.100	-0.38	-0.11	-0.04
0.200	-0.33		-0.08

te	#60				Seasona								
a a b c d	Water Year WY2006 WY2007 WY2008	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May 203.0 61.4 15.6	Jun	Jul	Aug	Sep 69.4 36.3 12.6
1 9	WY2009 WY2010 WY2011		5.6						12.8 7.9		11.3 10.3		7.2 10.7 9.9
	n	0	1	0	0	0	0	0	5	0		0	6
	t ₁ t ₂	0 0	1 0	0 0	0 0	0 0	0 0	0 0	5 0	0 0	0	0 0	6
	t₃ t₄ t₅	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	( ( (
	b-a c-a								-1 -1				-1 -1
	d-a e-a								-1				-1 -1
	f-a c-b d-b								-1 -1 -1				-1 -1 -1
	e-b f-b								-1				-1 -1
	d-c e-c								-1				-1 -1
	f-c e-d f-d								-1 -1				-1 1 1
	f-e S _k	0	0	0	0	0	0	0	-10	0	<u>-1</u> -1	0	-1 -11
σ	² _S =								16.67		1.00		28.33
<b>Z</b> _k =	S _k /σ _S Z ² _k								-2.45 6.00		-1.00 1.00		-2.07 4.27
_	$\Sigma Z_{k} =$	-5.52	[]	Fie Extent	t,	t ₂	t ₃	t ₄	t ₅		1.00	Σn	14
7	$\Sigma Z_{k}^{2} = \frac{1}{2}$ -bar= $\Sigma Z_{k}/K = \frac{1}{2}$	11.27 -1.84		Count	14	0	0	0	0			$\Sigma {\bm{S}}_{\bm{k}}$	-22
2	-bai-22 _k /10-	-1.04											
	$\chi^2_h = \Sigma Z^2_k$ -I	K(Z-bar) ² =	1.13		@α=5%	ώ χ ² _(K-1) =	5.99			tion homog			
	$\Sigma VAR(S_k)$	p Z _{calc}	<b>0.569</b> -3.10		@α/2=	2.5% Z=	1.96	)	χ ² _h <χ ² _(K-1) <b>H</b> ₀ (No		ACCEPT REJECT		
_	46.00	р	0.001						H _A (±	trend)	ACCEPT		
²	-												
) -	_									Seasona	al-Kendall Slope	e Confidence Ir	ntervals
0 - 0 - 0 -	- \									α	Lower Limit	Sen's Slope	Upper Limit
) -	-									0.010 0.050	-38.36 -26.67 -23.91	-12.64	-1.16 -2.67 -4.50
										0.100 0.200	-23.91 -19.85		-4.50 -6.88
												-105.8%	
0 -	WY2006	WY2	2007	WY2008	WY2	009	× WY2010	WY2	←] 2011				
	—— Oc		- Nov	<u> </u>	-0		<del>—*—</del> Feb		- Mar				
	—+— Ap	r ——	- May	• Jun	—×—	Jul	– <b>–</b> – Aug		-Sep				

Site	#60			S	easonal	Kendall	analysis	s for Sulf	ate, Tota	ii (mg/i)			
Row label a b c d e	Water Year WY2006 WY2007 WY2008 WY2009 WY2010	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May 217.0 149.0 6.7 6.2	Jun	<b>Jul</b> 0.0	Aug	Sep 285. 12. 0. 20. 0.
f	WY2011		0.0						6.2		0.0		
	n	0	1	0	0	0	0	0	5	0	2	0	0.
	t,	0	1	0	0	0	0	0	5	0	0	0	:
	t ₂	0	0	0	0	0	0	0	0	0	1	0	
	t ₃	0	0	0	0	0	0	0	0	0	0	0	
	t₄ t₅	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	(
	45	0	0	0	0	0	0	0	0	0	0	0	
	b-a c-a								-1 -1				 
	d-a								-1				-
	e-a								•				
	f-a								-1				-*
	c-b								-1				-1
	d-b								-1				1
	e-b												-1
	f-b d-c								-1 -1				-1
	e-c								-1				(
	f-c								-1				(
	e-d												-1
	f-d								-1				-1
:	f-e S _k	0	0	0	0	0	0	0	-10	0	0	0	) -8
	Sk	0	0	0	0	0	0	0	-10	0	0	0	-8
σ	² s=								16.67		0.00		24.67
$Z_k =$	$S_k/\sigma_S$								-2.45		#DIV/0!		-1.61
	<u>Z</u> ² _k								6.00		#DIV/0!		2.59
	$\Sigma \mathbf{Z}_{i} =$	#DIV/0!	Г	Tie Extent	t ₁	t ₂	t ₃	t4	t _s			Σn	14
	$\Sigma Z^2 =$	#DIV/0!		Count	9	1	-3	0	0			$\Sigma S_k$	-18
	<i>–</i> – k−			Count	3			0				20K	-10

$\chi^2_h = \Sigma Z^2_k$ -	K(Z-bar) ² =	#DIV/0!	@α=5% χ ² _(K-1) =	5.99	Test for station homogeneit	у
	р	#DIV/0!			$\chi^{2}_{h} < \chi^{2}_{(K-1)}$ #D	IV/0!
$\Sigma VAR(S_k)$	$Z_{calc}$	-2.64	@α=2.5% Z=	1.96	H ₀ (No trend) REJ	ЕСТ
41.33	р	0.004			H _A (± trend) #D	IV/0!



## INTERPRETIVE REPORT SITE 1185 "-MONITORING WELL -T-10-08A"

Sampling at this site was initiated during the summer of the water year 2011. Site 1185 was drilled in the summer of 2010 and then developed over the next year. Sampling began in July 2011, and it is scheduled to be sampled in November, May, July, and September of the current water year 2012. This well may serve as the new upgradient background site to the tailings facility and is analogous to Site 59FMG (MW-T-00-01A). The upgradient nature of Site 59FMG was compromised during the East Ridge Expansion, because it is now located between the old B road and the new B road location. Also, there has been a material (i.e. road rock) pad built upgradient to Site 59FMG.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

As shown in the table below, there were no data outliers.

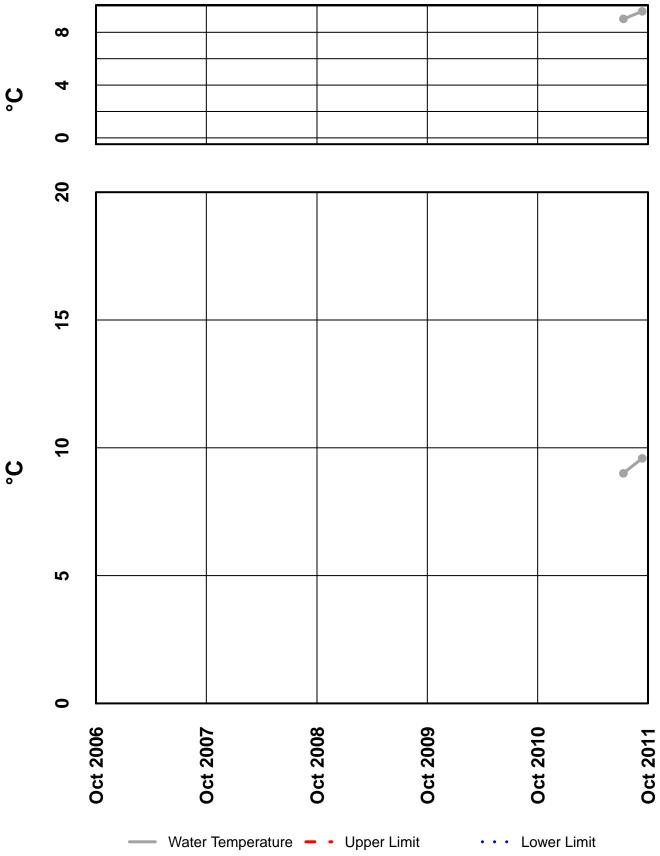
Sample Date	Parameter	Value	Qualifier	Notes
No outliers have	been identified by HGC	CMC for the peri-	od of October	r 2010 through September 2011.

The data for Water Year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

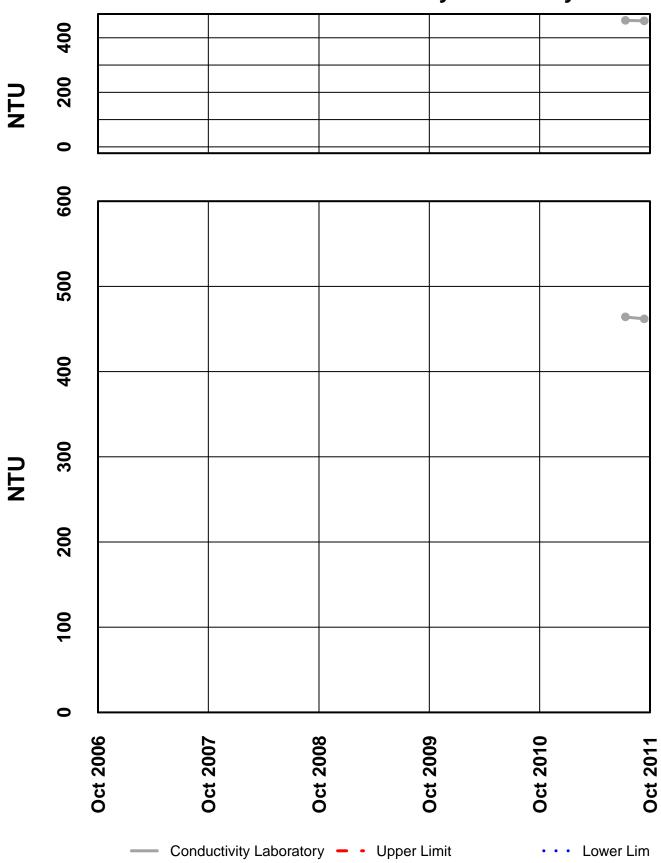
### **Table of Exceedance for Water Year 2011**

		Limits					
Sample Date	Parameter	Value	Lower	Upper	Hardness		
No exceedan	ces have been identified b	y HGCMC for the pe	riod of October	2010 through S	September 2011		

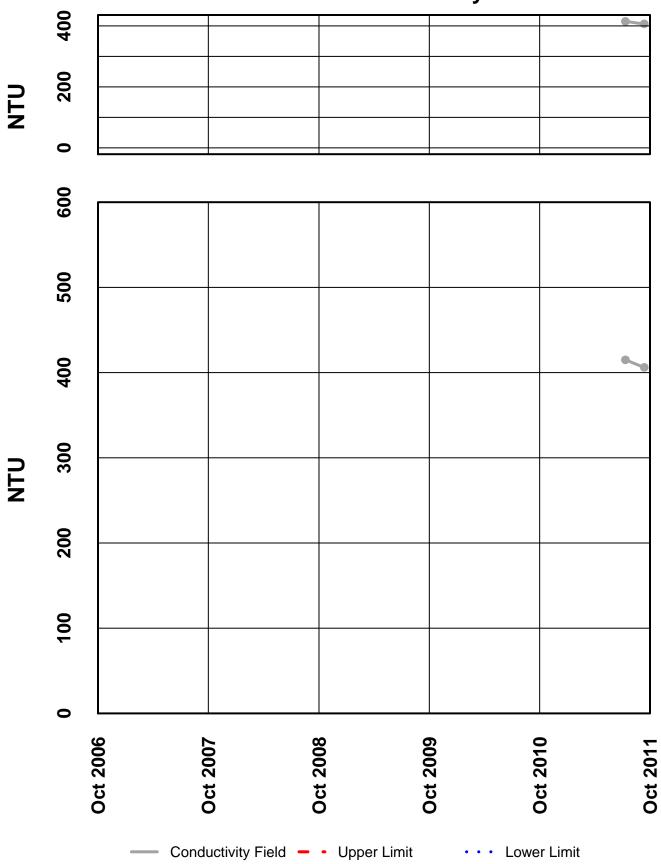
X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Because of the limited amount of data visual trend analysis and statistical analysis of the data was not performed.


Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)										9		9.6	9.3
Conductivity-Field(µmho)										415		406	410.5
Conductivity-Lab (µmho)										464		462	463
pH Lab (standard units)										7.28		7.39	7.34
pH Field (standard units)										7.57		6.84	7.21
Total Alkalinity (mg/L)										189		240	214.5
Total Sulfate (mg/L)										39.6		38.9	39.3
Hardness (mg/L)										206		210	208.0
Dissolved As (ug/L)										0.327		0.628	0.478
Dissolved Ba (ug/L)										26.8		25.3	26.1
Dissolved Cd (ug/L)										0.0767		0.0338	0.0553
Dissolved Cr (ug/L)										0.562		0.655	0.609
Dissolved Cu (ug/L)										2.77		1.69	2.230
Dissolved Pb (ug/L)										0.332		0.0566	0.1943
Dissolved Ni (ug/L)										4.06		7.09	5.575
Dissolved Ag (ug/L)										0.002		0.002	0.002
Dissolved Zn (ug/L)										34.7		47.5	41.10
Dissolved Se (ug/L)										0.013		0.38	0.197
Dissolved Hg (ug/L)										0.000471		0.000196	0.000334

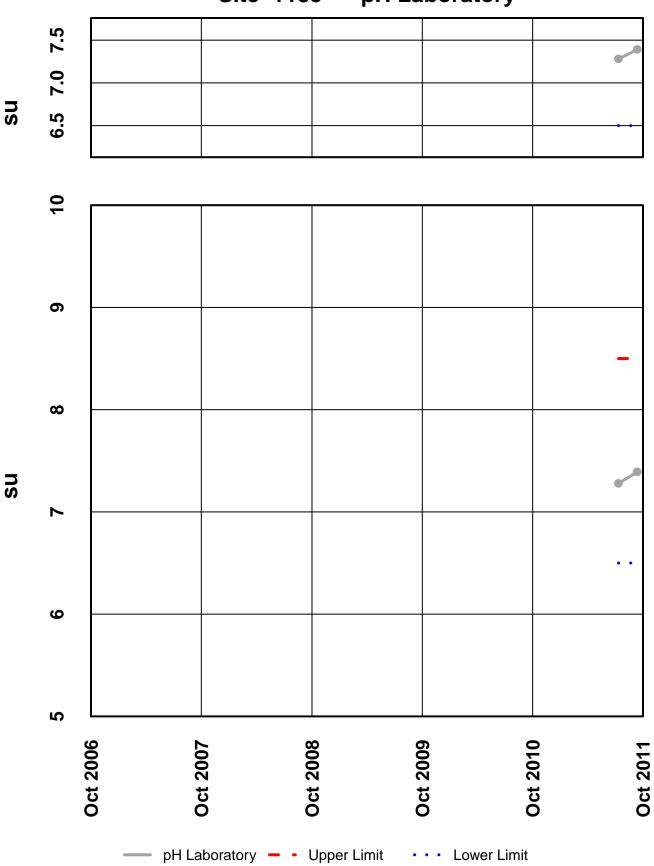
### Site 1185 - 'Monitoring Well -T-10-08A'


For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.


Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

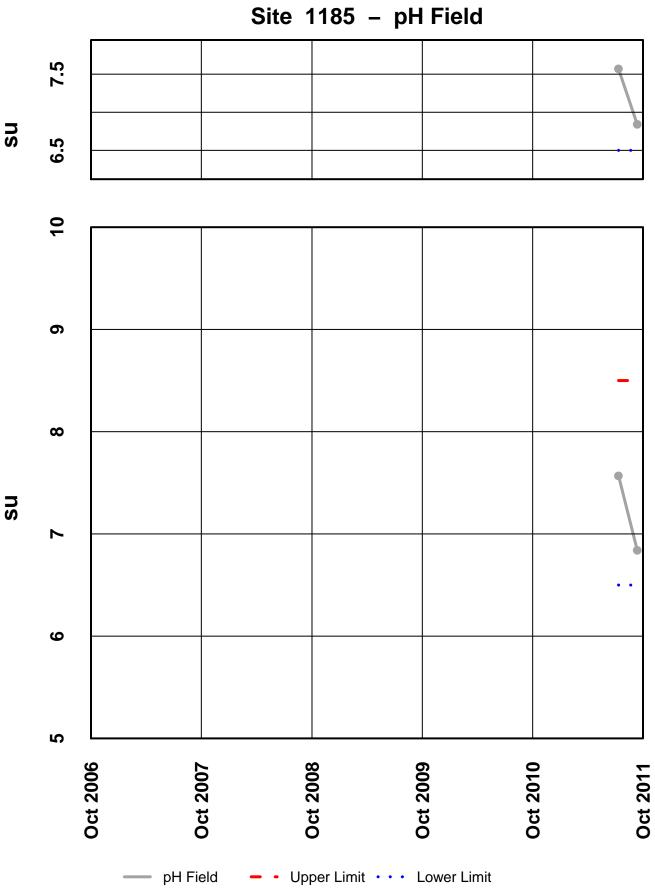



Site 1185 – Water Temperature



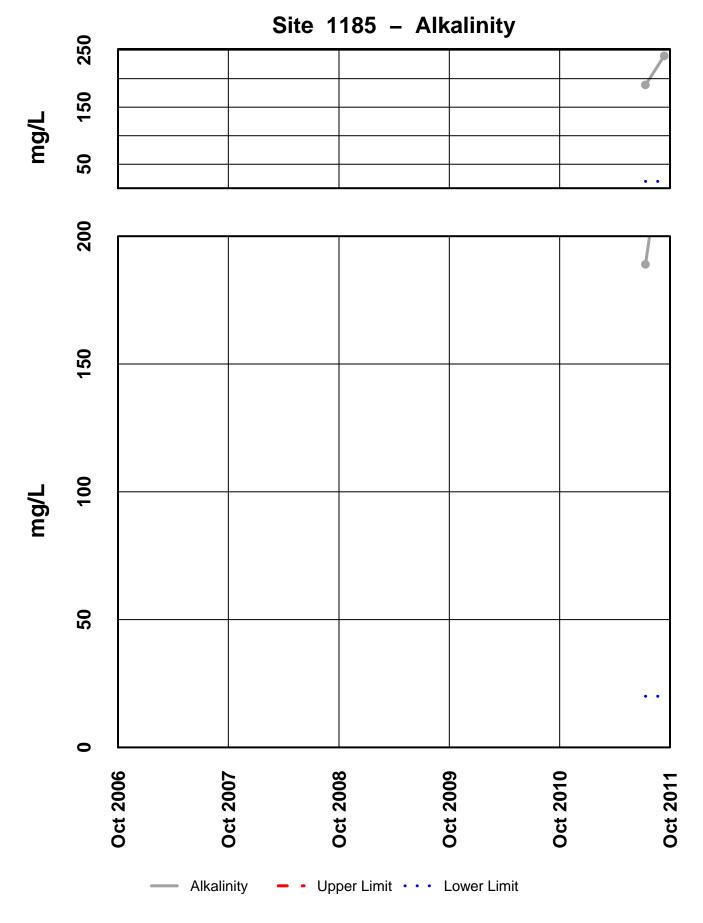
Site 1185 – Conductivity Laboratory



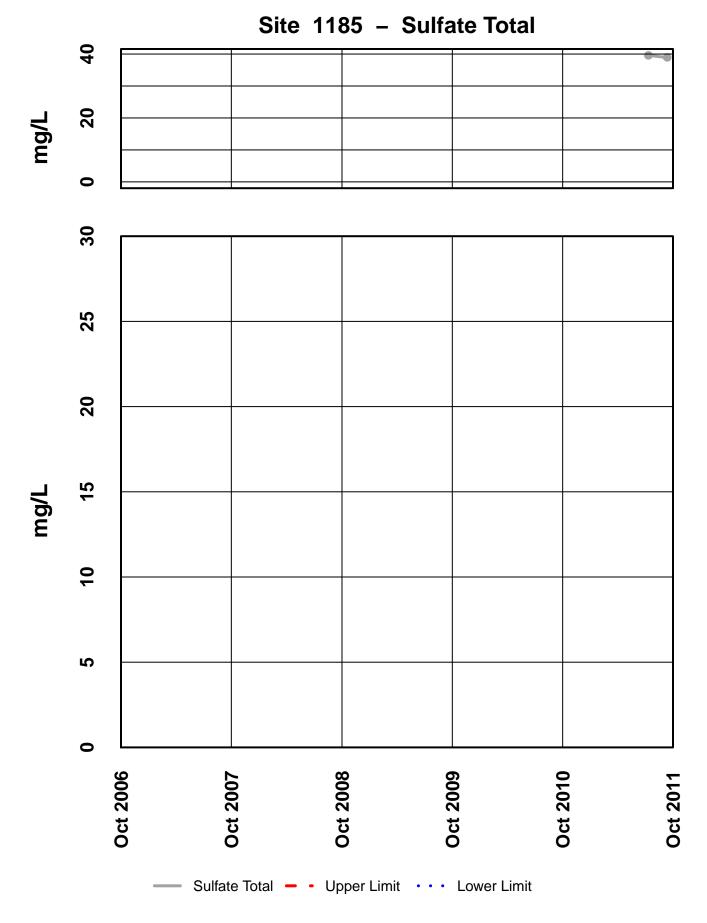

# Site 1185 – Conductivity Field

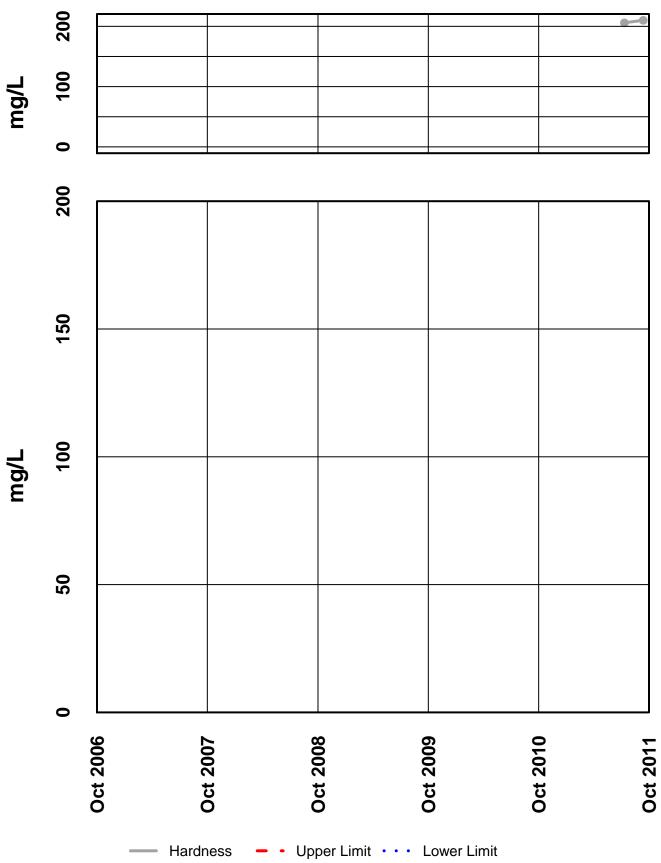


Site 1185 – pH Laboratory

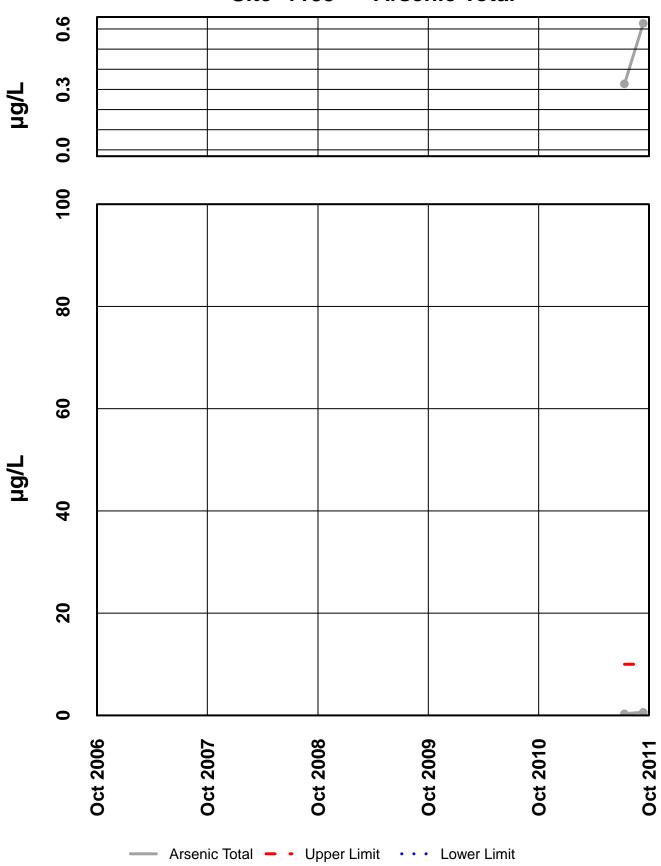

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

SU



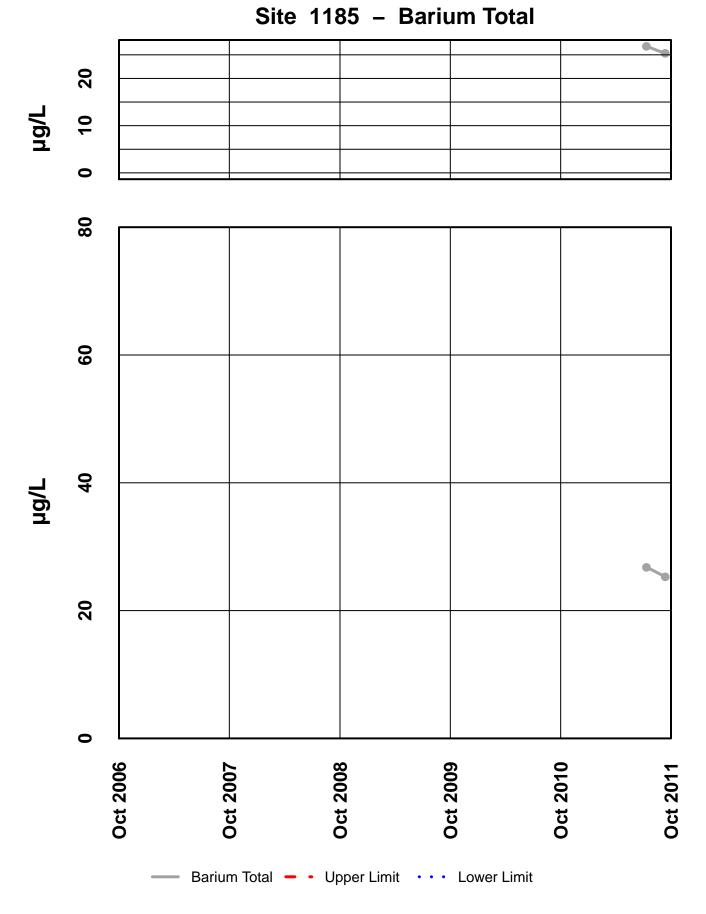


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

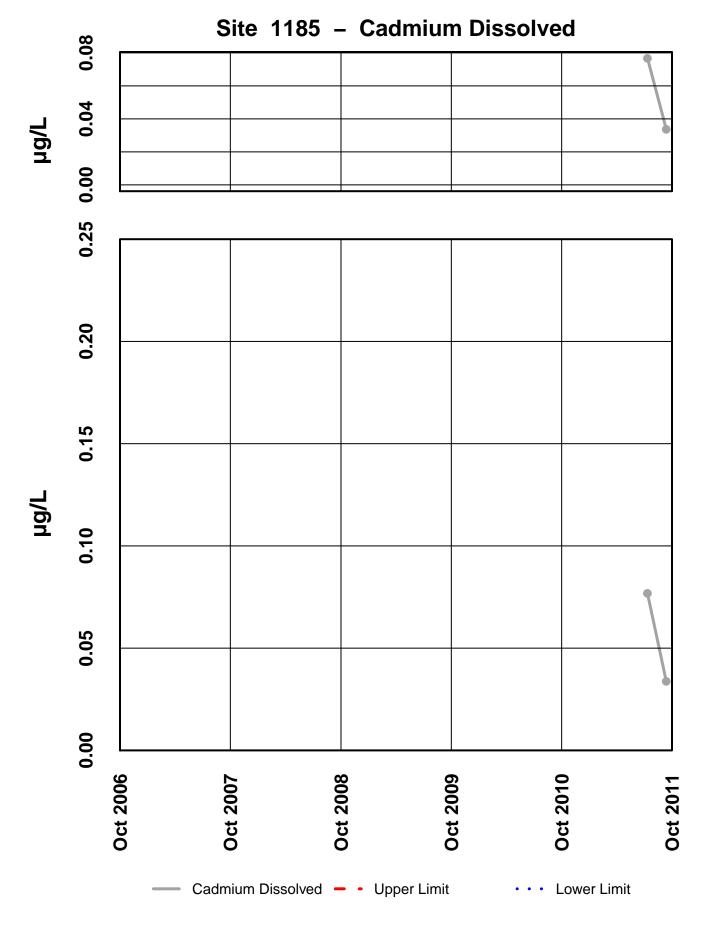
SU



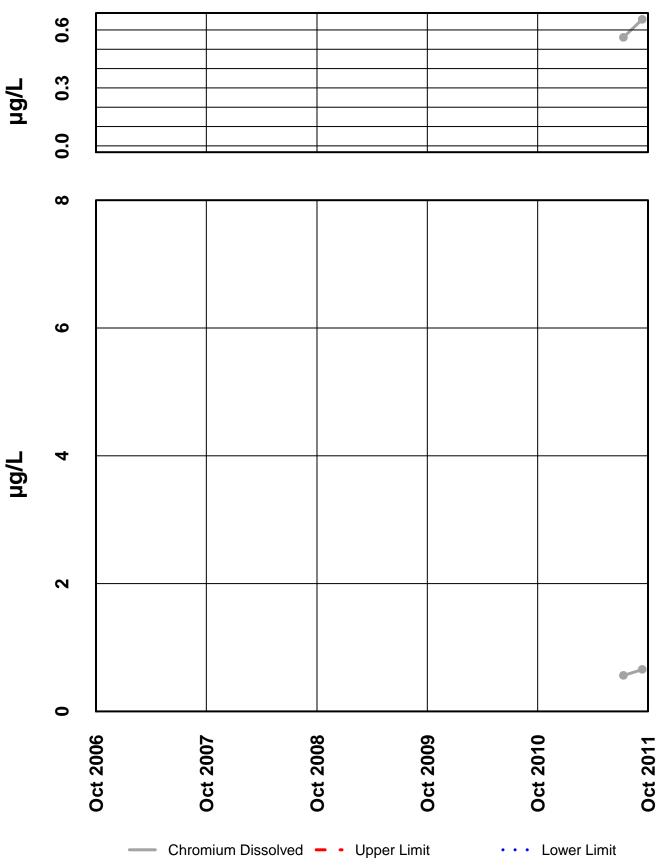

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



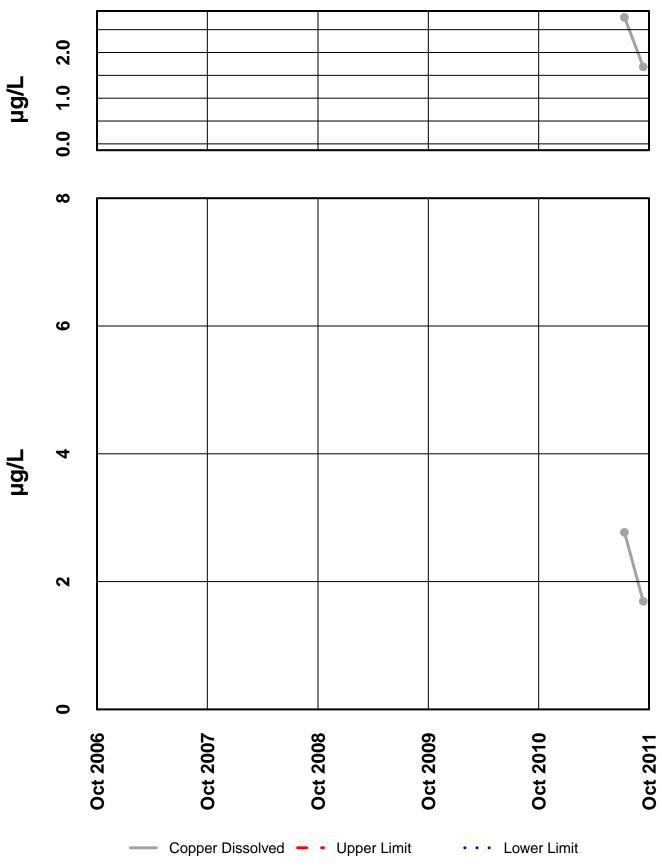




### Site 1185 – Hardness



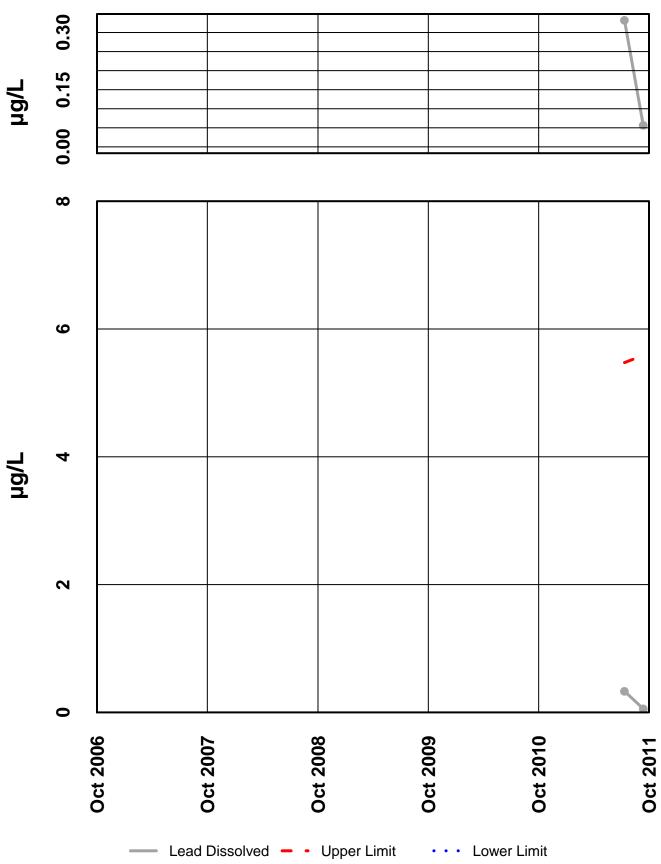

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

### Site 1185 – Arsenic Total

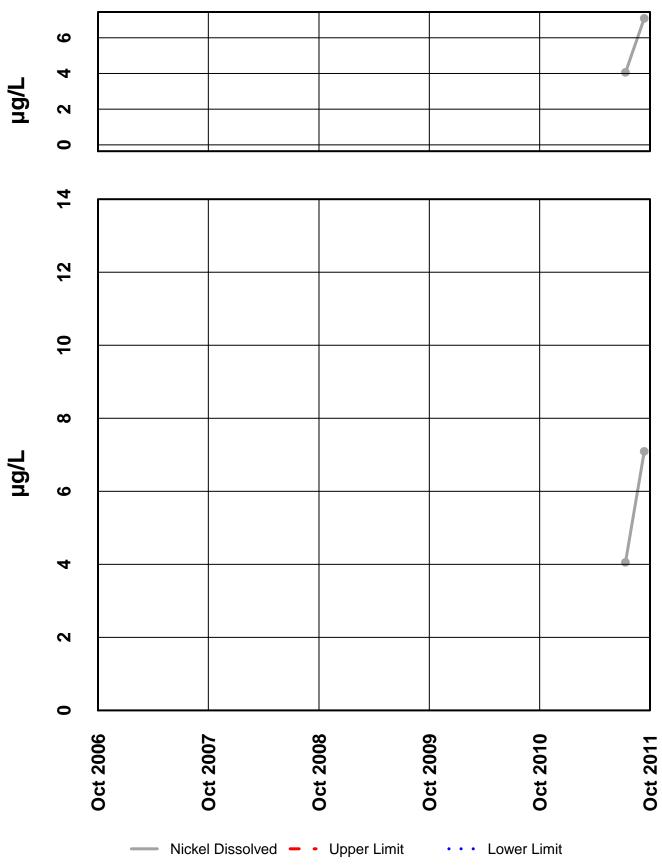




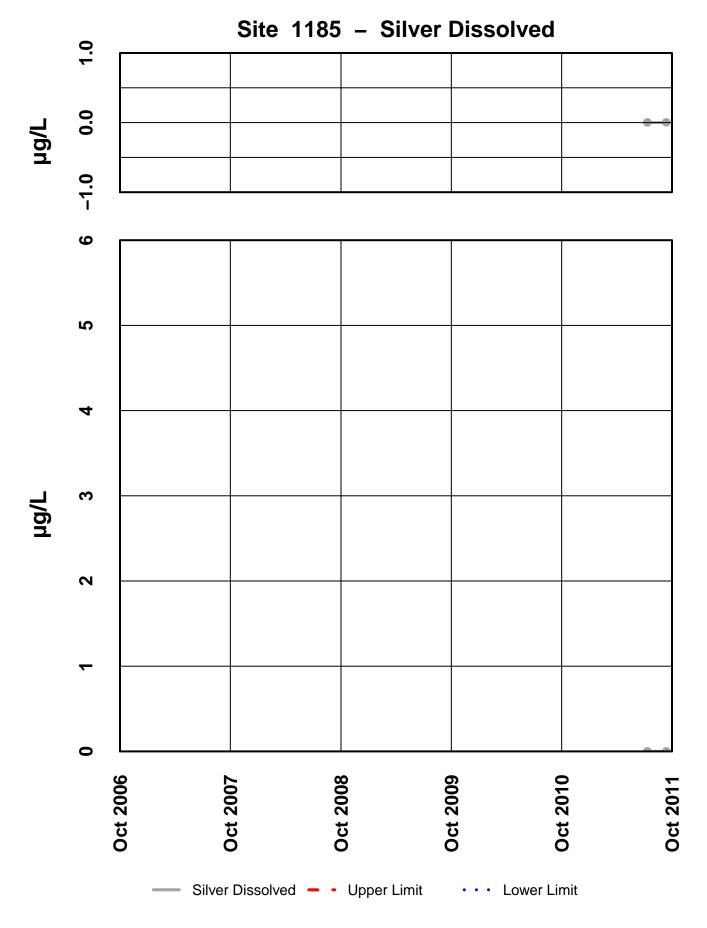

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



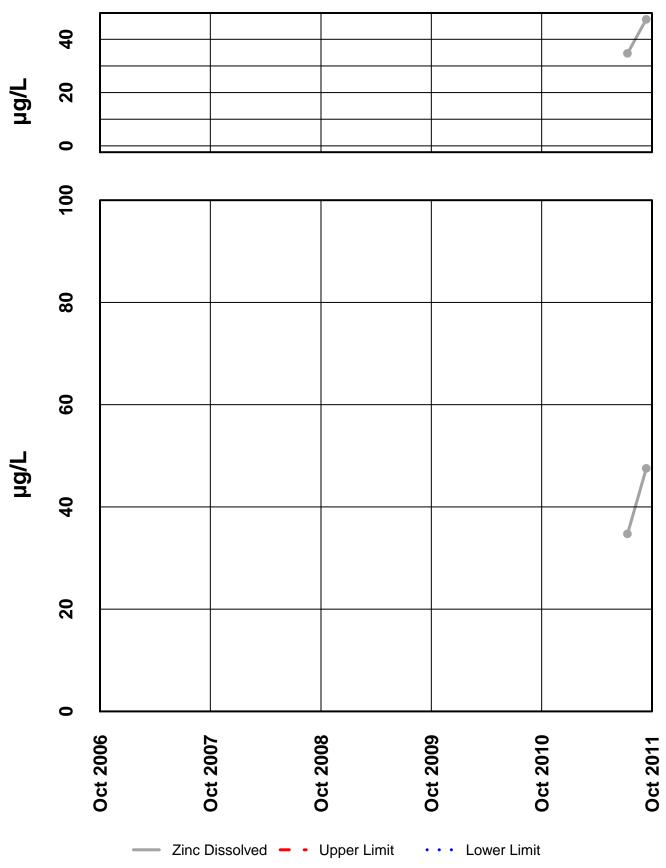

Site 1185 – Chromium Dissolved



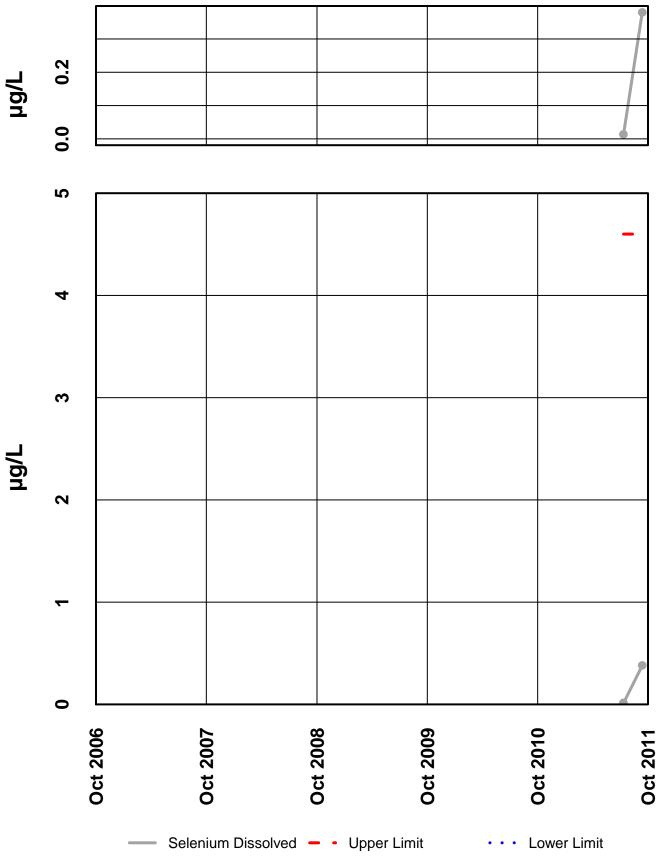

Site 1185 – Copper Dissolved


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

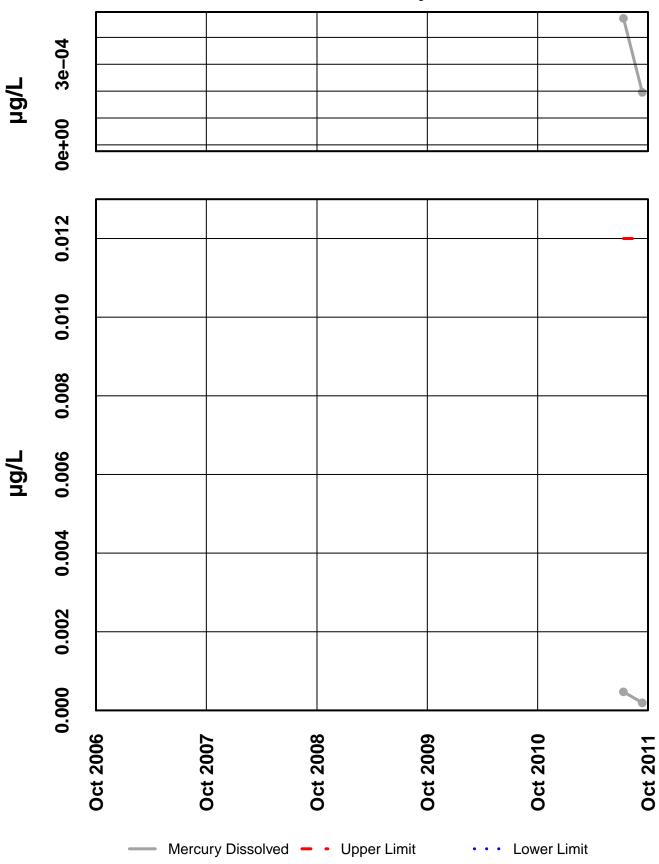



### Site 1185 – Lead Dissolved




Site 1185 – Nickel Dissolved




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



### Site 1185 – Zinc Dissolved



Site 1185 – Selenium Dissolved



Site 1185 – Mercury Dissolved

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

#### INTERPRETIVE REPORT SITE 1186 "-MONITORING WELL -T-10-08B"

Sampling at this site was initiated during the summer of the water year 2011. Site 1186 was drilled in the summer of 2010 and then developed over the next year. Sampling began in July 2011, and it is to be sampled in November, May, July, and September of the current water year 2012. This well may serve as the new shallow upgradient background site to the tailings facility and is analogous to Site 58FMG (MW-T-00-01C). The upgradient nature of Site 58FMG was compromised during the East Ridge Expansion, because it is now located between the old B road and the new B road location. Also, there has been a material (i.e. road rock) pad built upgradient to Site 58FMG.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2011" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

As shown in the table below, there were no data outliers.

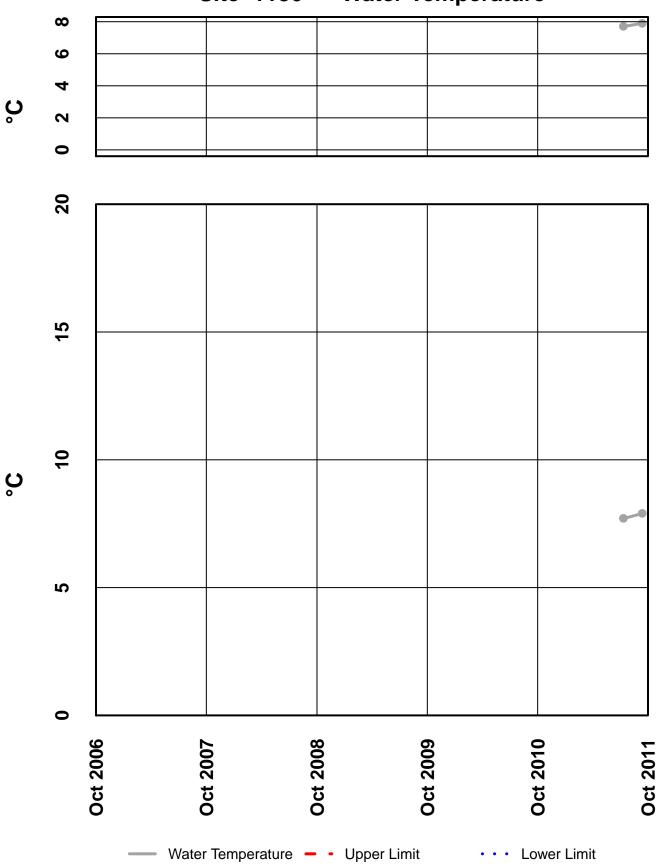
Sample Date	Parameter	Value	Qualifier	Notes					
No outliers have been identified by HGCMC for the period of October 2010 through September 2011.									

The data for Water Year 2011 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2011**

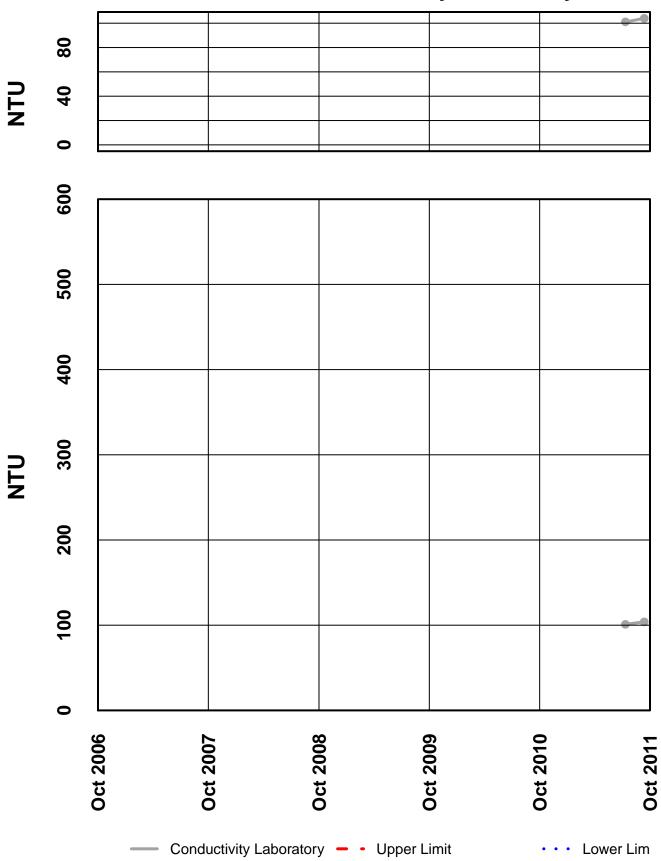
		Limits						
Sample Date	Parameter	Value	Lower	Upper	Hardness			
1	ces have been identified b			• • • •				

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Because of the limited amount of data visual trend analysis and statistical analysis of the data was not performed.

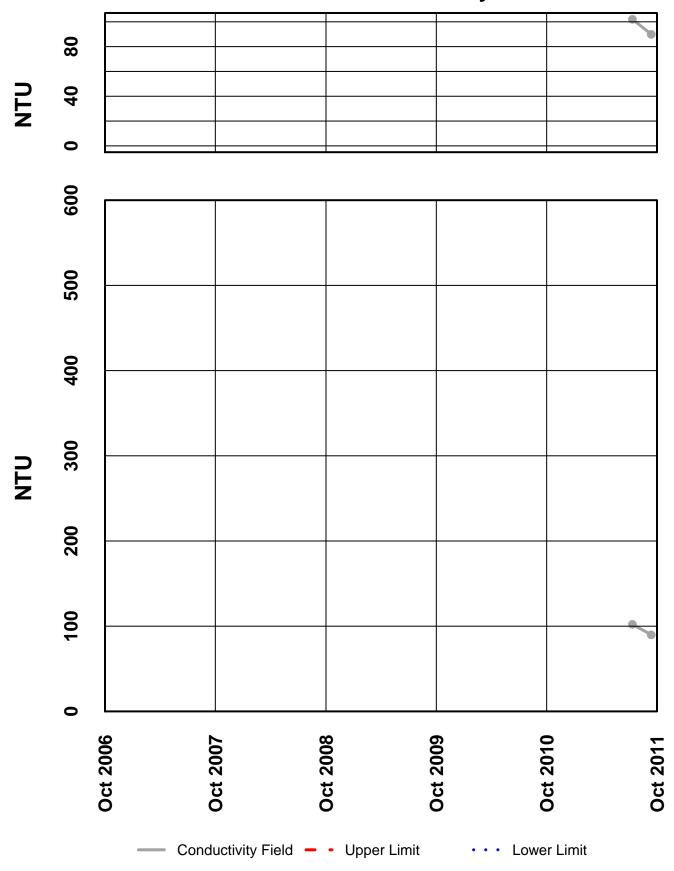

Sample Date/Parameter	Oct 2010	Nov 2010	Dec 2010	Jan 2011	Feb 2011	Mar 2011	Apr 2011	May 2011	Jun 2011	Jul 2011	Aug 2011	Sep 2011	Median
Water Temp (°C)							•			7.7		7.9	7.8
Conductivity-Field(µmho)										102		90	96.0
Conductivity-Lab (µmho)										101		104	103
pH Lab (standard units)										6.34		6.43	6.39
pH Field (standard units)										7.5		7.48	7.49
Total Alkalinity (mg/L)										40.8		36.4	38.6
Total Sulfate (mg/L)										2.5		2.5	2.5
Hardness (mg/L)										21.6		40	30.8
Dissolved As (ug/L)										0.229		0.125	0.177
Dissolved Ba (ug/L)										14.8		35.4	25.1
Dissolved Cd (ug/L)										0.0131		0.0152	0.0142
Dissolved Cr (ug/L)										0.449		0.744	0.597
Dissolved Cu (ug/L)										0.673		0.736	0.705
Dissolved Pb (ug/L)										0.0667		0.0161	0.0414
Dissolved Ni (ug/L)										0.97		1.75	1.360
Dissolved Ag (ug/L)										0.002		0.002	0.002
Dissolved Zn (ug/L)										3.13		8.47	5.80
Dissolved Se (ug/L)										0.381		0.481	0.431
Dissolved Hg (ug/L)										0.000338		0.000374	0.000356

#### Site 1186 - 'Monitoring Well -T-10-08B'

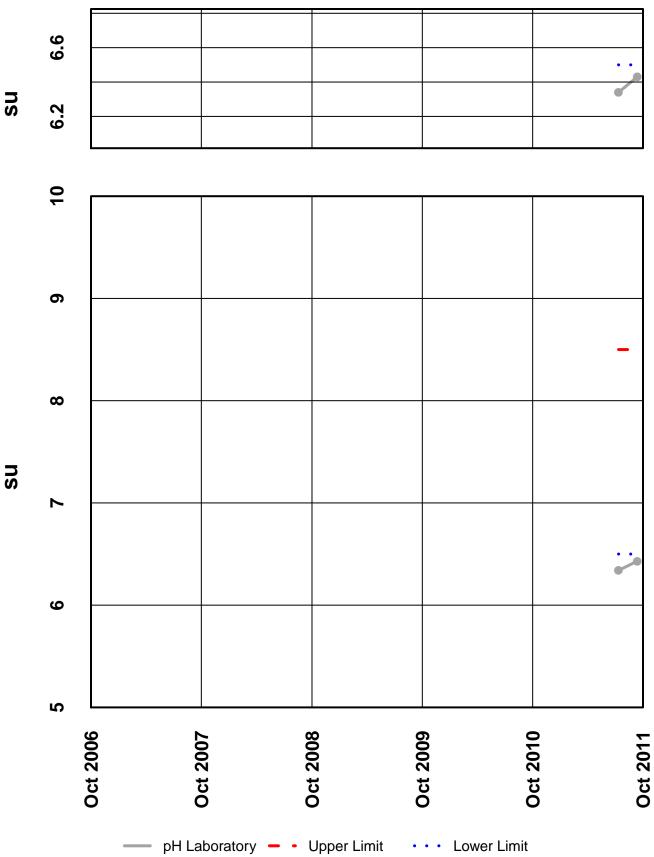
For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.


Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by KGCMC and removed from any further analysis and is not included into the calculation of the median

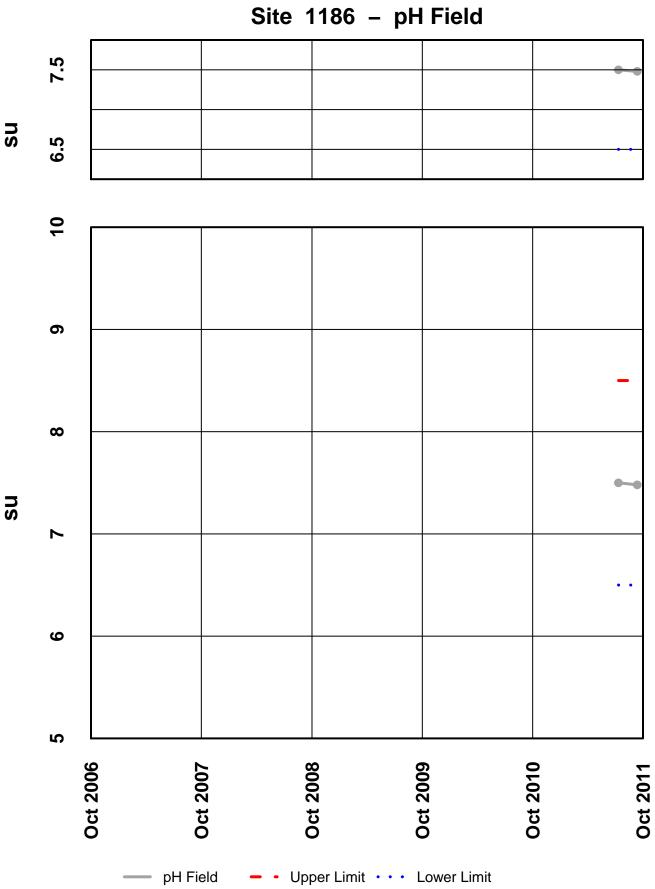



Site 1186 – Water Temperature


ů

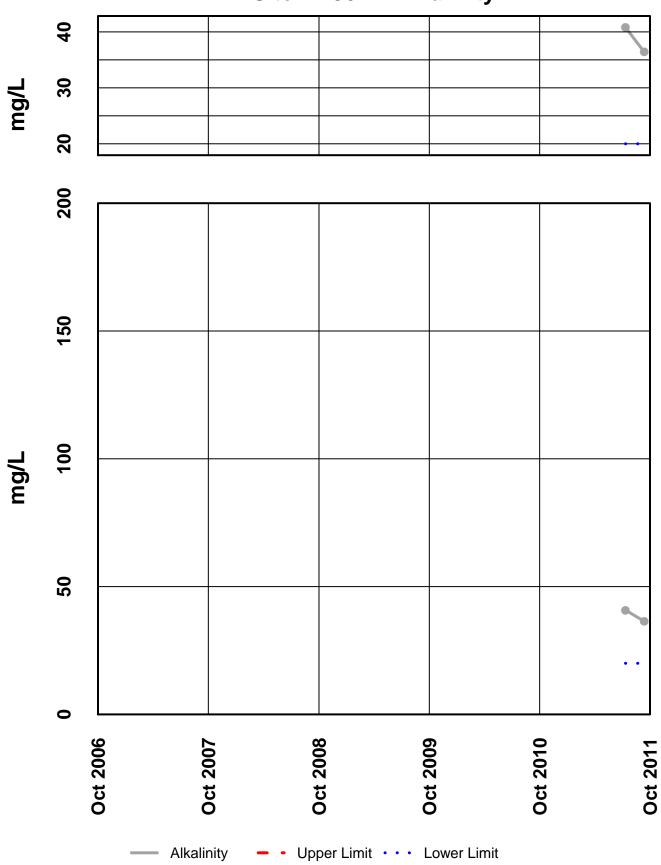


Site 1186 – Conductivity Laboratory

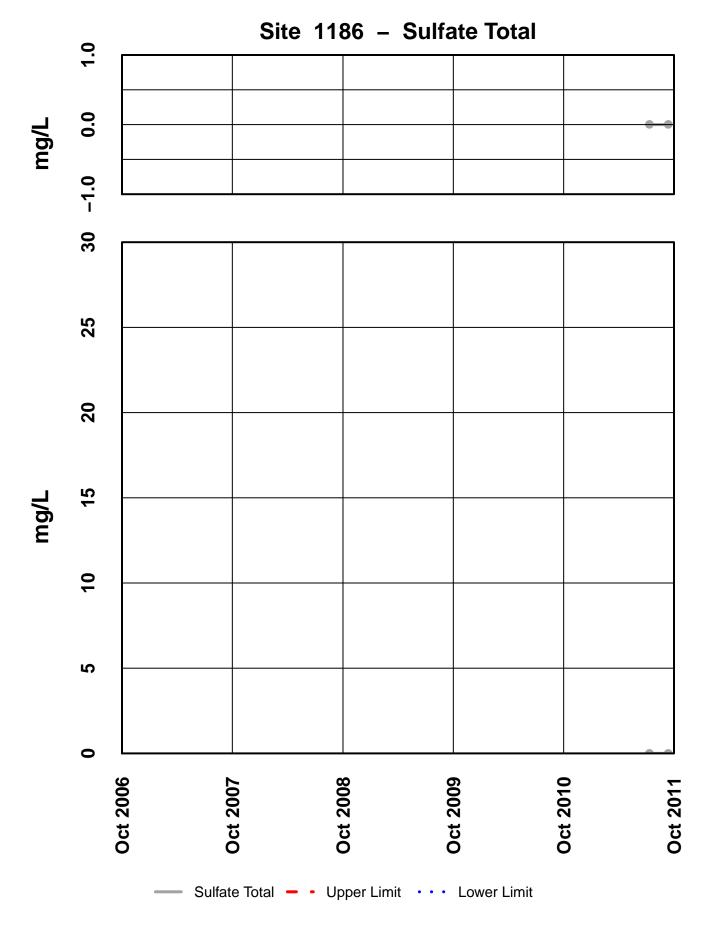



Site 1186 – Conductivity Field




Site 1186 – pH Laboratory

SU

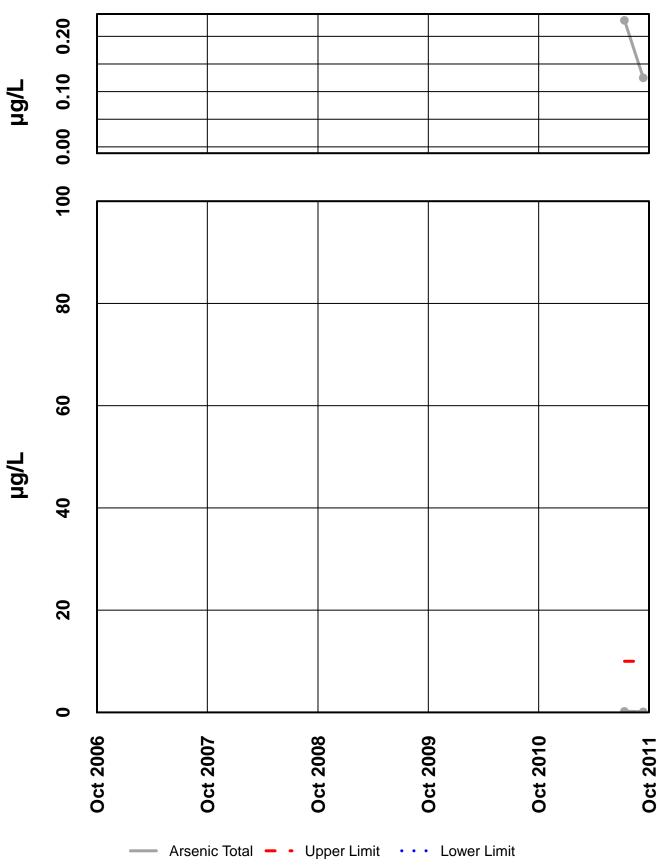



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

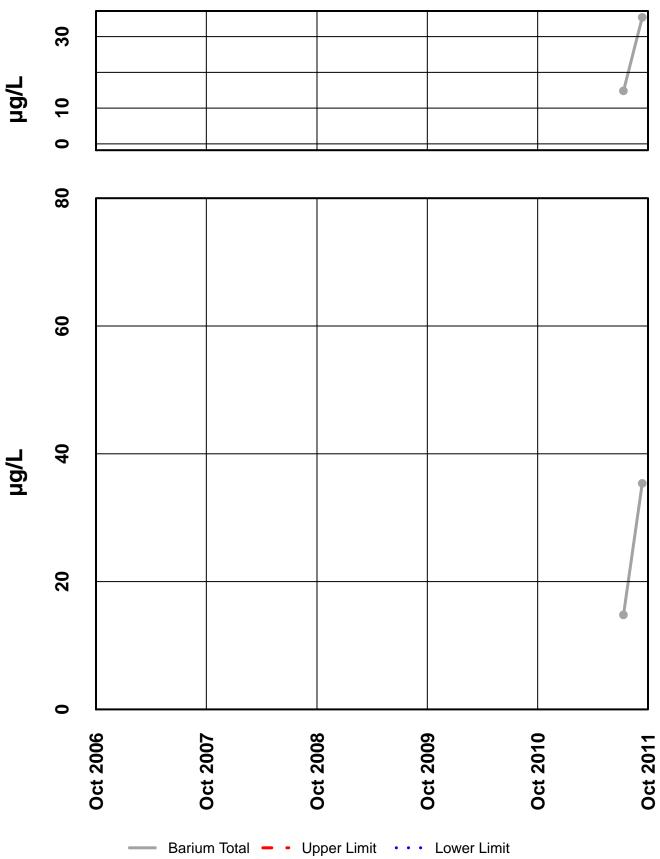
SU



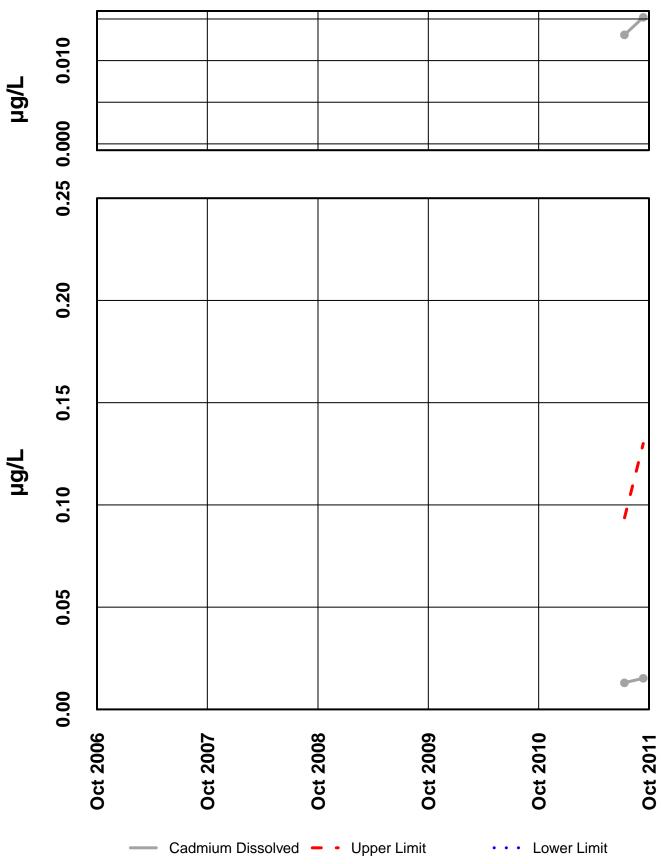
# Site 1186 – Alkalinity



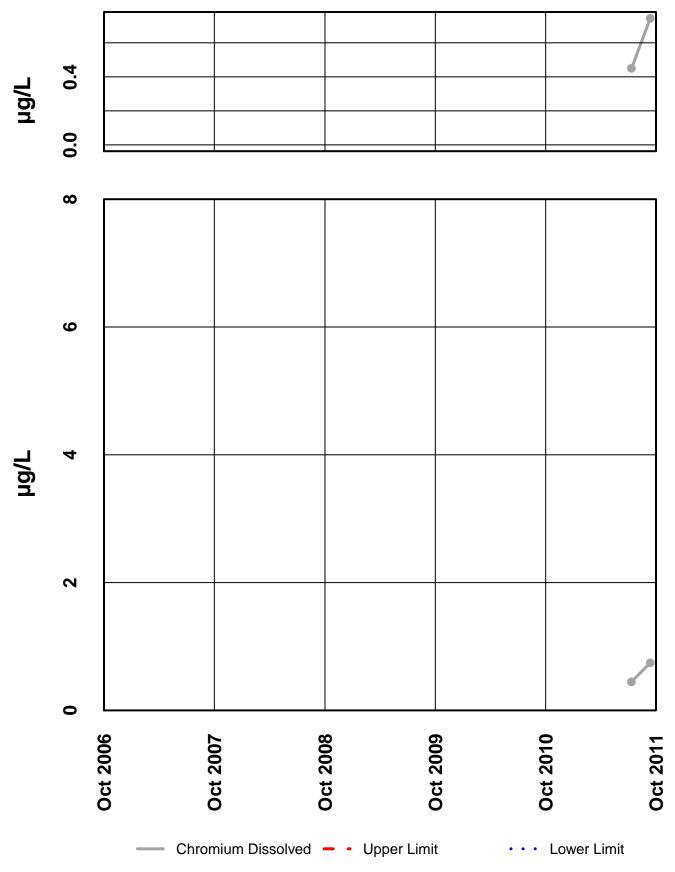

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



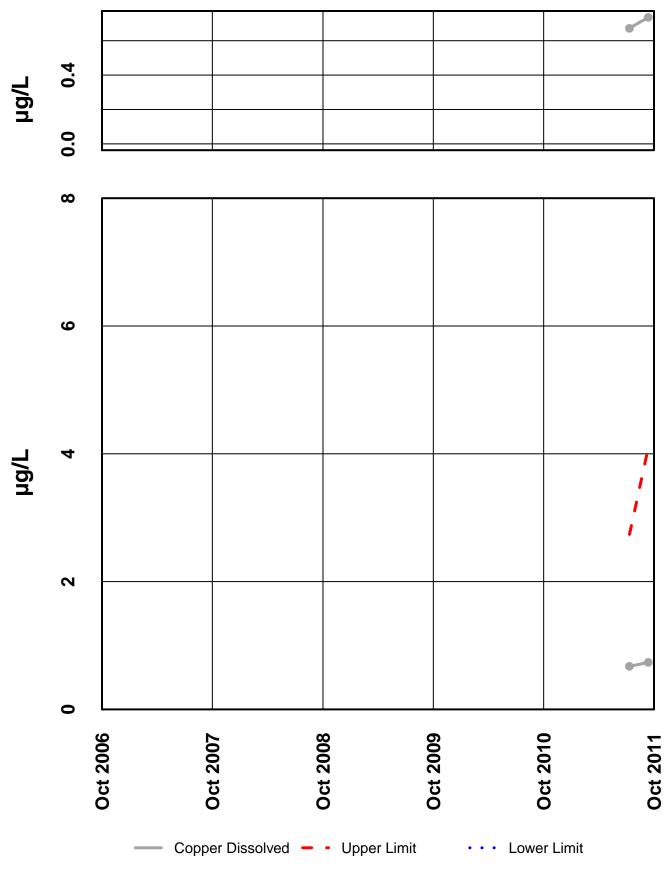

Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


### Site 1186 – Hardness

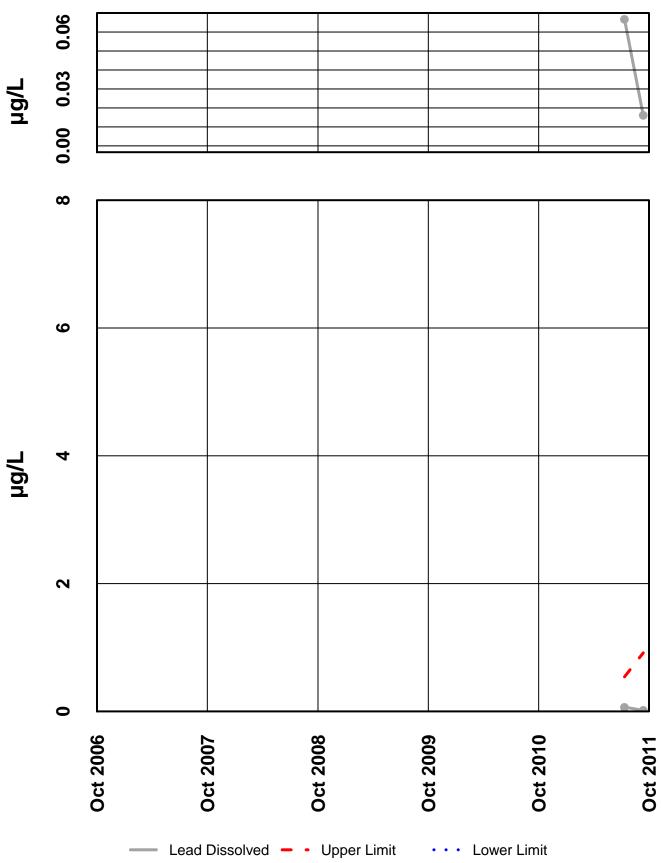



Site 1186 – Arsenic Total

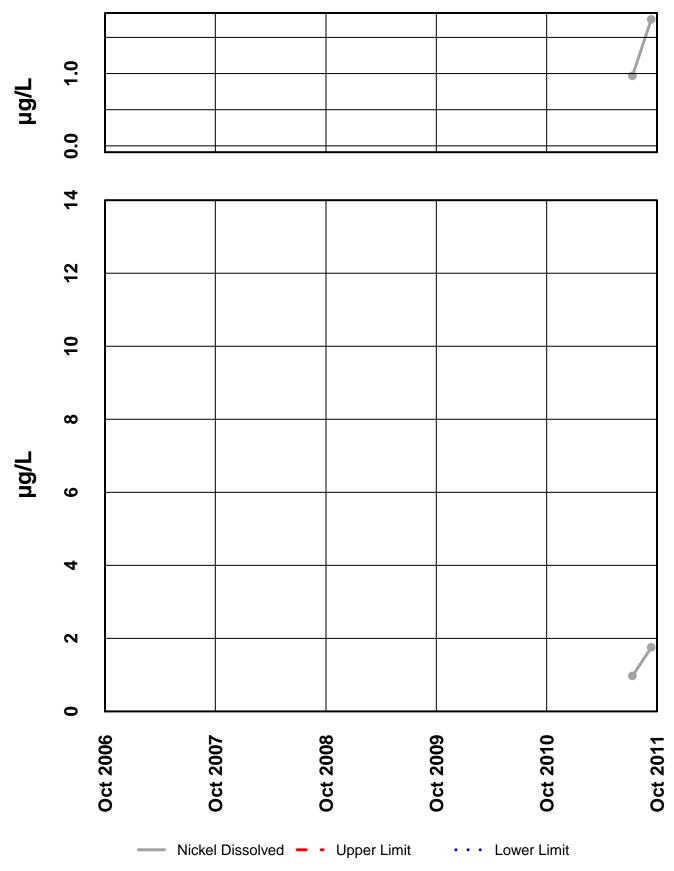



## Site 1186 – Barium Total

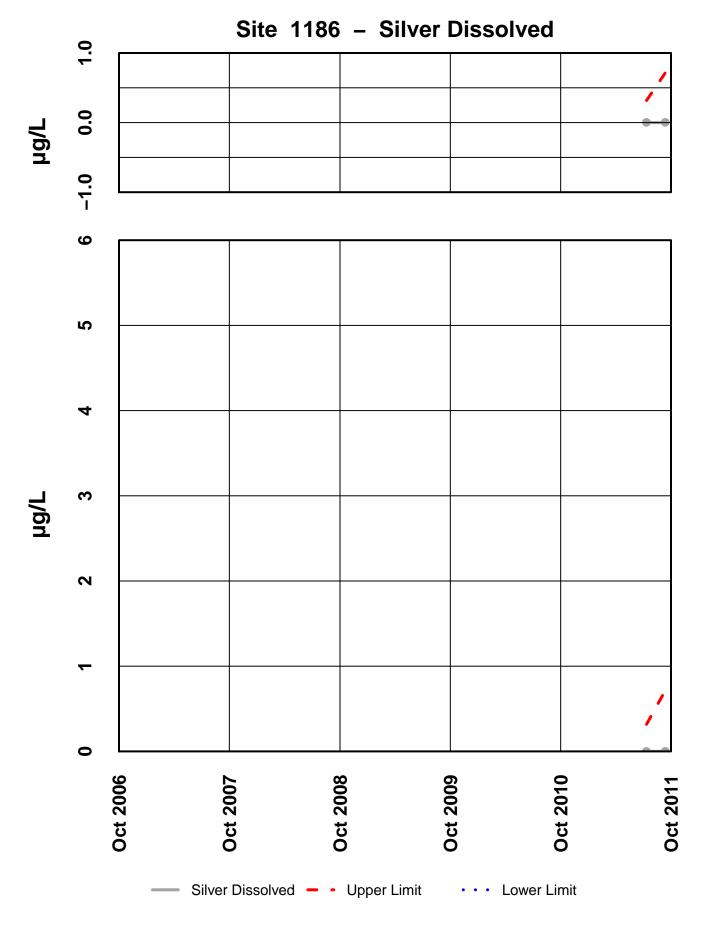



Site 1186 – Cadmium Dissolved

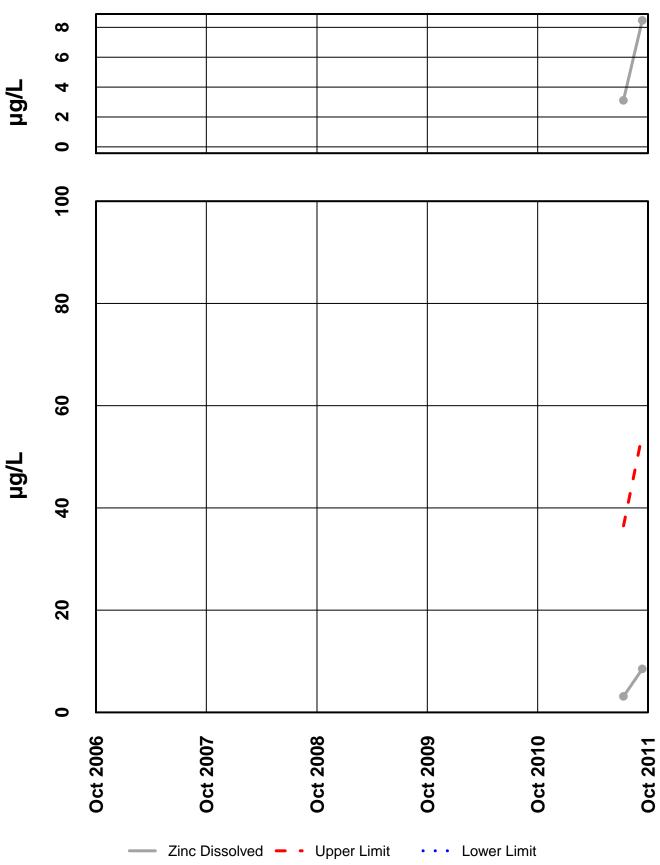



Site 1186 – Chromium Dissolved

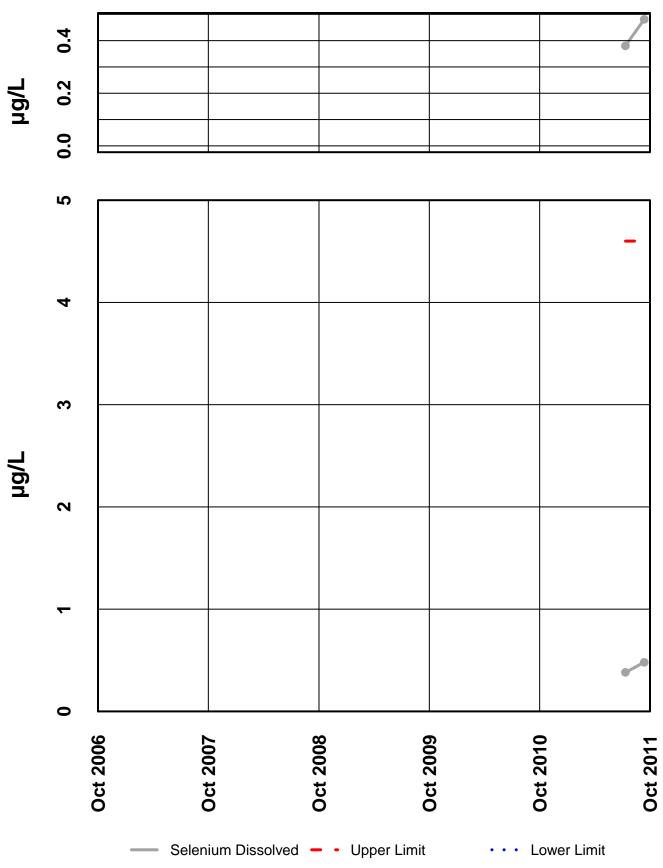



Site 1186 – Copper Dissolved

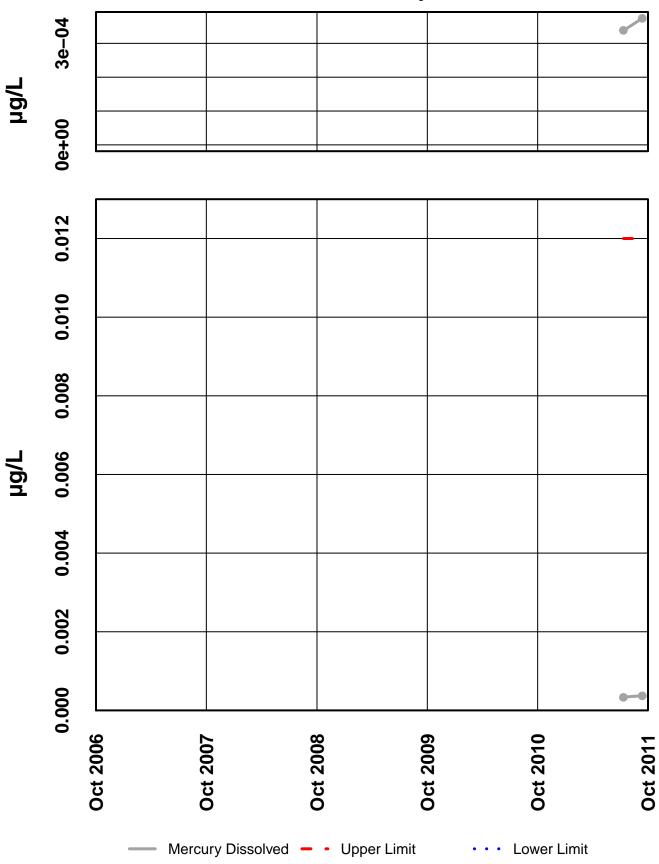



Site 1186 – Lead Dissolved




Site 1186 – Nickel Dissolved




Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 1186 – Zinc Dissolved



Site 1186 – Selenium Dissolved



## Site 1186 – Mercury Dissolved

Å	ater		ater	Aquatic Life-Fresh Water									Human Health Criteria for NonCarcinogens	
mete	No	10NSte	higaion Mater		Acute			Water +	Aquatic					
Parameter	Drinking Nater	Stockwater		criteria	as	multilply by conversion factor	to convert to	criteria	as	multiply by conversion factor	to convert to	Aquatic Organisms	Organisms Only	
alkalinity								20,000 minimum						
As	10	50	100	340	TR	1	D	150	TR	1	D			
Ва	2,000													
Cd	5	10	10	e^1.0166(In hardness)-3.924	TR	1.136672-[(In hardness)(0.041838)]	D	e^0.7409(In hardness)-4.719	TR	1.101672-[(In hardness)(0.041838)]	D			
Cr	100													
Cr(total)			100											
Cr(III)				e^0.819(In hardness)+3.7256	TR	0.316	D	e^0.819(In hardness)+0.6848	TR	0.860	D			
Cr(VI)		50		16	D			11	D					
Cu			200	e^0.9422(In hardness)-1.700	TR	0.960	D	e^0.8545(In hardness)-1.702	TR	0.960	D	1,300		
Pb		50	5,000	e^1.273(In hardness)-1.460	TR	1.46203-[(In hardness)(0.145712)]	D	e^1.273(In hardness)-4.705	TR	1.46203-[(In hardness)(0.145712)]	D			
Hg	2			1.4	D			0.012	TR			0.05	0.051	
Ni	100		200	e^0.846(In hardness)+2.255	TR	0.998	D	e^0.846(In hardness)+0.0584	TR	0.997	D	610	4,600	
Se	50	10	20	1/[([selenite]/185.9)+ ([selenate]/12.83]	TR	0.922	D	5	TR	0.922	D	170	11,000	
Ag				e^1.72(In hardness)-6.52	TR	0.850	D							
Zn			2,000	e^0.8473(In hardness)+0.884	TR	0.978	D	e^0.8473(In hardness)+0.884	TR	0.986	D	9,100	69,000	

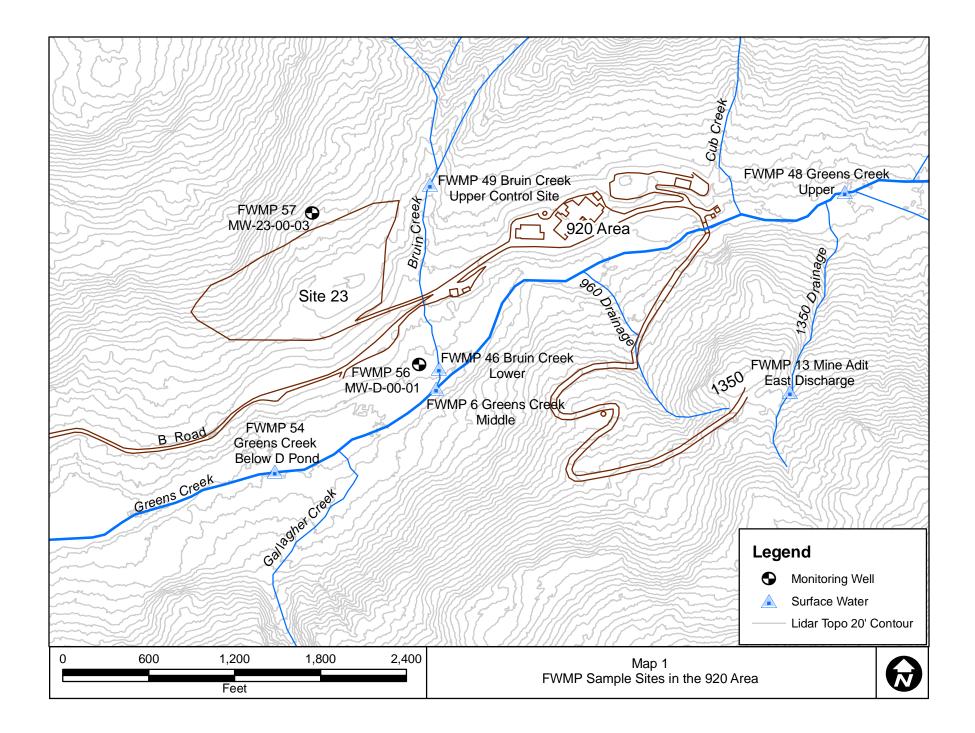
all units in micrograms per liter (ug/L)

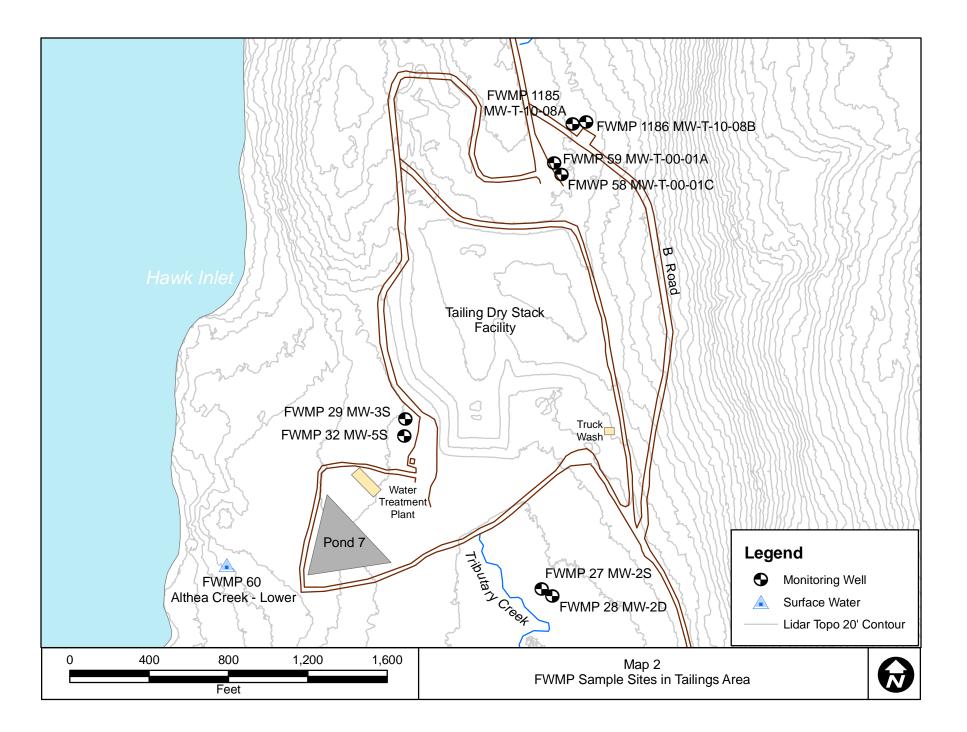
TR total recoverable

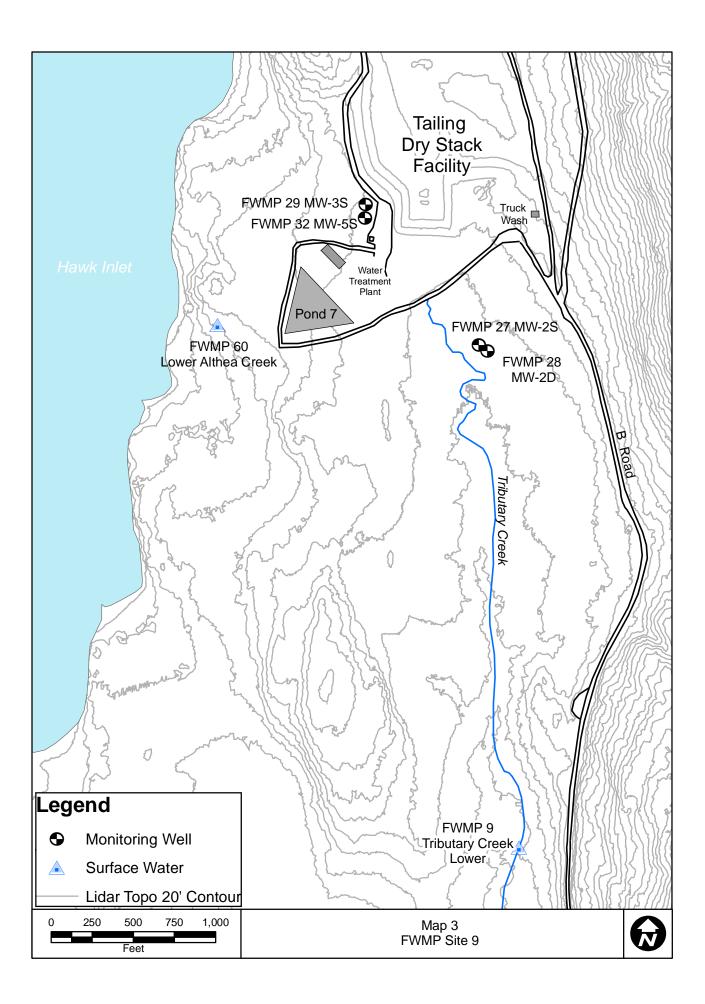
D dissolved H some of the criteria for this parameter are hardness dependant

FWA Fresh Water Acute FWC Fresh Water Chronic

Source: http://www.dec.state.ak.us/water/wqsar/wqs/toxicsbook.xls


Table formatting was modified by HGCMC to include only parameters include in Suite P and Q and to highlight the strictest standard.


DENOTES STRICTEST CRITERIA


### **APPENDIX B**

### Map Sheets

Map 1-920 Årea FWMP Sites Map 2-Tailings Area FWMP Sites Map 3-Site 9, Tributary Creek





