

### FRESH WATER MONITORING PROGRAM ANNUAL REPORT

# WATER YEAR 2013

(October 1, 2012 through September 30, 2013)



# Hecla Greens Creek Mining Company

April 15, 2014

## TABLE OF CONTENTS

| EXECUTIVE SUMMARY                                                                                                                                                                                                                | pg. 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| INTRODUCTION -<br>Information, explanations, and clarifications not presented elsewhere                                                                                                                                          | pg. 4  |
| INTERVENTIONS -<br>Procedural changes, natural phenomena, and mine operational changes that<br>could affect data during Water Year.                                                                                              | pg. 7  |
| MID-YEAR MODIFICATIONS                                                                                                                                                                                                           | pg. 8  |
| SAMPLE LOG                                                                                                                                                                                                                       | pg. 9  |
| SAMPLE SUITES                                                                                                                                                                                                                    | pg. 10 |
| PERSONNEL INVOLVED -<br>A list of personnel involved with the FWMP during the Water Year.                                                                                                                                        | pg. 11 |
| SITE COORDINATES                                                                                                                                                                                                                 | pg. 12 |
| PROPOSED PROGRAM MODIFICATIONS                                                                                                                                                                                                   | pg. 13 |
| BIBLIOGRAPHY                                                                                                                                                                                                                     | pg. 17 |
| SITE 48 "UPPER GREENS CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis                                                                | pg. 25 |
| SITE 6 "MIDDLE GREENS CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis<br>Site 48 vs. Site 6 X-Y Plots<br>Wilcoxon Signed-Ranks Tests | pg. 53 |
| SITE 54 "LOWER GREENS CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis<br>Site 6 vs. Site 54 X-Y Plots                                | pg. 92 |

Wilcoxon Signed-Ranks Tests
TABLE OF CONTENTS

| SITE 62 "GREENS CREEK BELOW SITE 54" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots                                  | pg. 131 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| SITE 61 "GREENS CREEK FLOODPLAIN" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots                                     | pg. 148 |
| SITE 49 "UPPER BRUIN CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis        | pg. 171 |
| SITE 46 "LOWER BRUIN CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis        | pg. 200 |
| SITE 57 "MONITORING WELL 23-00-03"-<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis  | pg. 233 |
| SITE 13 "MINE ADIT DISCHARGE EAST" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend Analysis | pg. 262 |
| SITE 27 "MONITORING WELL 2S" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend analysis       | pg. 290 |

# **TABLE OF CONTENTS**

| SITE 29 "MONITORING WELL 3S" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend analysis | pg. 320 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| SITE 32 "MONITORING WELL 5S" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots<br>Seasonal Kendall trend analysis | pg. 350 |
| SITE 9 "TRIBUTARY CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots                                        | pg. 379 |
| SITE 60 "ALTHEA CREEK LOWER" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots                                    | pg. 406 |
| SITE 609 "FURTHER CREEK" -<br>Interpretive Report<br>Table of Results<br>Qualified Data by QA Reviewer Report<br>X-Y Plots                                        | pg. 435 |
| APPENDIX A –<br>Summary table of Alaska Water Quality Standards                                                                                                   | pg. 457 |
| APPENDIX B –<br>Map – 920 Area FWMP Sites<br>Map – Tails Area FWMP Sites<br>Map – Site 60, Lower Althea Creek                                                     | pg. 458 |

### **EXECUTIVE SUMMARY**

This annual report has been prepared by Hecla Greens Creek Mining Company (HGCMC) in accordance with the mine's General Plan of Operations Appendix 1: Fresh Water Monitoring Program (FWMP). Monitoring data interpretative reports are presented for eleven surface water and four groundwater monitoring sites.

Each site's interpretative report summarizes the annual dataset with respect to several goals and objectives outlined in the FWMP. Each report contains a list of any exceptions, omissions or errors that occurred during data collection. The report lists a comparison of each site's annual dataset to all appropriate applicable Alaska Water Quality Standards (AWQS). Finally, a series of summary tables and X-Y graphs have been generated to meet the specific statistical goals for each site.

This was the second full year of sampling under the recently approved FWMP sampling schedule. All required sampling, except for the November sampling of Site 13 and the February sampling of Site 57, was accomplished as specified in the monitoring schedule and for each site the specified analytic suite (P or Q) was performed on the collected samples. Applicable holding times were achieved for all analytes, except pH, which for two of the twelve sample events were not within the applicable hold time. Furthermore, no data points were qualified as outliers.

No exceedances of Alaska Water Quality Standards (AWQS) occurred along Greens Creek at the four monitoring points (Site 48, Site 6, Site 54, and Site 62). Four exceedances (dissolved cadmium, dissolved mercury, dissolved selenium, and dissolved zinc) were recorded in May 2013 at the new surface water location Site 61. Though this sampling had these constituents above AWQS the down gradient site (Site 62), which receives this drainage, during the same sample period was well within AWQS. To further understand the issues HGCMC has switched the sampling frequency at Site 61 from quarterly to monthly.

Though there are typically exceedances of AWQS at Site 13 for total sulfate, there were none this year. HGCMC removed an additional 5,645 cubic yards of material from the 1350 during the 2013 summer season. It is HGCMC's intention to remove the accessible remaining material from the 1350 during the 2014 summer season. There will be some material left in the access road to the 1350 until final reclamation.

Exceedances in the tailings area were noted for low pH, low alkalinity, and elevated levels of lead. The shallow wells (Site 27, Site 29, and Site 32) continued to display a long history of exceedances due to the low pH and low alkalinity that characterize these sites located in organic rich peat sediments. Four exceedances for dissolved lead occurred at one of the three down gradient shallow wells (Site 32). These exceedances continue the recent history of low to moderate levels of lead that may in part be due to minor amounts of tailings escaping the facility due to fugitive dust or tracking. Though lead is above AWQS at Site 32 there has been a continual decrease in the concentration since the high values recorded during the 2006 and 2007 water years.

Site 60 had exceedances for low alkalinity, low pH, and elevated mercury. This site's watershed was disturbed when the construction of Pond 7 began in 2004: as the area recovers the water is returning to the naturally low pH and low alkalinity characteristic of the area. It has been theorized that the disturbance resulted in the watershed changing from naturally acidic to alkaline conditions. This change in fundamental chemistry is thought to have caused the naturally occurring, low level, dissolved mercury to adsorb onto soil particles. Now as the area reverts to the natural state of low pH and low alkalinity, this abundance of adsorbed mercury may be dissolving back into solution, resulting in the temporary mercury increase. After this disturbance mercury concentrations had continued to increase yearly until water year 2009, which showed a decrease in concentration. In water year 2010, the highest mercury measurement recorded (0.0227µg/L) occurred in September 2010. Then the concentration initially decreased and was below AWQS at the beginning of water year 2011, but by September 2011 the concentration was again in exceedance (0.0183 µg/L). After an initial decrease in concentration mercury concentrations rose to the second highest value (0.0213 µg/L) by the end of water year 2012. Two of the four samples collected during the current water year were within AWQS, the other two were only slightly above the AWQS at 0.0174  $\mu$ g/L each.

As a result of data collected in the previous water year the above hypothesis was revised slightly. It is still HGCMC hypothesis that the issue is being driven by the adsorption and desorption of mercury with the change in pH. However, instead of creating a 'pool' of adsorbed mercury once and depleting it, this process has occurred several times. Though overall the pH of the system is trending towards lower values there has been great fluctuations. It is believed that these fluctuations 'see saw' about the equilibrium point of the adsorption desorption mechanism. Additional sampling in adjacent drainages during water year 2009 and water year 2012 showed that this issue was isolated to only the Althea watershed. In the last annual report HGCMC proposed to conduct a pH survey of the muskeg region to the west of Pond 7 and also the drainage above Site 60, in order to better understand the pH dynamics of the system. Along with this work an evaluation of the catchment and pump back system at Pond 7 was also proposed. This work was delayed and was not conducted in the previous water year. It is now HGCMC intention to conduct this work during the spring/summer of 2014.

The final two sites in the tailings facility, Site 9 and Site 609, only had exceedances for low alkalinity. The low alkalinity values are expected given the naturally occurring acidic muskeg conditions in the headwaters near Site 27 and Site 29.

Graphical and non-parametric analyses for trends in the data were performed for all sites monitored. Statistically significant trends were identified for eleven sites: Site 48, increasing trend in total alkalinity; Site 6, upward trend in total alkalinity; Site 54, upward trend in total sulfate; Site 57, increasing trends in pH and total alkalinity, decreasing trend in conductivity; Site 60, upward trend in dissolved zinc; Site 27, decreasing trend in dissolved zinc and an upward trend in total alkalinity; Site 29, decreasing trend in conductivity and dissolved zinc; Site 32, a downward trend in dissolved zinc.

Site 48 and Site 57 are considered up-gradient control sites and thus the trends are likely due to natural variation. Two of Greens Creek sites (Site 48 and Site 6) had similar low magnitude increasing trends in total alkalinity. Though this is an increasing trend, Site 48 indicates that a

portion of the increase is natural variation. The increasing trend recorded at Site 54 for total sulfate is minor and total sulfate at the site remains well below the AWQS. Conductivity at Site 29 has been trending downward for several years. Downward trends in dissolved zinc at Site 29 and Site 32 may indicate a decrease in loading from fugitive dust. Also, the upward trend in total alkalinity at Site 27 is still well within the historical range. And the increasing trend at Site 60 for dissolved zinc is low in magnitude.

A non-parametric comparison of medians was performed for all the appropriately paired surface (48-6 and 6-54). Significant differences were noted for the paired datasets from Greens Creek (48-6) for conductivity, total sulfate, and dissolved zinc. These differences have all been noted in previous annual reports and do not appear to be increasing in magnitude. Also, there were significant differences for the paired dataset (6-54) from Greens Creek for conductivity and total sulfate. There were no trends for the total alkalinity, total sulfate, or dissolved zinc data.

With the reduction in the sampling frequency for the Bruin Creek sites (49 and 46) a statistical analysis of median values cannot be calculated, instead the data from Site 46 is analyzed on a intra-site basis using the combined Shewhart-CUSUM control charts. An analysis using theses charts reached the same conclusion as in previous reports that HGCMC is not having a measurable effect on Site 46.

With the removal of the Site 58 and Site 59 form the FWMP, it is not possible to perform interwell comparison with the the down gradient sites Site 27, Site 29, and Site 32. These sites are now also analyzed using the combined Shewhart-CUSUM control charts also. From this evaluation it is recognized that Site 27 has seen some recent changes. Primarily the specific conductance and total sulfate charts begin to go out of control early 2008. This is attributed to the building of the pad west of Pond 7. Both of these parameters are trending towards pre-pad disturbance levels. The other control chart for dissolved zinc first went out of control during water year 2007, a high fugitive dust year. Twice since zinc concentrations have been above the control limits, also associated with fugitive dust loading. However, after each of these events the values return to the historical range.

### INTRODUCTION

This annual report for Water Year 2013 (October 1, 2012 through September 30, 2013) provides the information required by the Fresh Water Monitoring Program (FWMP) for the Hecla Greens Creek Mining Company (HGCMC). It is separated into several sections, the first of which provides general information applicable to the entire program, followed by a comprehensive analysis of the data for each specific site.

To avoid confusion data values reported by the laboratory as being below the Method Detection Limit (MDL) are assigned a value of zero for plotting purposes. This is done so that the values below MDL are visually distinct and thus can be properly interpreted. On several of the graphs presented, changes have occurred in MDL over the period shown. This leads to the visual impression that an upward trend exists when in fact the older analysis had MDL greater than ambient background levels. For the current Water Year's data the actual MDLs for non-detect values are listed in each site's table of results in the interpretative discussion of this report. For prior Water Year's historic MDLs please refer to GPO Appendix 1, Table 8-2.

The monitoring schedule varies from site to site and different sites are monitored for different analytes on different months of the year. Occasionally, sites scheduled for sampling may not be available due to weather or more rarely operational reasons. A copy of the Water Year 2013 sampling log is included in this section and any variations from scheduled sampling events are noted on each site's table of results presented in the interpretive section.

|      |            | Tren   | d    |            |         |
|------|------------|--------|------|------------|---------|
|      | AWQS       |        |      | Median     | Control |
| Site | Comparison | Visual | Calc | Comparison | Chart   |
| 48   | x          | х      | х    |            |         |
| 6    | x          | х      | х    | 6 vs 48    |         |
| 54   | х          | х      | х    | 54 vs 6    |         |
| 62   | х          | х      | х    |            |         |
| 46   | х          | х      | х    |            | х       |
| 49   | x          | х      | х    |            | х       |
| 61   | x          | х      | х    |            |         |
| 13   | x          | х      | х    |            |         |
| 57   | х          | х      | х    |            | х       |
| 27   | х          | х      | х    |            | х       |
| 29   | x          | х      | х    |            | х       |
| 32   | x          | х      | х    |            | х       |
| 9    | х          | х      | х    |            |         |
| 60   | х          | х      | х    |            |         |
| 609  | x          | х      | х    |            |         |

The following table outlines the Statistical Information Goals (SIGs) for each site sampled during the Water Year 2013.

A comparison to Alaska Water Quality Standards (AWQS) is required for all sites. In Appendix A the specific water quality criteria used for each comparison are summarized. Trend analysis is carried out by two different methods. The first method is a visual trend analysis for each analyte. For each site sampled a series of time-concentration graphs are constructed for the previous five years of data collected. The second method is a non-parametric statistical method, Kendall seasonal trend analysis that is routinely done for conductivity, pH, alkalinity, and dissolved zinc. These are the key parameters along with sulfate that can be strongly affected by Acid Mine Drainage (AMD). Sulfate was added back into the required list of analytes in the 2002 Water Year. Median calculations are shown in the annual table of results for each site. Finally, for all down gradient sites that are paired with an upgradient reference site, which are monitored with a frequency greater than 4 times per year, a comparison of medians is presented for each specific site. These down gradient sites (upgradient site in parenthesis) include Site 6 (Site 48) and Site 54 (Site 6). For each of these sites, the statistical information goals requested a comparison of medians for total alkalinity, pH, conductivity, total sulfate and dissolved zinc. The statistical test utilized is a non-parametric, Wilcoxon signed-rank test. A brief summary of the two main statistical procedures, the Wilcoxon-Mann-Whitney rank sum test and the Mann-Kendall seasonal trend are given below.

With the approved decrease in the sampling frequency at Site 46 and Site 49 the statistical procedures previously discussed are no longer useable. More recently the analysis of data for Site 46 has been conducted using intra-site methodologies instead of an inter-site comparison. In the interpretive section of Site 46 is a discussion of this new methodology. This technique was also applied to Site 57, Site 27, Site 29, and Site 32. Much of the development and understanding of the new technique used has come from Resource Conservation and Recovery Act (RCRA) documents concerning ground water monitoring at waste sites.

#### **Statistical Tests**

The Mann-Kendall seasonal trend test is a non-parametric test for zero slope of a linear regression of time-ordered data verse time. Briefly the test consists of tabulating the Mann-Kendall statistic  $S_k$  (k=1 to 12, for each month) and its variance VAR(S) for data from each season (month). The  $S_k$  statistic is simply the sum of the number of positive differences minus the number of negative differences for time ordered data pairs. Any seasonal trend is removed by only considering data pairs taken within the same month. The individual monthly Mann-Kendall statistics ( $S_k$ ) are tested for homogeneity of trend which is used to determine if it is reasonable to combine the monthly  $S_k$  statistics into an overall annual statistic ( $\Sigma S_k$ ). If the test for monthly homogeneity is rejected the annualize statistic is not meaningful. However, the individual monthly Mann-Kendall statistics can still be tested for trend and a Sen's slope estimator can be calculated for each month (noted as  $Q_m$  in the interpretive section) with a significant trend.

The advantages of the Seasonal Kendall trend test is that it is a rank-based procedure especially suitable for non-normally distributed data, censored data, data containing outliers and non-linear trends. The null hypothesis (H<sub>0</sub>) states that the data( $x_1, ..., x_n$ ) are a sample of n independent and identically distributed random variables. The trend test statistic Z is used as a measure of trend magnitude, or of its significance. A positive Z value indicates an upward trend while a negative value indicates a downward trend. However, the Z statistic is not a direct quantification of trend

magnitude. For trend of significant magnitude a separate statistic, Sen's slope estimator, is calculated by computing the seasonally adjusted (monthly) median value for the slope. For datasets which fail the homogeneity test, individual monthly  $S_k$  statistics are compared to a theoretical probability distribution of S derived by Mann and Kendall (Table A18 in Gilbert, 1987). Further guidance and background on these statistical methods can be found in Gilbert (1987) or Helsel and Hirsch (1992).

The Wilcoxon signed-rank test is used to determine if the median difference between paired data points is equal to zero. In general terms the signed-rank is used to determine if a set of paired data observations, x's and y's, come from the same population (i.e. have the same median) or as the alternative hypothesis differ only in the location of the central value (median). If the data are from the same population then the differences of the paired data should be equally distributed around 0, or about half the differences should be greater than 0 and half should be less than 0. Computationally the test is straight forward. First the differences  $D_i=x_i-y_i$ , i=1...N are computed for each pair. The absolute values of the differences  $|D_i|$ , i=1...N are ranked from smallest to largest and data pairs that are tied, thus having differences of zero, are ignored. The ranks of the absolute differences have negative-signed ranks and positive differences have positive-signed ranks thus the term "signed-rank" in the method name. The test statistic W<sup>+</sup> is the sum of all positively signed ranks. The statistic W<sup>+</sup> is then compared to tabled values that vary based on N. The one-tailed version of the signed-rank test has been applied to the key indicator analytes of conductivity, pH, total alkalinity, sulfate, and dissolved zinc as listed in the table below.

|                         |                                                                                                                                                            | median |                     |                                       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|---------------------------------------|
| Analyte                 | Rationale                                                                                                                                                  | [D]    | Tail                | Reject H₀ if:                         |
| Specific<br>Conductance | Conductivity, as a proxy for total dissolved solids,<br><u>increases</u> due to sulfide oxidation.                                                         | <0     | X's <b>&lt;</b> Y's | $W^{*}(calc)$ < $W(table)_{\alpha,n}$ |
| Lab-pH                  | pH <u>decreases</u> though the addition of H <sup>+</sup> generated by pyrite oxidation.                                                                   | >0     | X's > Y's           | $W^{*}(calc)$ > $W(table)_{\alpha,n}$ |
| Total<br>Alkalinity     | Total alkalinity <u>decreases</u> by consumption of buffing<br>capacity due to H <sup>+</sup> produced by pyrite oxidation,<br>associated with waste rock. | >0     | X's > Y's           | $W^{+}(calc)$ > $W(table)_{\alpha,n}$ |
| Total<br>Alkalinity     | Total alkalinity <b>increases</b> by the weathering of<br>carbonate mineralology, associated with tailings                                                 | <0     | X's <b>&lt;</b> Y's | $W^{+}(calc)$ < $W(table)_{\alpha,n}$ |
| Total Sulfate           | Total sulfate increases due to oxidation of sulfides                                                                                                       | <0     | X's <b>&lt;</b> Y's | $W^{+}(calc)$ < $W(table)_{\alpha,n}$ |
| Dissolved<br>Zinc       | Dissolved zinc <u>increases</u> due to sulfide oxidation and is more readily soluble at neutral pH than other metals.                                      | <0     | X's <b>&lt;</b> Y's | $W^{+}(calc)$ < $W(table)_{\alpha,n}$ |

X: Upgradient Site

Y: Downgradient Site

Further guidance and background on the statistical methods utilized in this report can be found in one of the following references: Helsel and Hirsch (1992), Gilbert (1987), or Section 3.3.3.1 of the EPA document "Guidance for Data Quality Assessment" EPA/600/R-96/084.

**Qualified Data by QA Reviewer** - QA reports provide a summary for each site section of data limitations found in the monthly QA reviews. They list all data for that site that was qualified by the QA Reviewer for Water Year 2013 along with the reason for qualification. These data are all included in the data analyses, unless also identified as an outlier in the Qualified Data Summary.

### **INTERVENTIONS**

This section identifies any procedural changes, natural phenomena, mine operational changes, or other interventions that could have affected data during Water Year 2013. Results of any visual data analyses to detect effects of these interventions are also indicated.

Prior interventions (and negotiated mid-year program modifications such as changes to laboratories, methods, detection limits, and reporting limits), and anything else which may affect data comparability and quality which occurred during previous Water Years, are documented in the "General History" section of the FWMP and in previous annual reports.

# **MID-YEAR MODIFICATIONS**

There were no mid-year modifications made.

### **GENERAL HISTORY**

There has been an error in the graphical labeling found in the 2004-2009 annual reports. It was recently noticed that on most of the graphs, the line indicating the AWQS is labeled as 'total'. Most of the analytes in this report are dissolved and HGCMC is held to the dissolved AWQS. All analyses have been dissolved during this timeframe, so the graphs were mislabeled and should read 'dissolved'. After reviewing the yearly files it appears that HGCMC was using total standards prior to 2003 when the change was made to using the dissolved standards. This change resulted in modifying the limits and also the graph labels, both of which were correctly done in 2003. Unfortunately, in 2004-2009 both of these modifications were not carried forward. This error in labeling was first corrected in the 2010 FWMP Report.

It was noted, during the annual meeting in 2012, that the units on the conductivity graphs were expressed as 'NTU' and not ' $\mu$ S/cm'. This error was corrected in the 2012 FWMP Report.

For several years the graphing and statistical analysis has been carried out in several Excel spreadsheets. The 2012 FWMP report broke from using Excel with the majority of the graphing and the statistical analysis being carried out in an R system. R is a system for statistical computation and graphics. It provides, among other things, a programming language, high level graphics, interfaces to other languages and debugging facilities.

All of the statistical analysis was also carried out in the Excel files and a comparison was made with the new system ('R'), to ensure that there was continuity in the calculations. Both of the systems were in agreement with the statistical analysis. Also, the layout of the x-y plots has changed. Most of the plots are now composed of two graphs: the top smaller graph has y axis limits that encompass the whole data range, whereas the larger bottom graph has fixed limits that allow for comparison between sites. Also, note that the limits are not always shown if in doing so improves the visual interpretation of the graph.

# **FWMP Sample Log**

# 2013 Water Year October 2012 Through September 2013 Annual Water Quality Monitoring Schedule-Laboratory Samples

| Site Number | Sample Identifier | Site Name                         | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
|-------------|-------------------|-----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6           | 006FMS            | Middle Greens<br>Creek            | Ρ   | Ρ   | Q   | Ρ   | Q   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   |
| 9           | 009FMS            | Tributary Creek-<br>Lower         |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 13          | 013FMS            | Mine Adit<br>Discharge East       |     | Q   |     |     |     |     |     | Q   |     |     | Q   |     |
| 27          | 027FMG            | Monitoring Well<br>2S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 29          | 029FMG            | Monitoring Well<br>3S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 32          | 032FMG            | Monitoring Well<br>5S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 46          | 046FMS            | Lower Bruin Creek                 |     | Q   |     |     | Q   |     |     | Ρ   |     |     | Ρ   |     |
| 48          | 048FMS            | Upper Greens<br>Creek             | Ρ   | Ρ   | Q   | Ρ   | Q   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   |
| 49          | 049FMS            | Control Site Upper<br>Bruin Creek |     | Q   |     |     | Q   |     |     | Ρ   |     |     | Ρ   |     |
| 54          | 054FMS            | Greens Creek<br>below D-Pond      | Ρ   | Ρ   | Q   | Ρ   | Q   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   |
| 57          | 057FMG            | Monitoring Well<br>-23-00-03      |     | Q   |     |     | Q   |     |     | Q   |     |     | Q   |     |
| 60          | 060FMS            | Althea Creek -<br>Lower           |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 61          | 061FMS            | Greens Creek<br>Floodplain        |     |     |     |     |     |     |     | Q   |     |     | Q   |     |
| 62          | 062FMS            | Greens Creek<br>Lower Than 54     |     |     |     |     |     | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   | Ρ   |
| 609         | 609FMS            | Further Creek<br>Lower            |     |     |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 1067        | 1067              | TRIP BLANK                        |     |     |     |     |     |     |     | Q   |     |     |     | Q   |
| 1068        | 1068              | FIELD BLANK @<br>SITE             | 54  | 46  | 6   | 48  | 49  | 54  | 6   | 60  | 48  | 59  | 57  | 9   |



### SAMPLE SUITES

### Suite P

(Surface water only)

Conductivity pH Temperature Hardness Sulfate Total Alkalinity Dissolved Arsenic Dissolved Cadmium Dissolved Copper Dissolved Lead Dissolved Mercury Dissolved Zinc

### Suite Q

(Groundwater and surface water)

Conductivity pН Temperature Hardness Sulfate **Total Alkalinity Dissolved Arsenic Dissolved Barium** Dissolved Cadmium **Dissolved Chromium Dissolved** Copper Dissolved Lead **Dissolved Mercury Dissolved Nickel Dissolved Selenium** Dissolved Silver Dissolved Zinc

### PERSONNEL INVOLVED

### **USFS**

Chad Van Ormer Monument Manager Sarah Samuelson David Schmerge Jessica Lopez-Pierce

#### **Biomonitoring (Fish and Game)**

Kate Kanouse Jackie Timothy Ben Brewster

#### <u>Consultants</u>

Pete Condon, Petros GeoConsulting, Geochemist

#### **HGCMC**

Scott Hartman, General Manager

Christopher Wallace, Environmental Manager Mitch Brooks, Environmental Engineer David Landes, Environmental Engineer Ted Morales, Environmental Technician

#### **Laboratory and Data Review**

Suzan Huges, Project Coordinator Environmental Synectics, Inc. Evin McKinney, Senior Scientist Environmental Synectics, Inc. Leticia Sangalang, Senior Scientist Environmental Synectics, Inc.

Brenda Lasorsa, Project Coordinator Battelle Marine Sciences Laboratory

Sue Weber, Project Manager ACZ

David Wetzel, Project Manager Admiralty Environmental

### SITE COORDINATES

| Site | Site Name                  | Latitude         | Longitude         |
|------|----------------------------|------------------|-------------------|
| 6    | Greens Creek – Middle      | 58°04'47.424" N  | 134°38'25.849" W  |
| 9    | Tributary Creek - Lower    | 58°06'22.040'' N | 134°44'44.100" W  |
| 13   | East Mine Drainage Upper   | 58°04'47.685'' N | 134°37'39.951" W  |
| 27   | Monitoring Well-2S         | 58°06'48.546" N  | 134°44'38.365" W  |
| 29   | Monitoring Well-3S         | 58°06'59.860" N  | 134°44'51.821" W  |
| 32   | Monitoring Well-5S         | 58°06'57.732" N  | 134°44'51.225' W  |
| 46   | Bruin Creek – Lower        | 58°04'46.450" N  | 134°38'32.580" W  |
| 48   | Greens Creek – Upper       | 58°05'01.350" N  | 134°37'33.590" W  |
| 49   | Bruin Creek – Upper        | 58°05'04.070'' N | 134°38'30.410'' W |
| 54   | Greens Creek - Lower       | 58°04'41.681" N  | 134°38'46.529'' W |
| 56   | Monitoring Well-D-00-01    | 58°04'48.140'' N | 134°38'32.580" W  |
| 57   | Monitoring Well-23-00-03   | 58°04'59.933" N  | 134°38'39.881'' W |
| 60   | Althea Creek - Lower       | 58°04'41.770'' N | 134°45'08.432" W  |
| 609  | Further Creek – Lower      | 58°07'05.707'' N | 134°45'06.332" W  |
| 61   | Greens Creek Floodplain    | 58°04'43.480" N  | 134°38'52.910" W  |
| 62   | Greens Creek Lower Than 54 | 58°04'38.650" N  | 134°39'06.000" W  |
| 711  | Greens Creek Above Site E  | 58°04'08.425" N  | 134°43'27.181" W  |
| 712  | Greens Creek Below Site E  | 58°04'13.858" N  | 134°43'42.438'' W |

### **PROPOSED PROGRAM MODIFICATIONS**

Since the last revision of the FWMP in October 6, 2000 several changes have been made to the program, not all of which were accurately documented. Also, there are discrepancies within the FWMP as to which sites were to be monitored. During the most recent annual meeting HGCMC was asked to address the changes to the FWMP that need to be made. The following letter addressing these changes was submitted to the USFS and ADEC on 9 January 2013. Approval of the modifications was granted on 23 January 2013 and included these three statements:

- 1. The approved modifications should be implemented as soon as practical.
- 2. The date the modifications go into effect must be stated in the next annual report.
- 3. The modifications must be incorporated into the General Plan of Operations Appendix 1, the Fresh Water Monitoring Program (FWMP), and into the Integrated Waste Management Monitoring Plan (IWMMP) since this is scheduled to replace the FWMP.

The approved modifications were implemented with the March 2013 FWMP sampling event.



9 January 2013

David Schmerge USFS Tongass National Forest 8510 Mendenhall Loop Road Juneau, AK 99801 Ed Emswiler ADEC – Solid Waste Program 410 Willoughby Ave #303 Juneau, AK 99801

The following is a proposal by Hecla Greens Creek Mining Company (HGCMC) for the modification of the Freshwater Monitoring Program (FWMP). This proposal supersedes the letter that was sent on 22 October 2012, which only dealt with the sampling schedule and did not fully address the requirements for modification set out in section 13.2 of the FWMP. These changes were proposed during a meeting with the United States Forest Service (USFS), Alaska Department of Fish and Game (ADFG), Alaska Department of Environmental Conservation (ADEC) and HGCMC personnel on 3 October 2012. One other modification, addition of Site 609 (Further Creek Lower Reach), was requested by the USFS and ADEC during a subsequent phone call with HGCMC on 19 November 2012.

After the 2000 revision of the FWMP there were a few modifications made that lacked proper documentation. Though there was not proper documentation for changes made to the FWMP the following sites have been monitored now for several years as part of the FWMP.

- Added Lower Althea Creek (Site 60) to the sampling schedule.
- Changed the sampling regime at Tributary Creek (Site 9) to include water quality analysis along with the yearly biomonitoring.

The results of this monitoring have been reported in the annual FWMP reports and presented at the annual meetings.

The following is a summary of the modifications being proposed as a direct result of the above mentioned meeting and phone call with the agencies. After this summary there is a detailed discussion of each of these changes.

- 1. Change the status of Site 28 (MW-2D) to inactive.
- 2. Change the status of Site 30 (MW-3D) to inactive.
- 3. Change the status of Site 58 (MW-T-00-01C) to inactive.
- 4. Change the status of Site 59 (MW-T-00-01A) to inactive.

- 5. Change the status of Site 56 (MW-D-00-01) to inactive.
- 6. Change the status of Site 32 (MW-5S) to active
- 7. Add and activate Site 609 (Further Creek Lower Reach) to the FWMP.
- 8. Add and activate a new site at the confluence of the two streams west of D pile in the Greens Creek floodplain (New Site #1).
- 9. Add and activate a new site on Greens Creek, <sup>1</sup>/<sub>4</sub> mile downstream of Site 54, and adjacent to 7.7 mile along the B road (New site #2).

#### Attachments to this letter

To aid in the understanding of the topics discussed in the following section there are several attachments with this letter. These attachments include maps of the current and proposed FWMP sites along with a table of the site coordinates. Tables are also included for the current and proposed FWMP schedules. Lastly drill logs for all the monitoring well sites have also been included.

#### Inactivation of Site 28 (MW-2D) and Site 30 (MW-3D)

- Both of these wells (map 1) were completed in the silt layer that underlies the tailings facility and do not monitor the upper most aquifer (drill log MW-2D and MW-3D) in which tailings associated water would likely be seen. Which is not in accordance with 18 AAC 60.825 (a)(2)(c)(3), which states that monitoring 'must ensure detection of groundwater pollution in the uppermost aquifer'.
- Though Site 30 (MW-3D) is being made inactive it has not been sampled as part of the FWMP since the last revision. There were conflicting requirements with the FWMP as to which sites were to be sampled.
- There are no expected changes to the effectiveness of the current FWMP ability to monitor the potential impact the tailings storage facility is having on the surrounding environment.

#### Inactivation of the Site 58 (MW-T-00-01C) and Site 59 (MW-T-00-01A)

- Both of these wells were installed in 2000 as a direct result of suggestions in the Shepherd-Miller report that had been commissioned by an Inter-Agency FWMP Review Team.
- These wells were installed northeast of the tailings storage facility as upgradient wells for inter-well statistical analysis with the associated downgradient wells (Site 27 (MW-2S), Site 28 (MW-2D), Site 29 (MW-3S), and Site 32 (MW-5S).
- With the eastern expansion of the tailings facility in 2011 these wells are no longer in an upgradient position and are now influenced by changes in hydrology associated with the expansion (map 1).
- Without these wells for inter-well comparison the statistical analysis for the downgradient shallow wells will now use intra-well analysis methodology.

#### Inactivation of Site 56 (MW-D-00-01)

- Site 56 (MW-D-00-01) was established in 2000 as a direct result of suggestions in the Shepherd-Miller report that had been commissioned by an Inter-Agency FWMP Review Team.
- This well was the downgradient component of a pair of wells for monitoring Site 23 and D pile, and is located to the southeast of D Pile (map 3). The corresponding upgradient well 57 (MW-23-00-03) is located to the north of Site 23 (map 3).
- After years of sampling it has been established that the water chemistry at Site 56 (MW-D-00-01) is not reflective of facility related drainage, but is heavily influenced by the Greens Creek flood plain.
- There are no expected changes to the effectiveness of the current FWMP ability to monitor the potential impact that Site 23 / D Pile facility is having on the surrounding environment.
- Statistical analysis for the upgradient Site 57 (MW-23-00-03) will now use intra-well analysis methodology.

#### Activation of Site 32 (MW-5S)

• HGCMC has been monitoring this site since the 2000 revision of the FWMP; however there was some confusion with the current FWMP whether or not this was an active monitoring site.

- Site 32 (MW-5S) is located to the west of the tailings storage facility (map 1), and completed in the peat strata in which tailings associated water would likely be seen (drill log MW-5S).
- Statistical analysis will now be conducted using intra-well methodology and not inter-well methodology, because of the proposed inactivation of Site 58 (MW-T-00- 01C).
- There are no expected changes to the effectiveness of the current FWMP ability to monitor the potential impact the tailings storage facility is having on the surrounding environment.

#### Addition and Activation of Site 609 (Further Creek Lower Reach)

- Further Creek Lower Reach is a surface water site located to the west of the tailings storage facility (map 1) and has been used as an internal monitoring point for several years. This monitoring is documented in the annual report and presented during the annual meeting with the agencies.
- It is at the request of the agencies that HGCMC is proposing to add and activate Site 609 as part of the FWMP.
- It is expected that the effectiveness of the current FWMP ability to monitor the potential impact the tailings storage facility is having on the surrounding environment, will be strengthened with the addition of this site.
- This site is to remain numbered 609 and named Further Creek Lower Reach to avoid the confusion that is generated when the same site is given multiple names / numbers.
- Without an upgradient background site, statistical analysis will be conducted on an intra-site basis.

#### Addition and Activation of New Site #1

- HGCMC is proposing to add and activate a surface water monitoring site at the confluence of the two streams west of Site 23 / D pile in the Greens Creek floodplain (map 3). The confluence of these two streams is within 100 feet of the Site 23 / D pile facility boundary. Whereas the course of the streams vary from only a few feet from the boundary up to a maximum of a 100 feet at the confluence.
- The addition of this site to the FWMP is to monitor for the potential impact that Site 23 / D Pile may have on the Greens Creek flood plain and potentially Greens Creek.
- After acceptance of this proposed site it will be numbered 61 and named Site 61.
- Without an upgradient background site, statistical analysis will be conducted on an intra-site basis.

#### Addition and Activation of New Site #2

- HGCMC is proposing to add and activate a surface water monitoring site below the confluence of Greens Creek and the stream now monitored at the proposed New Site #1 (map 3). This site will be approximately <sup>1</sup>/<sub>4</sub> mile downstream from the current FWMP Site 54 (Greens Creek Lower).
- The addition of this site to the FWMP is to monitor for the potential impact that Site 23 / D Pile may have on Greens Creek.
- After acceptance of this proposed site it will be numbered 62 and named Site 62.
- As with the current FWMP there will be an inter-site statistical comparison made between this new downgradient site and Site 54 (Lower Greens Creek).

#### **Current and Previous Sampling Schedule Changes**

Table 1 represents the current sampling schedule; this includes the last modifications proposed in 2009 to the sampling frequency at Site 46 (Bruin Creek Lower), Site 49 (Bruin Creek Upper), Site 56 (MW-D-00-01), Site 57 (MW-23-00-03), Site 58 (MW-T-00-01C), Site 59 (MW-T-00-01A), Site 27 (MW-2S), Site 28 (MW-2D), Site 29 (MW-3S), and Site 32 (MW-5). The frequency of sampling was decreased at Site 46 (Bruin Creek Lower), Site 49 (Bruin Creek Upper), Site 56 (MW-D-00-01), and Site 57 (MW-23-00-03) to a quarterly sampling schedule; based on the analysis of the data collected that has shown that HGCMC activities have not had an impact on the water quality monitored by these sites. At the same time the sampling frequency was decreased at these four sites HGCMC increased the frequency of sampling of the six wells located at the tailings storage facility, Site 58 (MW-T-00-01C), Site 59 (MW-T-00-01A), Site 27 (MW-2S), Site 28 (MW-2D), Site 29 (MW-3S), and Site 32 (MW-5). The frequency was

increased from biannual sampling to quarterly sampling to improve the ability of the FWMP to monitor the potential impact the tailings storage facility could have on the surrounding environment.

These modifications to the FWMP program were approved by the ADEC in a letter dated September 2, 2009. Also the proposal to change the July and September samplings at Site 60 (Althea Creek) from Suite P to Suite Q were approved by the ADEC in a letter dated July 12, 2011.Until these changes were made the schedule had remained mostly unchanged from the 6 October 2000 FWMP revision.

Changes HGCMC are proposing to make to the sampling schedule are summarized in Table 2. Ideally the implementation of these proposed modifications would take place within 90 days after the acceptance of the modifications has been acknowledged by the USFS and ADEC. However, if approval of these changes is received after the May 2013 sampling HGCMC would recommend not implementing them until the 2014 water year (beginning October 2013), for report writing and statistical reasons.

Should you have any questions regarding these proposed changes, please feel free to contact me at 790-8473.

Sincerely,

Wistopher Wallace

Christopher Wallace Environmental Engineer

After the submittal of last year's annual reports HGCMC was asked to include an existing site on Greens Creek, below Site E, into the FWMP. The following letter addressing these changes was submitted to the USFS and ADEC on 21 October 2013. Approval of the modifications was granted on 22 October 2013 from ADEC and 31 October 2013 from the USFS. These modifications were implemented with the water year 2014 FWMP.



21 October 2013

David Schmerge USFS Tongass National Forest 8510 Mendenhall Loop Road Juneau, AK 99801 Doug Buetyn ADEC – Solid Waste Program 410 Willoughby Ave #303 Juneau, AK 99801

RE: Addition of sites 711 and 712 to the Freshwater Monitoring Program

The following is a proposal by Hecla Greens Creek Mining Company (HGCMC) for the modification of the Freshwater Monitoring Program (FWMP). This proposal for the addition of two surface water sites is based on a request made by the United States Forest Service (USFS). After the submittal of the annual reports it was noted by the USFS that HGCMC does not have a monitoring point on Greens Creek that is below the furthest most point of operations, as part of the FWMP. The area of interest is the inactive waste rock facility, Site E, located at 4.6 mile B road. Site E is routinely monitored and the results are reported yearly in the inactive waste report along with being presented at the annual meeting. The USFS recognizes that the monitoring is occurring; however they want to incorporate it into the FWMP.

Historically Greens Creek had been monitored approximately one mile upstream from the mouth of the creek, below all points of operations. This monitoring was conducted at Site 7, Lower Greens Creek was discontinued from a safety standpoint, potential for bear human interactions, not from a need for monitoring. At the time the USFS did not request that HGCMC reestablish monitoring at another location along the creek, therefore official downstream monitoring ended. However, HGCMC has been internally monitoring downstream of operations at Site E for several years.

Site E is an inactive waste rock facility that HGCMC has been removing from a geo- chemical perspective. In order to monitor water quality around Site E, HGCMC has established a number of sites (surface water and ground water) in the area. One of the sites (712) is located down gradient of Site E in Greens Creek. It is Site 712 that the USFS has requested to have added to the annual FWMP. This site is currently visited 1-2 times per year based upon the removal activity associated with Site E. It was proposed that HGCMC could monitor Site 712 for the FWMP when other routine monitoring is taking place. This is considered an acceptable request from the USFS. HGCMC will also monitor the upstream site, Site 711, to establish analyte concentrations in Greens Creek prior to any potential influence from Site E, for comparison analysis.

The following is a summary of the modifications being proposed as a direct result of the above mentioned request. After this summary there is a detailed discussion of each of these changes.

- 1. Add and activate Site 711 (Greens Creek above Site E) to the FWMP.
- 2. Add and activate Site 712 (Greens Creek below Site E) to the FWMP.

#### Attachments to this letter

To aid in the understanding of the topics discussed in the following section there are several attachments with this letter. These attachments include a map of the proposed FWMP sites along with a table of all FWMP site coordinates. Tables are also included for the current and proposed FWMP schedules.

#### Addition and Activation of Site 711 (Greens Creek above Site E)

- Greens Creek above Site E is a surface water site located to the northwest of the inactive waste rock facility (map 1) and has been used as an internal monitoring point for several years. This monitoring is documented in the annual report and presented during the annual meeting with the agencies.
- It is a result of the request from the USFS that HGCMC is proposing to add and activate Site 711 as part of the FWMP.
- Sampling at the site will occur twice yearly once in April or May and once in September or October. The two month windows allow for coordinating with other yearly sampling events in the area.
- It is expected that the effectiveness of the current FWMP ability to monitor the potential impact the Site E waste rock facility is having on the surrounding environment, will be strengthened with the addition of this site.
- This site is to remain numbered 711 and named Greens Creek above Site E to avoid the confusion that is generated when the same site is given multiple names / numbers.
- This site will serve as an up gradient site to the down gradient Site 712, for comparison analysis.

#### Addition and Activation of Site 712 (Greens Creek below Site E)

- Greens Creek below Site E is a surface water site located to the southwest of the inactive waste rock facility (map 1) and has been used as an internal monitoring point for several years. This monitoring is documented in the annual report and presented during the annual meeting with the agencies.
- It is a result of the request from the USFS that HGCMC is proposing to add and activate Site 712 as part of the FWMP.
- Sampling at the site will occur twice yearly once in April or May and once in September or October. The two month windows allow for coordinating with other yearly sampling events in the area.
- It is expected that the effectiveness of the current FWMP ability to monitor the potential impact the Site E waste rock facility is having on the surrounding environment, will be strengthened with the addition of this site.
- This site is to remain numbered 712 and named Greens Creek below Site E to avoid the confusion that is generated when the same site is given multiple names / numbers.
- Site 712 will serve as a down gradient site on Greens Creek for the monitoring of the potential impact from Site E.

Table 1 summarizes the current sampling schedule and the changes HGCMC are proposing to make are summarized in Table 2. Ideally the implementation of these proposed modifications will take place in the spring of 2014, after the acceptance of the modifications has been acknowledged by the USFS and ADEC.

Should you have any questions regarding these proposed changes, please feel free to contact me at 790-8473.

Sincerely,

Christopher Wallace

Christopher Wallace Environmental Manager



| Site Number | Site Name                      | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
|-------------|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6           | Middle Greens Creek            | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 9           | Tributary Creek-Lower          |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 13          | Mine Adit Discharge East       |     | Q   |     |     |     |     |     | Q   |     |     | Q   |     |
| 27          | Monitoring Well 2S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 29          | Monitoring Well 3S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 32          | Monitoring Well 5S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 46          | Lower Bruin Creek              |     | Q   |     |     | Q   |     |     | Р   |     |     | Р   |     |
| 48          | Upper Greens Creek             | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 49          | Control Site Upper Bruin Creek |     | Q   |     |     | Q   |     |     | Р   |     |     | Р   |     |
| 54          | Greens Creek below D-Pond      | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 57          | Monitoring Well -23-00-03      |     | Q   |     |     | Q   |     |     | Q   |     |     | Q   |     |
| 60          | Althea Creek - Lower           |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 61          | Greens Creek Floodplain        |     | Q   |     |     | Q   |     |     | Q   |     |     | Q   |     |
| 62          | Greens Creek Lower Than 54     | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 609         | Further Creek Lower            |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |

Table 2 – Proposed FWMP Water Year Monitoring Schedule

| Site Number | Site Name                      | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
|-------------|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 6           | Middle Greens Creek            | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 9           | Tributary Creek-Lower          |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 13          | Mine Adit Discharge East       |     | Q   |     |     |     |     |     | Q   |     |     | Q   |     |
| 27          | Monitoring Well 2S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 29          | Monitoring Well 3S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 32          | Monitoring Well 5S             |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 46          | Lower Bruin Creek              |     | Q   |     |     | Q   |     |     | Р   |     |     | Р   |     |
| 48          | Upper Greens Creek             | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 49          | Control Site Upper Bruin Creek |     | Q   |     |     | Q   |     |     | Р   |     |     | Р   |     |
| 54          | Greens Creek below D-Pond      | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 57          | Monitoring Well -23-00-03      |     | Q   |     |     | Q   |     |     | Q   |     |     | Q   |     |
| 60          | Althea Creek - Lower           |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 61          | Greens Creek Floodplain        |     | Q   |     |     | Q   |     |     | Q   |     |     | Q   |     |
| 62          | Greens Creek Lower Than 54     | Р   | Р   | Q   | Р   | Q   | Р   | Р   | Р   | Р   | Р   | Р   | Р   |
| 609         | Further Creek Lower            |     | Q   |     |     |     |     |     | Q   |     | Q   |     | Q   |
| 711         | Greens Creek Above Site E      | (   | Q   |     |     |     |     |     | Q   |     |     |     |     |
| 712         | Greens Creek Below Site E      | (   | Q   |     |     |     |     |     | Q   |     |     |     |     |

| Site | Site Name                  | Latitude         | Longitude         |
|------|----------------------------|------------------|-------------------|
| 6    | Greens Creek – Middle      | 58°04'47.424" N  | 134°38'25.849" W  |
| 9    | Tributary Creek - Lower    | 58°06'22.040'' N | 134°44'44.100" W  |
| 13   | East Mine Drainage Upper   | 58°04'47.685" N  | 134°37'39.951" W  |
| 27   | Monitoring Well-2S         | 58°06'48.546" N  | 134°44'38.365" W  |
| 28   | Monitoring Well-2D         | 58°06'48.600'' N | 134°44'37.344" W  |
| 29   | Monitoring Well-3S         | 58°06'59.860" N  | 134°44'51.821" W  |
| 30   | Monitoring Well-3D         | 58°06'58.654" N  | 134°44'54.846" W  |
| 32   | Monitoring Well-5S         | 58°06'57.732" N  | 134°44'51.225' W  |
| 46   | Bruin Creek – Lower        | 58°04'46.450'' N | 134°38'32.580" W  |
| 48   | Greens Creek – Upper       | 58°05'01.350" N  | 134°37'33.590" W  |
| 49   | Bruin Creek – Upper        | 58°05'04.070" N  | 134°38'30.410" W  |
| 54   | Greens Creek - Lower       | 58°04'41.681'' N | 134°38'46.529" W  |
| 56   | Monitoring Well-D-00-01    | 58°04'48.140'' N | 134°38'32.580" W  |
| 57   | Monitoring Well-23-00-03   | 58°04'59.933" N  | 134°38'39.881" W  |
| 58   | Monitoring Well-T-00-01C   | 58°07'12.758'' N | 134°44'38.252" W  |
| 59   | Monitoring Well-T-00-01A   | 59°07'12.919" N  | 134°44'38.411" W  |
| 60   | Althea Creek - Lower       | 58°04'41.770" N  | 134°45'08.432" W  |
| 609  | Further Creek – Lower      | 58°07'05.707'' N | 134°45'06.332" W  |
| 61   | Greens Creek Floodplain    | 58°04'43.480'' N | 134°38'52.910" W  |
| 62   | Greens Creek Lower Than 54 | 58°04'38.650" N  | 134°39'06.000" W  |
| 711  | Greens Creek Above Site E  | 58°04'08.425" N  | 134°43'27.181" W  |
| 712  | Greens Creek Below Site E  | 58°04'13.858" N  | 134°43'42.438'' W |

Table 1 – Current FWMP Water Year Monitoring Schedule

### BIBLIOGRAPHY

Environmental Protection Agency (1998). *EPA Guidance for Data Quality Assessment*. EPA QA/G-9, EPA/600-R-96/084. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C. 219 pp.

Gilbert, Richard O. (1987). *Statistical Methods for Environmental Pollution Monitoring*. Van Nostrand Reinhold, New York. 320 pp.

Helsel, D.R., and Hirsch, R.M. (1992). *Statistical methods in water resource*. Elsevier Publishers, Amsterdam. 510 pp.

# **INTERPRETIVE REPORT SITE 48**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers, after review by HGCMC.

| Sample Date | Parameter                | Value | Qualifier | Notes                                      |
|-------------|--------------------------|-------|-----------|--------------------------------------------|
| 01/13/2009  | Conductivity Field, µmho | 52.00 |           | Field and laboratory values not comparable |
| 01/13/2009  | Total Alkalinity, mg/L   | 16.2  |           | Suspected sample contamination             |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeded these criteria.

### **Table of Exceedance for Water Year 2013**

|             |                             | Limits              |                 |              |                 |  |  |  |  |
|-------------|-----------------------------|---------------------|-----------------|--------------|-----------------|--|--|--|--|
| Sample Date | Parameter                   | Value               | Lower           | Upper        | Hardness        |  |  |  |  |
| No exceedan | ces have been identified by | y HGCMC for the per | riod of October | 2012 through | September 2013. |  |  |  |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of trends in concentration. No obvious visual trends were apparent.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013).

|                    | Mann-Ker | ndall test st | Sen's slope estimate |       |       |
|--------------------|----------|---------------|----------------------|-------|-------|
| Parameter          | n*       | <b>p</b> **   | Trend                | Q     | Q(%)  |
| Conductivity Field | 6        | 0.28          |                      |       |       |
| pH Field           | 6        | 0.35          |                      |       |       |
| Alkalinity, Total  | 6        | 0.01          | +                    | 0.817 | 1.919 |
| Sulfate, Total     | 6        | 0.06          |                      |       |       |
| Zinc, Dissolved    | 6        | 0.09          |                      |       |       |

### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

For datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. For the current water year (2013), total alkalinity has a slope estimate of 0.817 mg/L/yr.

| one of mo - opper oreens oreek |          |          |          |          |          |          |          |          |          |          |          |          |          |
|--------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter          | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)                | 3.2      | 1.29     | 0.64     | 0.25     | 0.89     | 0.01     | 1.18     | 1.73     | 6.82     | 11.48    | 10.84    | 8.14     | 1.51     |
| Conductivity-Field(µmho)       | 108      | 134      | 151      | 94       | 141      | 72       | 154      | 92       | 74       | 116      | 139      | 119      | 117.5    |
| Conductivity-Lab (µmho)        | 83       | 133      | 107      | 90       | 122      | 166      | 150      | 88       | 70       | 110      | 132      | 88       | 109      |
| pH Lab (standard units)        | 7.87     | 7.72     | 7.72     | 7.46     | 7.71     | 7.76     | 7.7      | 7.39     | 7.89     | 7.97     | 7.85     | 7.55     | 7.72     |
| pH Field (standard units)      | 7.75     | 7.84     | 7.84     | 7.5      | 7.75     | 7.86     | 7.86     | 7.75     | 7.69     | 8.06     | 8        | 7.89     | 7.84     |
| Total Alkalinity (mg/L)        | 44.2     | 53.1     | 58.9     | 32.1     | 48.1     | 59       | 52.7     | 32.4     | 29       | 42.9     | 50.2     | 47.6     | 47.9     |
| Total Sulfate (mg/L)           | 10.3     | 16.5     | 19.8     | 9.8      | 14.5     | 22.6     | 18.8     | 7.7      | 6.4      | 13       | 17.1     | 11       | 13.8     |
| Hardness (mg/L)                | 48.8     | 61.8     | 71.6     | 40       | 62.2     | 76.7     | 67       | 37.7     | 32.5     | 52.6     | 62       | 53.3     | 57.6     |
| Dissolved As (ug/L)            | 0.222    | 0.195    | 0.182    | 0.195    | 0.186    | 0.169    | 0.192    | 0.188    | 0.178    | 0.236    | 0.242    | 0.243    | 0.194    |
| Dissolved Ba (ug/L)            |          |          | 31.8     |          | 27.4     |          |          |          |          |          |          |          | 29.6     |
| Dissolved Cd (ug/L)            | 0.0393   | 0.0415   | 0.0384   | 0.0361   | 0.0392   | 0.0366   | 0.032    | 0.0323   | 0.0241   | 0.0365   | 0.0419   | 0.0347   | 0.0366   |
| Dissolved Cr (ug/L)            |          |          | 1.11     |          | 0.304    |          |          |          |          |          |          |          | 0.707    |
| Dissolved Cu (ug/L)            | 0.556    | 0.364    | 0.301    | 0.827    | 0.431    | 0.418    | 0.406    | 0.499    | 0.267    | 0.301    | 0.375    | 0.532    | 0.412    |
| Dissolved Pb (ug/L)            | 0.011    | 0.0093   | 0.0015   | 0.0239   | 0.0015   | 0.0015   | 0.0056   | 0.0093   | 0.0039   | 0.0036   | 0.0068   | 0.0067   | 0.0062   |
| Dissolved Ni (ug/L)            |          |          | 0.912    |          | 0.771    |          |          |          |          |          |          |          | 0.842    |
| Dissolved Ag (ug/L)            |          |          | 0.002    |          | 0.002    |          |          |          |          |          |          |          | 0.002    |
| Dissolved Zn (ug/L)            | 3.89     | 4.08     | 3.12     | 3.65     | 3.36     | 3.24     | 2.57     | 3.31     | 1.8      | 2.34     | 9.89     | 2.59     | 3.28     |
| Dissolved Se (ug/L)            |          |          | 1.2      |          | 1.07     |          |          |          |          |          |          |          | 1.135    |
| Dissolved Hg (ug/L)            | 0.00107  | 0.00068  | 0.000453 | 0.00242  | 0.000886 | 0.000516 | 0.000743 | 0.00141  | 0.000459 | 0.000443 | 0.000625 | 0.00105  | 0.000712 |

### Site 048FMS - 'Upper Greens Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No.      | Sample Date | Sample Time   | Parameter     | Value    | Qualifier                 | Reason for Qualifier       |
|---------------|-------------|---------------|---------------|----------|---------------------------|----------------------------|
|               |             |               |               |          |                           |                            |
| 48 10/17/2012 |             | 12:00 AM      | SO4 Tot, mg/l | 10.26    | J                         | Sample Temperature         |
|               |             |               | Zn diss, µg/l | 3.89     | U                         | Field Blank Contamination  |
| 48            | 11/13/2012  | 12.00 AM      | n Hilabisu    | 7 72     |                           | Hold Time Violation        |
| 10 11/13/2012 | 12.007.00   | Zn diss ug/l  | 4.08          | U U      | Field Blank Contamination |                            |
|               |             |               | Ha diss ua/l  | 0.00068  | U                         | Field Blank Contamination  |
|               |             |               |               | 0.00000  | 0                         |                            |
| 48            | 12/11/2012  | 12:00 AM      | Hg diss, µg/l | 0.000453 | U                         | Field Blank Contamination  |
|               |             |               |               |          |                           |                            |
| 48 1/15/2     | 1/15/2013   | 12:00 AM      | Hg diss, µg/l | 0.00242  | J                         | LCS Recovery               |
|               |             |               | Zn diss, µg/l | 3.65     | U                         | Field Blank Contamination  |
|               |             |               |               |          |                           | ·                          |
| 48            | 3/18/2013   | 12:00 AM      | Hg diss, µg/l | 0.000516 | U                         | Field Blank Contamination  |
|               |             |               |               |          |                           | ·                          |
| 48            | 4/17/2013   | 12:00 AM      | Pb diss, µg/l | 0.00556  | J                         | Below Quantitative Range   |
|               |             |               |               |          |                           |                            |
| 48            | 5/6/2013    | 12:00 AM      | pH Lab, su    | 7.39     | J                         | Hold Time Violation        |
|               |             | Alk, mg/L     | 32.4          | U        | Field Blank Contamination |                            |
|               |             |               |               |          |                           |                            |
| 48            | 6/18/2013   | 12:00 AM      | Pb diss, µg/l | 0.00392  | J                         | Below Quantitative Range   |
|               |             | Hg diss, µg/l | 0.000459      | U        | Field Blank Contamination |                            |
|               |             |               |               |          |                           | -                          |
| 48            | 7/17/2013   | 12:00 AM      | SO4 Tot, mg/l | 13       | J                         | Sample Receipt Temperature |
|               |             |               | Pb diss, µg/l | 0.0036   | J                         | Below Quantitative Range   |
|               |             |               | Hg diss, µg/l | 0.000443 | U                         | Field Blank Contamination  |
|               |             |               |               |          |                           | -                          |
| 48            | 8/13/2013   | 12:00 AM      | Cond, µmhos   | 132      | J                         | Sample receipt temperature |
|               |             |               | Alk, mg/L     | 50.2     | J                         | Sample receipt temperature |
|               |             |               | SO4 Tot, mg/l | 17.1     | J                         | Sample receipt temperature |
|               |             |               | Pb diss, µg/l | 0.00678  | U                         | Field Blank Contamination  |
|               |             |               | Hg diss, µg/l | 0.000625 | U                         | Field Blank Contamination  |
|               |             |               |               |          |                           |                            |
| 48            | 9/9/2013    | 12:00 AM      | Pb diss, µg/l | 0.0067   | J                         | Below Quantitative Range   |
|               |             |               | SO4 Tot, mg/l | 11       | J                         | Sample receipt temperature |
|               |             |               | Hg diss, µg/l | 0.00105  | U                         | Field Blank Contamination  |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | HCCM_NotDetected_Aboxe@wantitationLimit            |
| UJ        | Not Detected Above Approximate Quantitation Limit  |
|           |                                                    |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 48 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 48 – Nickel Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 48 – Selenium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

| Site #48 Seasonal Kendall analysis for Specific Conductance, Field (µS/cm) |                       |       |       |            |                |                |                |       |                |       |       |              |       |
|----------------------------------------------------------------------------|-----------------------|-------|-------|------------|----------------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| Row label                                                                  | Water Year            | Oct   | Nov   | Dec        | Jan            | Feb            | Mar            | Apr   | Мау            | Jun   | Jul   | Aug          | Sep   |
| а                                                                          | WY2008                | 106.4 | 129.6 | 145.7      | 151.9          | 139.5          | 144.5          | 132.2 | 88.8           | 87.2  | 82.2  | 83.9         | 83.5  |
| b                                                                          | WY2009                | 91.1  | 135.1 | 111.4      | 135.1          | 141.2          | 141.9          | 151.9 | 93.4           | 79.4  | 84.1  | 80.4         | 69.8  |
| С                                                                          | WY2010                | 128.7 | 111.2 | 146.1      | 93             | 124            | 141.2          | 126.9 | 107.2          | 84.7  | 91.5  | 99.9         | 125.4 |
| d                                                                          | WY2011                | 61.2  | 76.9  | 152        | 157            | 139            | 165            | 72.6  | 89.6           | 94    | 94    | 119          | 108   |
| e                                                                          | WY2012                | 102   | 120   | 75         | 72             | 123            | 154            | 106   | 98             | 83.1  | 82.7  | 86           | 86    |
| f                                                                          | WY2013                | 108   | 134   | 151        | 94             | 141            | 72             | 154   | 92             | 74    | 116   | 139          | 119   |
|                                                                            | n                     | 6     | 6     | 6          | 6              | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                                                                            | t1                    | 6     | 6     | 6          | 6              | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                                                                            | t <sub>2</sub>        | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                            | t <sub>3</sub>        | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                            | t <sub>4</sub>        | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                            | t <sub>5</sub>        | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                            | b-a                   | -1    | 1     | -1         | -1             | 1              | -1             | 1     | 1              | -1    | 1     | -1           | -1    |
|                                                                            | c-a                   | 1     | -1    | 1          | -1             | -1             | -1             | -1    | 1              | -1    | 1     | 1            | 1     |
|                                                                            | d-a                   | -1    | -1    | 1          | 1              | -1             | 1              | -1    | 1              | 1     | 1     | 1            | 1     |
|                                                                            | e-a                   | -1    | -1    | -1         | -1             | -1             | 1              | -1    | 1              | -1    | 1     | 1            | 1     |
|                                                                            | f-a                   | 1     | 1     | 1          | -1             | 1              | -1             | 1     | 1              | -1    | 1     | 1            | 1     |
|                                                                            | c-b                   | 1     | -1    | 1          | -1             | -1             | -1             | -1    | 1              | 1     | 1     | 1            | 1     |
|                                                                            | d-b                   | -1    | -1    | 1          | 1              | -1             | 1              | -1    | -1             | 1     | 1     | 1            | 1     |
|                                                                            | e-b                   | 1     | -1    | -1         | -1             | -1             | 1              | -1    | 1              | 1     | -1    | 1            | 1     |
|                                                                            | T-D                   | 1     | -1    | 1          | -1             | -1             | -1             | 1     | -1             | -1    | 1     | 1            | 1     |
|                                                                            | u-c                   | -1    | -1    | -1         | -1             | -1             | 1              | -1    | -1             | -1    | -1    | -1           | -1    |
|                                                                            | f-c                   | -1    | 1     | -1         | -1             | -1             | -1             | -1    | -1             | -1    | -1    | -1           | -1    |
|                                                                            | e-d                   | 1     | 1     | -1         | -1             | -1             | -1             | 1     | 1              | -1    | -1    | -1           | -1    |
|                                                                            | f-d                   | 1     | 1     | -1         | -1             | 1              | -1             | 1     | 1              | -1    | 1     | 1            | 1     |
|                                                                            | f-e                   | 1     | 1     | 1          | 1              | 1              | -1             | 1     | -1             | -1    | 1     | 1            | 1     |
|                                                                            | S <sub>k</sub>        | 1     | -1    | 3          | -5             | -3             | -3             | -1    | 3              | -5    | 9     | 9            | 5     |
|                                                                            | $r^2 =$               | 28.33 | 28.33 | 28.33      | 28.33          | 28.33          | 28.33          | 28.33 | 28.33          | 28.33 | 28.33 | 28.33        | 28.33 |
| Z. =                                                                       | S./m                  | 0.19  | -0.19 | 0.56       | -0.94          | -0.56          | -0.56          | -0.19 | 0.56           | -0.94 | 1 69  | 1 69         | 0.94  |
| ~                                                                          | $Z^{2}_{\mu}$         | 0.04  | 0.04  | 0.32       | 0.88           | 0.32           | 0.32           | 0.04  | 0.32           | 0.88  | 2.86  | 2.86         | 0.88  |
| •                                                                          | n                     |       |       |            |                |                |                |       |                |       | 0     | 0            | 2.50  |
|                                                                            | $\Sigma Z_k =$        | 2.25  |       | Tie Extent | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 72    |
|                                                                            | $\Sigma Z_{k}^{2} =$  | 9.74  |       | Count      | 72             | 0              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 12    |
| Z                                                                          | $Z-bar=\Sigma Z_k/K=$ | 0.19  | L     |            |                |                |                |       |                |       |       |              |       |

| $\chi^2_h = \Sigma Z^2_k$ | -K(Z-bar) <sup>2</sup> = | 9.32  |   | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homogeneity      |        |
|---------------------------|--------------------------|-------|---|-----------------------------------------|-------|-----------------------------------|--------|
|                           | р                        | 0.593 | _ |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$      | 0.60  |   | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT |
| 340.00 p 0.725            |                          |       |   |                                         |       | H <sub>A</sub> (± trend)          | REJECT |



| Season | Seasonal-Kendall Slope Confidence Intervals |                |                |  |  |  |  |  |  |  |  |
|--------|---------------------------------------------|----------------|----------------|--|--|--|--|--|--|--|--|
| α      | Lower<br>Limit                              | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |  |  |
| 0.010  | -2.00                                       |                | 3.77           |  |  |  |  |  |  |  |  |
| 0.050  | -1.04                                       | 0.43           | 1.93           |  |  |  |  |  |  |  |  |
| 0.100  | -0.50                                       | 0.45           | 1.69           |  |  |  |  |  |  |  |  |
| 0.200  | -0.25                                       |                | 1.17           |  |  |  |  |  |  |  |  |

| Site | #48 |
|------|-----|
|------|-----|

#### Seasonal Kendall analysis for pH, Field, Standard Units

| Row label               | Water Year           | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug          | Sep   |
|-------------------------|----------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| а                       | WY2008               | 7.8   | 7.7   | 8.0        | 7.9   | 7.9            | 7.9            | 7.9   | 7.8            | 7.9   | 7.6   | 7.7          | 7.4   |
| b                       | WY2009               | 7.8   | 7.9   | 7.8        | 7.4   | 7.8            | 7.9            | 7.2   | 7.0            | 7.6   | 6.8   | 7.1          | 7.2   |
| С                       | WY2010               | 7.4   | 7.2   | 7.2        | 6.6   | 7.2            | 7.3            | 7.0   | 7.7            | 7.1   | 7.0   | 7.1          | 6.7   |
| d                       | WY2011               | 6.5   | 7.6   | 7.8        | 7.3   | 6.9            | 7.7            | 7.8   | 8.0            | 7.5   | 6.9   | 8.1          | 7.9   |
| е                       | WY2012               | 7.6   | 7.6   | 7.5        | 5.7   | 7.6            | 7.7            | 7.7   | 7.8            | 8.0   | 7.8   | 7.7          | 7.7   |
| f                       | WY2013               | 7.8   | 7.8   | 7.8        | 7.5   | 7.8            | 7.9            | 7.9   | 7.8            | 7.7   | 8.1   | 8.0          | 7.9   |
|                         | n                    | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                         | t,                   | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 4              | 6     | 6     | 4            | 6     |
|                         | t <sub>2</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 1              | 0     | 0     | 1            | 0     |
|                         | t <sub>3</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                         | t <sub>4</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                         | t <sub>5</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                         | b-a                  | -1    | 1     | -1         | -1    | -1             | -1             | -1    | -1             | -1    | -1    | -1           | -1    |
|                         | c-a                  | -1    | -1    | -1         | -1    | -1             | -1             | -1    | -1             | -1    | -1    | -1           | -1    |
|                         | d-a                  | -1    | -1    | -1         | -1    | -1             | -1             | -1    | 1              | -1    | -1    | 1            | 1     |
|                         | e-a                  | -1    | -1    | -1         | -1    | -1             | -1             | -1    | 1              | 1     | 1     | 0            | 1     |
|                         | f-a                  | -1    | 1     | -1         | -1    | -1             | -1             | -1    | 0              | -1    | 1     | 1            | 1     |
|                         | c-b                  | -1    | -1    | -1         | -1    | -1             | -1             | -1    | 1              | -1    | 1     | 1            | -1    |
|                         | d-b                  | -1    | -1    | 1          | -1    | -1             | -1             | 1     | 1              | -1    | 1     | 1            | 1     |
|                         | e-b                  | -1    | -1    | -1         | -1    | -1             | -1             | 1     | 1              | 1     | 1     | 1            | 1     |
|                         | f-b                  | -1    | -1    | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                         | d-c                  | -1    | 1     | 1          | 1     | -1             | 1              | 1     | 1              | 1     | -1    | 1            | 1     |
|                         | e-c                  | 1     | 1     | 1          | -1    | 1              | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                         | f-c                  | 1     | 1     | 1          | 1     | 1              | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                         | e-d                  | 1     | -1    | -1         | -1    | 1              | 1              | -1    | -1             | 1     | 1     | -1           | -1    |
|                         | f-d                  | 1     | 1     | 1          | 1     | 1              | 1              | 1     | -1             | 1     | 1     | -1           | 1     |
|                         | f-e                  | 1     | 1     | 1          | 1     | 1              | 1              | 1     | -1             | -1    | 1     | 1            | 1     |
|                         | S <sub>k</sub>       | -5    | -1    | -1         | -5    | -5             | -1             | 1     | 4              | 1     | 7     | 6            | 7     |
| σ                       | 2 <sub>s=</sub>      | 28.33 | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 28.33 | 27.33          | 28.33 | 28.33 | 27.33        | 28.33 |
| 7. –                    | S./m                 | -0.94 | -0.19 | _0.19      | -0.94 | -0.94          | -0.19          | 0.19  | 0.77           | 0.19  | 1 32  | 1 15         | 1 32  |
| <b>∠</b> <sub>k</sub> – | -2                   | -0.34 | -0.13 | -0.13      | -0.34 | -0.94          | -0.13          | 0.15  | 0.77           | 0.15  | 1.52  | 1.15         | 1.52  |
| 2                       | Ź <sup>-</sup> k     | 0.88  | 0.04  | 0.04       | 0.88  | 0.88           | 0.04           | 0.04  | 0.59           | 0.04  | 1.73  | 1.32         | 1.73  |
|                         | $\Sigma Z_k =$       | 1.54  | Г     | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t₄    | t <sub>5</sub> |       |       | Σn           | 72    |
|                         | $\Sigma Z_{k}^{2}$ = | 8.18  |       | Count      | 68    | 2              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 8     |
| -                       |                      |       |       |            |       |                |                |       |                |       |       |              |       |

Z-bar= $\Sigma Z_k/K$ = 0.13

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 7.99  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homog            | jeneity |
|---------------------------|-------------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                           | р                       | 0.714 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT  |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.38  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT  |
| 338.00                    | р                       | 0.648 |                                         |       | H <sub>A</sub> (± trend)          | REJECT  |



| Seasona | Seasonal-Kendall Slope Confidence Intervals |       |       |  |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------|-------|-------|--|--|--|--|--|--|--|--|--|
| ~       | Lower                                       | Sen's | Upper |  |  |  |  |  |  |  |  |  |
| 0.010   | -0.05                                       | Cicpo | 0.10  |  |  |  |  |  |  |  |  |  |
| 0.050   | -0.04                                       | 0.01  | 0.06  |  |  |  |  |  |  |  |  |  |
| 0.100   | -0.03                                       | 0.01  | 0.04  |  |  |  |  |  |  |  |  |  |
| 0.200   | -0.01                                       |       | 0.03  |  |  |  |  |  |  |  |  |  |

Site #48

Seasonal Kendall analysis for Total Alk, (mg/l)

|                   |                                    |                     |              |                           |                |                  | •                 |                |                |                      |               |              |          |
|-------------------|------------------------------------|---------------------|--------------|---------------------------|----------------|------------------|-------------------|----------------|----------------|----------------------|---------------|--------------|----------|
| Row label         | Water Year                         | Oct                 | Nov          | Dec                       | Jan            | Feb              | Mar               | Apr            | May            | Jun                  | Jul           | Aug          | Sep      |
| а                 | WY2008                             | 37.7                | 44.2         | 51.9                      | 54.5           | 48.1             | 46.8              | 52.4           | 35.3           | 29.7                 | 30.6          | 33.1         | 31.4     |
| b                 | WY2009                             | 29.7                | 43.7         | 36.6                      |                | 48.6             | 51.8              | 52.6           | 34.6           | 30.2                 | 32.0          | 34.8         | 36.5     |
| ĉ                 | WY2010                             | 42.2                | 45.6         | 48.4                      | 41 4           | 41.0             | 45.7              | 43.3           | 36.5           | 32.5                 | 34.1          | 39.3         | 48.9     |
| d                 | WY2011                             | 21.6                | 24.0         | 47.2                      | 52.8           | 46.4             | 50.0              | 51 /           | 33.7           | 32.5                 | 38.2          | 13.5         | 10.0     |
| ů                 | WV2012                             | 47.0                | 24.0<br>51.6 |                           | 10.6           | 40.4             | 52.0              | 26.1           | 27.1           | 22.0                 | 20.2          | 20.0         | 20.0     |
| f                 | WV2012                             | 47.2                | 52.1         | 59.0                      | 40.0           | 49.0             | 50.0              | 52.7           | 37.1           | 20.0                 | 42.0          | 20.9         | 17.6     |
| I                 | W12013                             | 44.2                | 00.1         | 56.9                      | 32.1           | 40.1             | 59.0              | 52.7           | 32.4           | 29.0                 | 42.9          | 30.2         | 47.0     |
|                   | n                                  | 6                   | 6            | 6                         | 5              | 6                | 6                 | 0              | 6              | 6                    | 6             | 6            | 6        |
|                   |                                    | 6                   | 6            | 6                         | F              | 4                | 6                 | 6              | 6              | 4                    | 6             | 6            | 6        |
|                   | ι,<br>•                            | 0                   | 0            | 0                         | 5              | 4                | 0                 | 0              | 0              | 4                    | 0             | 0            | 0        |
|                   | t <sub>2</sub>                     | 0                   | 0            | 0                         | 0              | 1                | 0                 | 0              | 0              | 1                    | 0             | 0            | 0        |
|                   | t <sub>3</sub>                     | 0                   | 0            | 0                         | 0              | 0                | 0                 | 0              | 0              | 0                    | 0             | 0            | 0        |
|                   | t <sub>4</sub>                     | 0                   | 0            | 0                         | 0              | 0                | 0                 | 0              | 0              | 0                    | 0             | 0            | 0        |
|                   | t <sub>5</sub>                     | 0                   | 0            | 0                         | 0              | 0                | 0                 | 0              | 0              | 0                    | 0             | 0            | 0        |
|                   |                                    |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   | b-a                                | -1                  | -1           | -1                        |                | 1                | 1                 | 1              | -1             | 1                    | 1             | 1            | 1        |
|                   | c-a                                | 1                   | 1            | -1                        | -1             | -1               | -1                | -1             | 1              | 1                    | 1             | 1            | 1        |
|                   | d-a                                | -1                  | -1           | -1                        | -1             | -1               | 1                 | -1             | -1             | 1                    | 1             | 1            | 1        |
|                   | e-a                                | 1                   | 1            | -1                        | -1             | 1                | 1                 | -1             | 1              | 1                    | 1             | -1           | 1        |
|                   | f-a                                | 1                   | 1            | 1                         | -1             | 0                | 1                 | 1              | -1             | -1                   | 1             | 1            | 1        |
|                   | c-b                                | 1                   | 1            | 1                         |                | -1               | -1                | -1             | 1              | 1                    | 1             | 1            | 1        |
|                   | d-b                                | -1                  | -1           | 1                         |                | -1               | -1                | -1             | -1             | 1                    | 1             | 1            | 1        |
|                   | e-b                                | 1                   | 1            | -1                        |                | 1                | 1                 | -1             | 1              | 1                    | 1             | -1           | 1        |
|                   | f-b                                | 1                   | 1            | 1                         |                | -1               | 1                 | 1              | -1             | -1                   | 1             | 1            | 1        |
|                   | d-c                                | -1                  | -1           | -1                        | 1              | 1                | 1                 | 1              | -1             | 0                    | 1             | 1            | -1       |
|                   | e-c                                | 1                   | 1            | -1                        | 1              | 1                | 1                 | -1             | 1              | 1                    | -1            | -1           | -1       |
|                   | f-c                                | 1                   | 1            | 1                         | -1             | 1                | 1                 | 1              | -1             | -1                   | 1             | 1            | -1       |
|                   | o d                                | 1                   | 1            | 1                         | -1             | 1                | 1                 | 1              | -1             | -1                   | 1             | 1            | -1       |
|                   | e-u<br>f d                         | 1                   | 1            | -1                        | -1             | 1                | 1                 | -1             | 1              | 1                    | -1            | -1           | -1       |
|                   | i-u                                | 1                   | 1            | 1                         | -1             | 1                | 1                 | 1              | -1             | -1                   | 1             | 1            | 1        |
|                   | 1-6                                | -1                  |              | I                         | -1             | -1               | I                 | 1              | -1             | -1                   | 1             | 1            | 1        |
|                   | Sk                                 | 5                   | 7            | -1                        | -6             | 2                | 9                 | -1             | -3             | 4                    | 11            | 7            | 7        |
|                   | 2                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
| σ                 | r⁴s=                               | 28.33               | 28.33        | 28.33                     | 16.67          | 27.33            | 28.33             | 28.33          | 28.33          | 27.33                | 28.33         | 28.33        | 28.33    |
| Z <sub>k</sub> =  | S <sub>k</sub> /σ <sub>S</sub>     | 0.94                | 1.32         | -0.19                     | -1.47          | 0.38             | 1.69              | -0.19          | -0.56          | 0.77                 | 2.07          | 1.32         | 1.32     |
|                   | <b>7</b> <sup>2</sup>              | 0.99                | 1 72         | 0.04                      | 2 16           | 0.15             | 2.86              | 0.04           | 0.32           | 0.50                 | 4 27          | 1 72         | 1 72     |
|                   | - k                                | 0.00                | 1.73         | 0.04                      | 2.10           | 0.15             | 2.00              | 0.04           | 0.32           | 0.59                 | 4.27          | 1.73         | 1.73     |
|                   | 57                                 | 7.00                |              | <b>T</b> : <b>F</b> · · · |                |                  |                   |                |                |                      |               | Σn           | 74       |
|                   | $\Sigma Z_{k} =$                   | 7.38                |              | Tie Extent                | L <sub>1</sub> | $l_2$            | l <sub>3</sub>    | L <sub>4</sub> | L <sub>5</sub> |                      |               | 211          | 71       |
|                   | $\Sigma Z_{k}^{2}$                 | 16.48               |              | Count                     | 67             | 2                | 0                 | 0              | 0              |                      |               | $\Sigma S_k$ | 41       |
| Z                 | -bar=ΣZ <sub>k</sub> /K=           | 0.62                |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   | ĸ                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   |                                    |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   | $\gamma^2 = \Sigma \overline{Z}^2$ | $(7-har)^2 =$       | 11 94        |                           | @a=59          | $\gamma^2 w v =$ | 19.68             | Т              | Test for stati | on homoge            | neitv         |              |          |
|                   | λ n-2- κ                           |                     | 11.01        | . L                       | 8a-0           | νο χ (κ-1)=      | 10.00             |                | 22             | on nonogo            |               |              |          |
|                   |                                    | р                   | 0.368        |                           |                |                  |                   | 2              | ℓh<火(K-1)      | P                    | CCEPT         |              |          |
|                   | $\Sigma VAR(S_k)$                  | $\mathbf{Z}_{calc}$ | 2.21         |                           | @α/2=          | :2.5% <b>Z</b> = | 1.96              |                | H₀ (No t       | rend) F              | REJECT        |              |          |
|                   | 326.33                             | р                   | 0.987        | _                         |                |                  |                   |                | H₄ (± tr       | rend) <mark>A</mark> | CCEPT         |              |          |
|                   | ·                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
| 70 -              | L                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   |                                    |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
| 60                | _                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
| 00                | -                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
|                   | 6                                  |                     | +            |                           | e              |                  |                   |                |                | Seasonal-            | Kendall Slope | Confidence l | ntervals |
| <del>_</del> 50 - | - 4                                | >                   | ×            |                           |                |                  |                   |                | j  =           |                      | Lower         | Sen's        | Unner    |
| ]/b               |                                    |                     |              |                           | *              |                  |                   | $\square$      |                | ~                    | Limit         | Slong        | Limit    |
| E 40              |                                    |                     |              |                           |                |                  | $\langle \rangle$ | $\checkmark$   | ×  –           | 0.010                | 0.06          | Slope        | 1.00     |
| - 40 -<br>ج       | /                                  |                     |              |                           | $\rightarrow$  | $\sim$           |                   | $\sim$         |                | 0.010                | -0.00         |              | 1.30     |
|                   |                                    |                     |              | X                         |                |                  |                   |                |                | 0.000                | 0.20          | 0.77         | 1.72     |
| <b>⊇</b> 30 -     |                                    |                     | ·            |                           |                |                  |                   |                |                | 0.100                | 0.33          |              | 1.41     |
| ota               | -                                  |                     |              |                           |                | //               | ∖ "/              |                |                | 0.200                | 0.44          |              | 1.17     |
| Ĕ                 | -                                  |                     |              |                           |                | 1                | $\searrow$        |                |                |                      |               |              |          |
| 20 -              | -                                  |                     |              |                           |                |                  |                   |                |                |                      |               | 1.8%         |          |
|                   | -                                  |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |
| 10 -              | -                                  | 1                   |              |                           | 1              |                  |                   | -              |                |                      |               |              |          |
|                   |                                    |                     |              |                           |                |                  |                   |                |                |                      |               |              |          |

WY2009

—<del>□</del>— Nov

—– May

WY2010

---• Jun

WY2011

— → Jan

WY2012

<del>— \* –</del> Feb

WY2013

— Mar

----Sep

WY2008

-Oct

—+— Apr

Site #48

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| Row label   | Water Year           | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | Mav            | Jun   | Jul   | Aug          | Sep   |
|-------------|----------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| а           | WY2008               | 12.0  | 11.5  | 15.1       | 18.5  | 17.4           | 14.2           | 16.0  | 6.9            | 6.8   | 7.8   | 7.6          | 6.6   |
| b           | WY2009               | 7.7   | 15.6  | 14.3       | 15.7  | 18.3           | 21.9           | 19.7  | 9.0            | 7.4   | 9.6   | 10.7         | 8.0   |
| С           | WY2010               | 13.8  | 16.1  | 17.0       | 13.4  | 13.0           | 15.4           | 15.5  | 10.0           | 8.7   | 9.2   | 10.8         | 14.5  |
| d           | WY2011               | 5.4   | 7.1   | 19.7       | 21.0  | 17.5           | 21.8           | 19.5  | 8.2            | 9.7   | 10.1  | 13.6         | 14.6  |
| е           | WY2012               | 13.4  | 15.5  | 5.5        | 19.2  | 18.4           | 19.0           | 10.1  | 8.9            | 7.1   | 7.5   | 7.7          | 8.2   |
| f           | WY2013               | 10.3  | 16.5  | 19.8       | 9.8   | 14.5           | 22.6           | 18.8  | 7.7            | 6.4   | 13.0  | 17.1         | 11.0  |
|             | n                    | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|             | t <sub>1</sub>       | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|             | t <sub>2</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|             | t <sub>3</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|             | t <sub>4</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|             | t <sub>5</sub>       | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|             | b-a                  | -1    | 1     | -1         | -1    | 1              | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|             | c-a                  | 1     | 1     | 1          | -1    | -1             | 1              | -1    | 1              | 1     | 1     | 1            | 1     |
|             | d-a                  | -1    | -1    | 1          | 1     | 1              | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|             | e-a                  | 1     | 1     | -1         | 1     | 1              | 1              | -1    | 1              | 1     | -1    | 1            | 1     |
|             | f-a                  | -1    | 1     | 1          | -1    | -1             | 1              | 1     | 1              | -1    | 1     | 1            | 1     |
|             | c-b                  | 1     | 1     | 1          | -1    | -1             | -1             | -1    | 1              | 1     | -1    | 1            | 1     |
|             | d-b                  | -1    | -1    | 1          | 1     | -1             | -1             | -1    | -1             | 1     | 1     | 1            | 1     |
|             | e-b                  | 1     | -1    | -1         | 1     | 1              | -1             | -1    | -1             | -1    | -1    | -1           | 1     |
|             | f-b                  | 1     | 1     | 1          | -1    | -1             | 1              | -1    | -1             | -1    | 1     | 1            | 1     |
|             | d-c                  | -1    | -1    | 1          | 1     | 1              | 1              | 1     | -1             | 1     | 1     | 1            | 1     |
|             | e-c                  | -1    | -1    | -1         | 1     | 1              | 1              | -1    | -1             | -1    | -1    | -1           | -1    |
|             | f-c                  | -1    | 1     | 1          | -1    | 1              | 1              | 1     | -1             | -1    | 1     | 1            | -1    |
|             | e-d                  | 1     | 1     | -1         | -1    | 1              | -1             | -1    | 1              | -1    | -1    | -1           | -1    |
|             | f-d                  | 1     | 1     | 1          | -1    | -1             | 1              | -1    | -1             | -1    | 1     | 1            | -1    |
|             | t-e                  | -1    | 1     | 1          | -1    | -1             | 1              | 1     | -1             | -1    | 1     | 1            | 1     |
|             | S <sub>k</sub>       | -1    | 5     | 5          | -3    | 1              | 7              | -3    | -1             | -1    | 5     | 9            | 7     |
|             | $5^2 =$              | 28.33 | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 28.33 | 28.33          | 28.33 | 28.33 | 28.33        | 28.33 |
| 7           | S./G.                | -0.19 | 0.94  | 0.94       | -0.56 | 0 19           | 1 32           | -0.56 | -0.19          | -0.19 | 0.94  | 1 69         | 1 32  |
| <u>~</u> k− | - O <sub>k</sub> /OS | 0.10  | 0.04  | 0.04       | 0.00  | 0.10           | 4.70           | 0.00  | 0.15           | 0.15  | 0.04  | 1.00         | 1.02  |
|             | ∠ <sub>k</sub>       | 0.04  | 0.88  | 0.88       | 0.32  | 0.04           | 1.73           | 0.32  | 0.04           | 0.04  | 0.88  | 2.86         | 1.73  |
|             | $\Sigma Z_k =$       | 5.64  |       | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 72    |
|             | $\Sigma Z_{k}^{2} =$ | 9.74  |       | Count      | 72    | 0              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 30    |
| _           |                      |       |       |            |       |                |                |       |                |       |       |              |       |

Z-bar= $\Sigma Z_k/K=$  0.47

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> =           | 7.09  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station home             | ogeneity |
|---------------------------|-----------------------------------|-------|-----------------------------------------|-------|-----------------------------------|----------|
|                           | р                                 | 0.791 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$         | $\Sigma VAR(S_k)$ $Z_{calc}$ 1.57 |       | @α=2.5% <b>Z</b> =                      | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT   |
| 340.00                    | р                                 | 0.942 |                                         |       | H <sub>A</sub> (± trend)          | REJECT   |



#### Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

| Row label        | Water Year                                             | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr            | May            | Jun   | Jul   | Aug          | Sep   |
|------------------|--------------------------------------------------------|-------|-------|------------|-------|----------------|----------------|----------------|----------------|-------|-------|--------------|-------|
| а                | WY2008                                                 | 3.7   | 6.8   | 4.3        | 3.5   | 3.2            | 3.2            | 3.1            | 3.7            | 2.6   | 2.3   | 3.2          | 3.9   |
| b                | WY2009                                                 | 6.5   | 5.4   | 5.7        | 5.2   | 4.0            | 3.5            | 4.1            | 3.8            | 2.4   | 2.1   | 2.8          | 2.9   |
| С                | WY2010                                                 | 3.4   | 3.9   | 3.7        | 3.4   | 4.0            | 3.5            | 3.1            | 2.8            | 2.6   | 2.7   | 2.4          | 2.8   |
| d                | WY2011                                                 | 3.8   | 4.2   | 4.1        | 3.7   | 3.4            | 3.4            | 3.0            | 2.4            | 2.4   | 2.6   | 2.5          | 3.1   |
| е                | WY2012                                                 | 3.5   | 5.1   | 11.9       | 4.2   | 3.3            | 3.3            | 3.6            | 4.4            | 3.1   | 2.6   | 2.6          | 3.5   |
| f                | WY2013                                                 | 3.9   | 4.1   | 3.1        | 3.7   | 3.4            | 3.2            | 2.6            | 3.3            | 1.8   | 2.3   | 9.9          | 2.6   |
|                  | n                                                      | 6     | 6     | 6          | 6     | 6              | 6              | 6              | 6              | 6     | 6     | 6            | 6     |
|                  | t,                                                     | 6     | 6     | 6          | 6     | 6              | 6              | 6              | 6              | 6     | 6     | 6            | 6     |
|                  | t <sub>2</sub>                                         | 0     | 0     | 0          | 0     | 0              | 0              | 0              | 0              | 0     | 0     | 0            | 0     |
|                  | t <sub>3</sub>                                         | 0     | 0     | 0          | 0     | 0              | 0              | 0              | 0              | 0     | 0     | 0            | 0     |
|                  | t <sub>4</sub>                                         | 0     | 0     | 0          | 0     | 0              | 0              | 0              | 0              | 0     | 0     | 0            | 0     |
| i.               | t <sub>5</sub>                                         | 0     | 0     | 0          | 0     | 0              | 0              | 0              | 0              | 0     | 0     | 0            | 0     |
|                  | b-a                                                    | 1     | -1    | 1          | 1     | 1              | 1              | 1              | 1              | -1    | -1    | -1           | -1    |
|                  | c-a                                                    | -1    | -1    | -1         | -1    | 1              | 1              | 1              | -1             | -1    | 1     | -1           | -1    |
|                  | d-a                                                    | 1     | -1    | -1         | 1     | 1              | 1              | -1             | -1             | -1    | 1     | -1           | -1    |
|                  | e-a                                                    | -1    | -1    | 1          | 1     | 1              | 1              | 1              | 1              | 1     | 1     | -1           | -1    |
|                  | f-a                                                    | 1     | -1    | -1         | 1     | 1              | 1              | -1             | -1             | -1    | 1     | 1            | -1    |
|                  | c-b                                                    | -1    | -1    | -1         | -1    | 1              | 1              | -1             | -1             | 1     | 1     | -1           | -1    |
|                  | d-b                                                    | -1    | -1    | -1         | -1    | -1             | -1             | -1             | -1             | -1    | 1     | -1           | 1     |
|                  | e-b                                                    | -1    | -1    | 1          | -1    | -1             | -1             | -1             | 1              | 1     | 1     | -1           | 1     |
|                  | f-b                                                    | -1    | -1    | -1         | -1    | -1             | -1             | -1             | -1             | -1    | 1     | 1            | -1    |
|                  | d-c                                                    | 1     | 1     | 1          | 1     | -1             | -1             | -1             | -1             | -1    | -1    | 1            | 1     |
|                  | e-c                                                    | 1     | 1     | 1          | 1     | -1             | -1             | 1              | 1              | 1     | -1    | 1            | 1     |
|                  | f-c                                                    | 1     | 1     | -1         | 1     | -1             | -1             | -1             | 1              | -1    | -1    | 1            | -1    |
|                  | e-d                                                    | -1    | 1     | 1          | 1     | -1             | -1             | 1              | 1              | 1     | -1    | 1            | 1     |
|                  | f-d                                                    | 1     | -1    | -1         | -1    | -1             | -1             | -1             | 1              | -1    | -1    | 1            | -1    |
| :                | f-e                                                    | 1     | -1    | -1         | -1    | 1              | -1             | -1             | -1             | -1    | -1    | 1            | -1    |
|                  | S <sub>k</sub>                                         | 1     | -7    | -3         | 1     | -1             | -3             | -5             | -1             | -5    | 1     | 1            | -5    |
| σ                | <sup>2</sup> s=                                        | 28.33 | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 28.33          | 28.33          | 28.33 | 28.33 | 28.33        | 28.33 |
| Z <sub>k</sub> = | S⊧/σs                                                  | 0.19  | -1.32 | -0.56      | 0.19  | -0.19          | -0.56          | -0.94          | -0.19          | -0.94 | 0.19  | 0.19         | -0.94 |
|                  | <b>7</b> <sup>2</sup> .                                | 0.04  | 1 73  | 0.32       | 0.04  | 0.04           | 0.32           | 0.88           | 0.04           | 0.88  | 0.04  | 0.04         | 0.88  |
|                  | - к                                                    | 0.04  | 1.70  | 0.02       | 0.04  | 0.04           | 0.02           | 0.00           | 0.04           | 0.00  | 0.04  | 0.04         | 0.00  |
|                  | $\Sigma Z_k =$                                         | -4.88 |       | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t <sub>4</sub> | t <sub>5</sub> |       |       | Σn           | 72    |
|                  | $\Sigma Z^2_{\nu} =$                                   | 5.22  |       | Count      | 72    | 0              | 0              | 0              | 0              |       |       | $\Sigma S_k$ | -26   |
| 7                | $r = \sum \frac{1}{2} \sqrt{K} = \frac{1}{2} \sqrt{K}$ | -0.41 |       |            |       |                | -              |                | -              |       |       |              | -     |
| ~                | - ~~                                                   | 0.71  |       |            |       |                |                |                |                |       |       |              |       |

| $\chi^2_h = \Sigma Z^2_k$ - | K(Z-bar) <sup>2</sup> = | 3.24  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homog            | geneity |
|-----------------------------|-------------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                             | р                       | 0.987 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT  |
| $\Sigma VAR(S_k)$           | $\mathbf{Z}_{calc}$     | -1.36 | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT  |
| 340.00                      | р                       | 0.088 |                                         |       | H <sub>A</sub> (± trend)          | REJECT  |



Upper

Limit

0.03

0.01

-0.01 -0.03

Slope

-0.06

## **INTERPRETIVE REPORT SITE 6**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers after review by HGCMC.

| Sample Date        | Parameter             | Value            | Qualifier     | Notes                          |  |
|--------------------|-----------------------|------------------|---------------|--------------------------------|--|
| No outliers have b | been identified by HG | CMC for the peri | od of October | r 2008 through September 2013. |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeded these criteria.

#### Table of Exceedance for Water Year 2013

| Limits      |                             |                     |                 |              |                 |
|-------------|-----------------------------|---------------------|-----------------|--------------|-----------------|
| Sample Date | Parameter                   | Value               | Lower           | Upper        | Hardness        |
| No exceedan | ces have been identified by | y HGCMC for the per | riod of October | 2012 through | September 2013. |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There were no apparent visual trends identified.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results of the data collected between Oct-07 and Sep-13 (WY2008-WY2013).

|                    | Mann-Ker | ndall test st | Sen's slope estimate |      |      |
|--------------------|----------|---------------|----------------------|------|------|
| Parameter          | n*       | <b>p</b> **   | Trend                | Q    | Q(%) |
| Conductivity Field | 6        | 0.19          |                      |      |      |
| pH Field           | 6        | 0.11          |                      |      |      |
| Alkalinity, Total  | 6        | 0.02          | +                    | 0.83 | 1.9  |
| Sulfate, Total     | 6        | 0.04          |                      |      |      |
| Zinc, Dissolved    | 6        | 0.46          |                      |      |      |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

Total alkalinity had a statistically significant positive slope of 0.83 mg/L/yr, which is similar to the value for Site 48. Currently, HGCMC does not feel that this increasing trend is a significant indication of changes in water chemistry.

A comparison of median values for alkalinity, laboratory pH, lab conductivity, total sulfate, and dissolved zinc between Site 6 and Site 48 has been conducted as specified in the Statistical Information Goals for Site 6. Additionally, X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 6 and Site 48, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the water year 2013 dataset.

| Site 6 vs Site 48  |              |         |        |             |  |
|--------------------|--------------|---------|--------|-------------|--|
|                    | Signed Ranks | Site 48 | Site 6 | Median      |  |
| Parameter          | p-value      | median  | median | Differences |  |
| Conductivity Field | < 0.01       | 117.5   | 130.5  | -6          |  |
| pH Field           | 0.987        | 7.84    | 7.78   | 0.04        |  |
| Alkalinity, Total  | 0.207        | 47.9    | 48.1   | 0.06        |  |
| Sulfate, Total     | < 0.01       | 13.8    | 16.00  | -1.40       |  |
| Zinc, Dissolved    | 0.005        | 3.28    | 6.93   | -3.27       |  |

#### **Table of Summary Statistics for Median Analysis**

Total alkalinity does not have a statistically significant difference between measured median values at a significance level of  $\alpha$ =0.05 for a one-tailed test. The median values for total alkalinity for Site 48 and Site 6 are 47.9 mg/L and 48.1 mg/L respectively and the median of differences, Site 48 minus Site 6, is 0.06 mg/L.

The median values for field conductivity for Site 48 and Site 6 are 117.5  $\mu$ S/cm and 130.5  $\mu$ S/cm respectively. Median values for field pH for Site 48 and Site 6 are 7.84 su and 7.78 su respectively. The median values for total sulfate for Site 48 and Site 6 are 13.8 mg/L and 16.0 mg/L respectively.

Dissolved zinc results follow along in a similar manner where the median values for Site 48 and Site 6 are  $3.28 \ \mu g/L$  and  $6.93 \ \mu g/L$  respectively. Signed-rank test results for prior datasets for Water Years 2000 - 2012 show similar statistically significant differences with a median difference ranging from  $-1.7 \ \mu g/L$  to  $-4.77 \ \mu g/L$  dissolved zinc.

The magnitudes of these differences appear to have been relatively consistent over the past several years and do not appear to be increasing. Also, the magnitude of the relative differences is small with respect to field conductivity and well below the applicable AWQS in the case of total sulfate and dissolved zinc. Taking into consideration the small magnitude of the differences that are measurable between the two sites, the current FWMP program is sufficient to monitor any future increases at Site 6. Thus, if an upward trend in total sulfate, or dissolved zinc at Site 6 is occurring, the current program is sufficient for identifying the change before any water quality values are impaired.

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           | 3.5      | 1.3      | 0.7      | 0        | 0.9      |          | 1.3      | 1.7      | 6        | 11       | 10.5     | 8.2      | 1.7      |
| Conductivity-Field(µmho)  | 112      | 139      | 159      | 101      | 151      | 182      | 169      | 97       | 76       | 120      | 146      | 122      | 130.5    |
| Conductivity-Lab (µmho)   | 88       | 140      | 112      | 98       | 132      | 177      | 162      | 92       | 72       | 114      | 139      | 97       | 113      |
| pH Lab (standard units)   | 7.89     | 7.7      | 7.7      | 7.38     | 7.59     | 7.73     | 7.72     | 7.55     | 7.89     | 7.77     | 7.81     | 7.5      | 7.71     |
| pH Field (standard units) | 7.69     | 7.71     | 7.82     | 7.46     | 7.4      | 7.82     | 7.91     | 7.73     | 7.58     | 8.08     | 7.97     | 7.88     | 7.78     |
| Total Alkalinity (mg/L)   | 46.2     | 54.2     | 56.3     | 32.7     | 50.3     | 59.2     | 54       | 33.8     | 29.6     | 42.9     | 49.9     | 44.2     | 48.1     |
| Total Sulfate (mg/L)      | 11.5     | 18.7     | 22.3     | 9.9      | 17.4     | 26.4     | 23.5     | 9        | 6.9      | 14.5     | 18       | 12.3     | 16.0     |
| Hardness (mg/L)           | 51.1     | 61.7     | 75.4     | 42.9     | 65.4     | 81.3     | 73.6     | 38.7     | 33       | 52.9     | 64.9     | 54.7     | 58.2     |
| Dissolved As (ug/L)       | 0.222    | 0.201    | 0.188    | 0.201    | 0.153    | 0.174    | 0.164    | 0.171    | 0.179    | 0.219    | 0.236    | 0.241    | 0.195    |
| Dissolved Ba (ug/L)       |          |          | 32       |          | 27.6     |          |          |          |          |          |          |          | 29.8     |
| Dissolved Cd (ug/L)       | 0.0463   | 0.0529   | 0.0441   | 0.0559   | 0.0457   | 0.0526   | 0.0509   | 0.0583   | 0.0321   | 0.0429   | 0.0455   | 0.0471   | 0.0467   |
| Dissolved Cr (ug/L)       |          |          | 0.404    |          | 0.319    |          |          |          |          |          |          |          | 0.362    |
| Dissolved Cu (ug/L)       | 0.619    | 0.434    | 0.346    | 0.995    | 0.502    | 0.537    | 0.454    | 0.683    | 0.258    | 0.353    | 0.375    | 0.584    | 0.478    |
| Dissolved Pb (ug/L)       | 0.0219   | 0.0139   | 0.009    | 0.103    | 0.0163   | 0.0228   | 0.0173   | 0.0277   | 0.0101   | 0.0129   | 0.0129   | 0.332    | 0.0168   |
| Dissolved Ni (ug/L)       |          |          | 1.03     |          | 0.86     |          |          |          |          |          |          |          | 0.945    |
| Dissolved Ag (ug/L)       |          |          | 0.002    |          | 0.002    |          |          |          |          |          |          |          | 0.002    |
| Dissolved Zn (ug/L)       | 6.48     | 7.38     | 6.36     | 8.97     | 7.65     | 8.66     | 8.95     | 9.87     | 2.55     | 3.63     | 6.09     | 5.21     | 6.93     |
| Dissolved Se (ug/L)       |          |          | 1.3      |          | 0.887    |          |          |          |          |          |          |          | 1.094    |
| Dissolved Hg (ug/L)       | 0.00126  | 0.000774 | 0.000522 | 0.00249  | 0.000959 | 0.000546 | 0.000804 | 0.00169  | 0.00051  | 0.000618 | 0.00066  | 0.00102  | 0.000789 |

#### Site 006FMS - 'Greens Creek Middle'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
|          |             |             |               |          |           |                            |
| 6        | 10/17/2012  | 12:00 AM    | SO4 Tot, mg/l | 11.48    | J         | Sample Temperature         |
|          |             |             | Zn diss, µg/l | 6.48     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 11/13/2012  | 12:00 AM    | Hg diss, µg/l | 0.000774 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 12/11/2012  | 12:00 AM    | Hg diss, µg/l | 0.000522 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 1/15/2013   | 12:00 AM    | Hg diss, µg/l | 0.00249  | J         | LCS Recovery               |
|          |             |             |               |          |           |                            |
| 6        | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.55     | J         | Hold Time Violation        |
|          |             |             | Alk, mg/L     | 33.8     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 6/18/2013   | 12:00 AM    | Hg diss, µg/l | 0.00051  | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 14.5     | J         | Sample Receipt Temperature |
|          |             |             | Hg diss, µg/l | 0.000618 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 139      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 49.9     | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 18       | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.01     | U         | Field Blank Contamination  |
|          |             |             | Hg diss, µg/l | 0.00066  | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 6        | 9/9/2013    | 12:00 AM    | SO4 Tot, mg/l | 12.3     | J         | Sample receipt temperature |
|          |             |             | Hg diss, µg/l | 0.00102  | U         | Field Blank Contamination  |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | uccw.NotDetected.Abowe@wantitationLimit            |
| UJ        | Not Detected Above Approximate Quantitation Limit  |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Site 6 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Site 6 – Chromium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



| Site #6 Seasonal Kendall analysis for Specific Conductance, Field (µS/cm) |                           |       |       |            |       |                |                |       |                |       |       |              |       |
|---------------------------------------------------------------------------|---------------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| Row label                                                                 | Water Year                | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | Мау            | Jun   | Jul   | Aug          | Sep   |
| а                                                                         | WY2008                    | 110.8 | 135.3 | 155.1      | 162.9 | 150.4          | 161.9          | 149.6 | 92.5           | 89.4  | 87.2  | 90.8         | 89.5  |
| b                                                                         | WY2009                    | 98.5  | 141.8 | 122        | 142.5 | 150.2          | 142.9          | 170.7 | 96.8           | 81.8  | 85.8  | 82.8         | 73.4  |
| С                                                                         | WY2010                    | 133.8 | 117.1 | 154.8      | 98.4  | 136.6          | 151.2          | 139.8 | 110.1          | 87.8  | 94.8  | 103.8        | 128.2 |
| d                                                                         | WY2011                    | 78.8  | 81.9  | 163        | 166   | 151            | 176            | 84.9  | 91.6           | 98    | 98    | 155          | 112   |
| е                                                                         | WY2012                    | 107   | 126   | 92         | 130   | 133            | 169            | 112   | 104            | 86.3  | 86.2  | 90           | 92    |
| f                                                                         | WY2013                    | 112   | 139   | 159        | 101   | 151            | 182            | 169   | 97             | 76    | 120   | 146          | 122   |
|                                                                           | n                         | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                                                                           | t1                        | 6     | 6     | 6          | 6     | 4              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                                                                           | t <sub>2</sub>            | 0     | 0     | 0          | 0     | 1              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                           | t <sub>3</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                           | t <sub>4</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                           | t <sub>5</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                                                                           | b-a                       | -1    | 1     | -1         | -1    | -1             | -1             | 1     | 1              | -1    | -1    | -1           | -1    |
|                                                                           | c-a                       | 1     | -1    | -1         | -1    | -1             | -1             | -1    | 1              | -1    | 1     | 1            | 1     |
|                                                                           | d-a                       | -1    | -1    | 1          | 1     | 1              | 1              | -1    | -1             | 1     | 1     | 1            | 1     |
|                                                                           | e-a                       | -1    | -1    | -1         | -1    | -1             | 1              | -1    | 1              | -1    | -1    | -1           | 1     |
|                                                                           | f-a                       | 1     | 1     | 1          | -1    | 1              | 1              | 1     | 1              | -1    | 1     | 1            | 1     |
|                                                                           | c-b                       | 1     | -1    | 1          | -1    | -1             | 1              | -1    | 1              | 1     | 1     | 1            | 1     |
|                                                                           | d-b                       | -1    | -1    | 1          | 1     | 1              | 1              | -1    | -1             | 1     | 1     | 1            | 1     |
|                                                                           | e-b                       | 1     | -1    | -1         | -1    | -1             | 1              | -1    | 1              | 1     | 1     | 1            | 1     |
|                                                                           | f-b                       | 1     | -1    | 1          | -1    | 1              | 1              | -1    | 1              | -1    | 1     | 1            | 1     |
|                                                                           | d-c                       | -1    | -1    | 1          | 1     | 1              | 1              | -1    | -1             | 1     | 1     | 1            | -1    |
|                                                                           | e-c                       | -1    | 1     | -1         | 1     | -1             | 1              | -1    | -1             | -1    | -1    | -1           | -1    |
|                                                                           | T-C                       | -1    | 1     | 1          | 1     | 1              | 1              | 1     | -1             | -1    | 1     | 1            | -1    |
|                                                                           | e-u<br>f d                | 1     | 1     | -1         | -1    | -1             | -1             | 1     | 1              | -1    | -1    | -1           | -1    |
|                                                                           | f-e                       | 1     | 1     | -1         | -1    | 1              | 1              | 1     | -1             | -1    | 1     | -1           | 1     |
|                                                                           | S <sub>k</sub>            | 1     | -1    | 1          | -5    | 0              | 9              | -3    | 3              | -5    | 7     | 5            | 5     |
|                                                                           | <sup>2</sup> .=           | 28 33 | 28.33 | 28.33      | 28.33 | 27 33          | 28.33          | 28 33 | 28.33          | 28.33 | 28 33 | 28.33        | 28 33 |
| Z, =                                                                      | s_<br>Sμ/σε               | 0.19  | -0.19 | 0.19       | -0.94 | 0.00           | 1.69           | -0.56 | 0.56           | -0.94 | 1.32  | 0.94         | 0.94  |
| ~                                                                         | $Z^{2}_{\mu}$             | 0.04  | 0.04  | 0.04       | 0.88  | 0.00           | 2.86           | 0.32  | 0.32           | 0.88  | 1.73  | 0.88         | 0.88  |
|                                                                           | - N                       | 5101  | 0.01  | 0.01       | 5.00  | 5.00           | 2.00           | 5.02  | 0.02           | 5.00  |       | 0.00         | 0.00  |
|                                                                           | $\Sigma Z_k =$            | 3.19  | Γ     | Tie Extent | t1    | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 72    |
|                                                                           | $\Sigma Z_{k}^{2}$        | 8.86  |       | Count      | 70    | 1              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 17    |
| 7                                                                         | Z-bar=ΣZ <sub>ν</sub> /K= | 0.27  | L     |            |       |                |                |       |                |       |       |              |       |

| $\chi^2_h = \Sigma Z^2_k$ | $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homogeneity      |        |
|---------------------------|------------------------------------------|-------|-----------------------------------------|-------|-----------------------------------|--------|
|                           | р                                        | 0.713 | -                                       |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$                      | 0.87  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT |
| 339.00                    | р                                        | 0.808 |                                         |       | H <sub>A</sub> (± trend)          | REJECT |



| Seasonal-Kendall Slope Confidence Intervals |                |                |                |  |  |  |  |  |  |  |
|---------------------------------------------|----------------|----------------|----------------|--|--|--|--|--|--|--|
| α                                           | Lower<br>Limit | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |  |
| 0.010                                       | -1.60          | -              | 3.94           |  |  |  |  |  |  |  |
| 0.050                                       | -0.71          | 0.69           | 2.89           |  |  |  |  |  |  |  |
| 0.100                                       | -0.24          | 0.00           | 2.69           |  |  |  |  |  |  |  |
| 0.200                                       | 0.01           |                | 1.71           |  |  |  |  |  |  |  |

| #6 |
|----|
|    |

Seasonal Kendall analysis for pH, Field, Standard Units

| Row label | Water Year                          | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug    | Sep   |
|-----------|-------------------------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------|-------|
| а         | WY2008                              | 7.9   | 7.8   | 7.9        | 7.9   | 7.8            | 7.8            | 8.0   | 7.7            | 7.8   | 6.8   | 7.9    | 7.4   |
| b         | WY2009                              | 7.8   | 7.8   | 7.7        | 7.7   | 7.7            | 7.8            | 7.0   | 7.1            | 7.1   | 6.9   | 7.1    | 7.2   |
| с         | WY2010                              | 7.7   | 7.1   | 7.6        | 6.5   | 7.4            | 7.5            | 6.9   | 7.6            | 7.0   | 7.0   | 7.0    | 7.6   |
| d         | WY2011                              | 6.7   | 7.7   | 7.9        | 7.5   | 7.3            | 7.7            | 7.7   | 7.6            | 7.4   | 7.7   | 7.9    | 7.8   |
| е         | WY2012                              | 7.4   | 7.9   | 7.7        | 6.1   | 7.4            | 8.2            | 7.7   | 7.6            | 7.9   | 7.8   | 7.6    | 7.7   |
| f         | WY2013                              | 7.7   | 7.7   | 7.8        | 7.5   | 7.4            | 7.8            | 7.9   | 7.7            | 7.6   | 8.1   | 8.0    | 7.9   |
|           | n                                   | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6      | 6     |
|           | t,                                  | 6     | 6     | 6          | 6     | 6              | 6              | 4     | 4              | 6     | 6     | 6      | 6     |
|           | t <sub>2</sub>                      | 0     | 0     | 0          | 0     | 0              | 0              | 1     | 1              | 0     | 0     | 0      | 0     |
|           | t <sub>3</sub>                      | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0      | 0     |
|           | t <sub>4</sub>                      | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0      | 0     |
|           | ι <sub>5</sub>                      | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0      | 0     |
|           | b-a                                 | -1    | 1     | -1         | -1    | -1             | -1             | -1    | -1             | -1    | 1     | -1     | -1    |
|           | c-a                                 | -1    | -1    | -1         | -1    | -1             | -1             | -1    | -1             | -1    | 1     | -1     | 1     |
|           | d-a                                 | -1    | -1    | 1          | -1    | -1             | -1             | -1    | -1             | -1    | 1     | 1      | 1     |
|           | e-a                                 | -1    | 1     | -1         | -1    | -1             | 1              | -1    | -1             | 1     | 1     | -1     | 1     |
|           | f-a                                 | -1    | -1    | -1         | -1    | -1             | 1              | -1    | 1              | -1    | 1     | 1      | 1     |
|           | c-b                                 | -1    | -1    | -1         | -1    | -1             | -1             | -1    | 1              | -1    | 1     | -1     | 1     |
|           | d-b                                 | -1    | -1    | 1          | -1    | -1             | -1             | 1     | 1              | 1     | 1     | 1      | 1     |
|           | e-b                                 | -1    | 1     | 1          | -1    | -1             | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
|           | f-b                                 | -1    | -1    | 1          | -1    | -1             | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
|           | d-c                                 | -1    | 1     | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
|           | e-c                                 | -1    | 1     | 1          | -1    | 1              | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
|           | f-c                                 | 1     | 1     | 1          | 1     | 1              | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
|           | e-d                                 | 1     | 1     | -1         | -1    | 1              | 1              | 0     | 0              | 1     | 1     | -1     | -1    |
|           | f-d                                 | 1     | 1     | -1         | -1    | 1              | 1              | 1     | 1              | 1     | 1     | 1      | 1     |
| :         | t-e                                 | 1     | -1    | 1          | 1     | -1             | -1             | 1     | 1              | -1    | 1     | 1      | 1     |
|           | S <sub>k</sub>                      | -7    | 1     | 1          | -9    | -7             | 3              | 2     | 6              | 3     | 15    | 5      | 11    |
|           | 2                                   |       |       |            |       |                |                |       |                |       | 0.28  |        | 0.10  |
| σ         | s=                                  | 28.33 | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 27.33 | 27.33          | 28.33 | 28.33 | 28.33  | 28.33 |
| $Z_k =$   | S <sub>k</sub> /\sigma <sub>S</sub> | -1.32 | 0.19  | 0.19       | -1.69 | -1.32          | 0.56           | 0.38  | 1.15           | 0.56  | 2.82  | 0.94   | 2.07  |
| Z         | Z <sup>2</sup> <sub>k</sub>         | 1.73  | 0.04  | 0.04       | 2.86  | 1.73           | 0.32           | 0.15  | 1.32           | 0.32  | 7.94  | 0.88   | 4.27  |
|           | $\Sigma Z_{i} =$                    | 4 54  | ļ     | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t,    | t <sub>5</sub> |       |       | Σn     | 72    |
|           | $\Sigma 7^2 -$                      | 21 50 |       | Count      | 69    | 2              | õ              | 0     | õ              |       |       | 22     | 24    |
| -         | ∠∠ <sub>k</sub> =                   | 21.38 |       | Count      | 00    | 2              | U              | 0     | U              |       |       | $20_k$ | 24    |

Z-bar= $\Sigma Z_k/K$ = 0.38

| $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 19.87$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homog            | geneity |
|----------------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                                                          | р                   | 0.047 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | REJECT  |
| $\Sigma VAR(S_k)$                                        | $\mathbf{Z}_{calc}$ | 1.25  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | NA      |
| 338.00                                                   | р                   | 0.895 |                                         |       | H <sub>A</sub> (± trend)          | NA      |



| Seasonal-Kendall Slope Confidence Intervals |                |                |                |  |  |  |  |  |  |  |
|---------------------------------------------|----------------|----------------|----------------|--|--|--|--|--|--|--|
| α                                           | Lower<br>Limit | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |  |
| 0.010                                       | -0.02          |                | 0.09           |  |  |  |  |  |  |  |
| 0.050                                       | -0.01          | 0.02           | 0.07           |  |  |  |  |  |  |  |
| 0.100                                       | 0.00           | 0.02           | 0.05           |  |  |  |  |  |  |  |
| 0.200                                       | 0.01           |                | 0.04           |  |  |  |  |  |  |  |

Site #6

Seasonal Kendall analysis for Total Alk, (mg/l)

|                         |                                  | 0-4                     | Maria    | Dee           | La va  | Eals                    | Max         | A      | Maria                             | 1                    | l l            | A             | 0        |
|-------------------------|----------------------------------|-------------------------|----------|---------------|--------|-------------------------|-------------|--------|-----------------------------------|----------------------|----------------|---------------|----------|
| Row label               | Water Year                       | Oct                     | NOV      | Dec           | Jan    | Feb                     | Mar         | Apr    | мау                               | Jun                  | Jul            | Aug           | Sep      |
| а                       | WY2008                           | 39.2                    | 44.9     | 53.0          | 54.1   | 49.8                    | 47.7        | 53.8   | 32.3                              | 33.8                 | 31.2           | 35.1          | 31.7     |
| b                       | WY2009                           | 30.0                    | 43.4     | 37.2          | 44.3   | 50.9                    | 54.7        | 52.4   | 33.7                              | 30.0                 | 33.8           | 34.2          | 32.8     |
| C                       | WY2010                           | 45.0                    | 46.4     | 52.2          | 39.7   | 45.6                    | 46 7        | 44 0   | 36.2                              | 32.9                 | 35.9           | 41 1          | 46.5     |
| d                       | WY2011                           | 27.6                    | 2/ 1     | 18.4          | 52.5   | 18.4                    | 55 /        | 52.0   | 34.7                              | 34.7                 | 37.7           | 47.7          | 46.1     |
| u                       | W/V0040                          | 27.0                    | 24.1     | -0            | 52.0   | 40.4                    | 50.4        | 52.5   | 07.0                              | 04.7                 | 00.0           | 47.7          | 40.1     |
| e                       | WY2012                           | 39.5                    | 52.1     | 28.9          | 53.8   | 49.9                    | 52.6        | 36.4   | 37.9                              | 34.0                 | 33.2           | 31.3          | 36.6     |
| f                       | WY2013                           | 46.2                    | 54.2     | 56.3          | 32.7   | 50.3                    | 59.2        | 54.0   | 33.8                              | 29.6                 | 42.9           | 49.9          | 44.2     |
|                         | n                                | 6                       | 6        | 6             | 6      | 6                       | 6           | 6      | 6                                 | 6                    | 6              | 6             | 6        |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | t <sub>1</sub>                   | 6                       | 6        | 6             | 6      | 6                       | 6           | 6      | 6                                 | 6                    | 6              | 6             | 6        |
|                         | t <sub>2</sub>                   | 0                       | 0        | 0             | 0      | 0                       | 0           | 0      | 0                                 | 0                    | 0              | 0             | 0        |
|                         | t <sub>3</sub>                   | 0                       | 0        | 0             | 0      | 0                       | 0           | 0      | 0                                 | 0                    | 0              | 0             | 0        |
|                         | t                                | 0                       | 0        | 0             | 0      | 0                       | 0           | 0      | 0                                 | 0                    | 0              | 0             | 0        |
|                         | t <sub>5</sub>                   | 0                       | 0        | 0             | 0      | 0                       | 0           | 0      | 0                                 | 0                    | 0              | 0             | 0        |
|                         |                                  |                         | -        | -             | -      | -                       |             | -      | -                                 | -                    | -              | -             | -        |
|                         | b-a                              | -1                      | -1       | -1            | -1     | 1                       | 1           | -1     | 1                                 | -1                   | 1              | -1            | 1        |
|                         | c-a                              | 1                       | 1        | -1            | -1     | -1                      | -1          | -1     | 1                                 | -1                   | 1              | 1             | 1        |
|                         | d-a                              | -1                      | -1       | -1            | -1     | -1                      | 1           | -1     | 1                                 | 1                    | 1              | 1             | 1        |
|                         | uu                               |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | e-a                              | 1                       | 1        | -1            | -1     | 1                       | 1           | -1     | 1                                 | 1                    | 1              | -1            | 1        |
|                         | f-a                              | 1                       | 1        | 1             | -1     | 1                       | 1           | 1      | 1                                 | -1                   | 1              | 1             | 1        |
|                         | c-b                              | 1                       | 1        | 1             | -1     | -1                      | -1          | -1     | 1                                 | 1                    | 1              | 1             | 1        |
|                         | d-b                              | -1                      | -1       | 1             | 1      | -1                      | 1           | 1      | 1                                 | 1                    | 1              | 1             | 1        |
|                         | e-h                              | 1                       | 1        | -1            | 1      | -1                      | -1          | -1     | 1                                 | 1                    | -1             | -1            | 1        |
|                         | f_h                              | 1                       | 1        | 1             | 1      | 1                       | 1           | 1      | 1                                 | 1                    | 1              | 1             | 1        |
|                         | 1-0                              |                         | 1        |               | -1     | -1                      | 1           | 1      | 1                                 | -1                   |                |               | 1        |
|                         | d-c                              | -1                      | -1       | -1            | 1      | 1                       | 1           | 1      | -1                                | 1                    | 1              | 1             | -1       |
|                         | e-c                              | -1                      | 1        | -1            | 1      | 1                       | 1           | -1     | 1                                 | 1                    | -1             | -1            | -1       |
|                         | f-c                              | 1                       | 1        | 1             | -1     | 1                       | 1           | 1      | -1                                | -1                   | 1              | 1             | -1       |
|                         | e-d                              | 1                       | 1        | -1            | 1      | 1                       | -1          | -1     | 1                                 | -1                   | -1             | -1            | -1       |
|                         | f-d                              | 1                       | 1        | 1             | -1     | 1                       | 1           | 1      | -1                                | -1                   | 1              | 1             | -1       |
|                         | fo                               | 1                       | 1        | 1             | 1      | 1                       | 1           | 1      | 1                                 | 1                    | 1              | 1             | 1        |
|                         | 1-6                              | I                       | I        | 1             | -1     | 1                       |             | ļ      | -1                                | -1                   | ļ              | 1             | 1        |
|                         | S <sub>k</sub>                   | 5                       | 7        | -1            | -5     | 3                       | 7           | -1     | 7                                 | -1                   | 9              | 5             | 5        |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
| c                       | $\sigma_{S}^{2}$ =               | 28.33                   | 28.33    | 28.33         | 28.33  | 28.33                   | 28.33       | 28.33  | 28.33                             | 28.33                | 28.33          | 28.33         | 28.33    |
| 7                       | S /m                             | 0.04                    | 1 22     | 0.10          | 0.04   | 0 56                    | 1 2 2       | 0.10   | 1 22                              | 0.10                 | 1 60           | 0.04          | 0.04     |
| <b>Z</b> <sub>k</sub> = | = 3 <sub>k</sub> /0 <sub>S</sub> | 0.94                    | 1.32     | -0.19         | -0.94  | 0.56                    | 1.52        | -0.19  | 1.52                              | -0.19                | 1.09           | 0.94          | 0.94     |
|                         | $Z_{k}^{2}$                      | 0.88                    | 1.73     | 0.04          | 0.88   | 0.32                    | 1.73        | 0.04   | 1.73                              | 0.04                 | 2.86           | 0.88          | 0.88     |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | Σ7. –                            | 7 5 1                   | Г        | Tio Extent    | t.     | ta                      | t.          | t.     | t.                                |                      |                | Σn            | 72       |
|                         | 22-k-                            | 7.51                    |          |               | •1     | •2                      | •3          | •4     | •5                                |                      |                | 2             | 12       |
|                         | $\Sigma Z_{k}^{2}$               | 12.00                   |          | Count         | 72     | 0                       | 0           | 0      | 0                                 |                      |                | $\Sigma S_k$  | 40       |
| Z                       | Z-bar=ΣZ⊬/K=                     | 0.63                    | -        |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | ĸ                                |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | $\chi^2_h = \Sigma Z^2_k$        | K(Z-bar) <sup>2</sup> = | 7.29     |               | @α=5%  | $\% \chi^{2}_{(K-1)} =$ | 19.68       | Т      | est for stat                      | ion homoge           | eneity         |               |          |
|                         |                                  | p                       | 0.775    | F             |        |                         |             | λ      | $(2^{2} \times \chi^{2})^{(K-1)}$ | ļ                    | ACCEPT         |               |          |
|                         | SVAD(S)                          | 7                       | 0.40     |               | o/0    | 2 E0/ <b>7</b>          | 1.00        |        |                                   | manad) [             |                |               |          |
|                         | $2VAR(S_k)$                      | L <sub>calc</sub>       | 2.12     |               | @α/2=  | :2.5% <b>L</b> =        | 1.96        |        | $\mathbf{H}_0$ (NO                | rena) F              | REJECT         |               |          |
|                         | 340.00                           | р                       | 0.983    |               |        |                         |             |        | H <sub>A</sub> (± ti              | rend) <mark>/</mark> | ACCEPT         |               |          |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
| 70 -                    |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | t                                |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
| 60 -                    |                                  |                         |          |               |        |                         |             | ~      | <b></b>                           |                      |                |               |          |
|                         |                                  |                         | <u> </u> |               |        | <u> </u>                |             |        |                                   |                      |                |               |          |
|                         | t 🕿 📉                            |                         |          | A-            | *      |                         | -           |        |                                   | Seasonal-            | -Kendall Slope | Confidence Ir | ntervals |
| <del>c</del> 50 -       |                                  |                         | *        | $\checkmark$  |        | $\rightarrow$           |             |        |                                   |                      | Lower          | Sen's         | Unner    |
| 6                       |                                  |                         |          |               |        |                         |             | //     |                                   |                      | Liwit          | Slone         | Limit    |
| Ē.                      |                                  |                         |          |               |        |                         |             |        | ×  _                              | <u>a</u>             | Limit          | Slope         | Limit    |
| <u> </u>                |                                  |                         |          |               |        |                         |             |        |                                   | 0.010                | -0.12          |               | 1.83     |
| ¥.                      | t 📭                              |                         |          | ×             |        |                         |             | $\sim$ |                                   | 0.050                | 0.07           | 0.83          | 1.40     |
| < 20                    |                                  |                         | /        |               |        |                         |             | 8      |                                   | 0.100                | 0.30           | 0.00          | 1.36     |
| <u>n</u> 30 -           | F                                |                         |          |               |        | 1                       | X           |        | ,                                 | 0.200                | 0.40           |               | 1.23     |
| đ                       | -                                |                         |          |               |        |                         |             |        |                                   | 0.200                | 0110           |               |          |
| F 20 -                  | -                                |                         |          |               |        |                         |             |        |                                   |                      |                | 1.00/         |          |
| 20                      | t –                              |                         |          |               |        |                         |             |        |                                   |                      |                | 1.9%          |          |
|                         | F                                |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
| 10 -                    | -                                |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
| 10                      | 14/2000                          | · · ·                   | 2000     | W/V2040       |        | 011                     | W/V2042     |        | 0012                              |                      |                |               |          |
|                         | vv r 2008                        | o vvy.                  | 2009     | VV 1 2010     | VV Y Z | .011                    | vv t 2012   | VV Y Z | 013                               |                      |                |               |          |
|                         |                                  |                         |          |               |        |                         |             |        |                                   |                      |                |               |          |
|                         | —— Oc                            | t <del>– B</del>        | – Nov    | <u> —</u> Dec | -0-    | -Jan                    | <del></del> | ) — —  | - Mar                             |                      |                |               |          |
|                         | <u> </u>                         | r                       | - Mav    | <b>e</b> lun  |        | - Iul                   |             |        | Sen                               |                      |                |               |          |
|                         | - 70                             |                         | ivicity  | - Juli        | ~      | Jui                     |             | 1      | 000                               |                      |                |               |          |

Site #6

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| Row label        | Water Year          | Oct   | Nov   | Dec        | Jan      | Feb            | Mar   | Anr   | May   | Jun   | Jul   | Διια            | Sen   |
|------------------|---------------------|-------|-------|------------|----------|----------------|-------|-------|-------|-------|-------|-----------------|-------|
| a                | WY2008              | 13.0  | 13.4  | 18.0       | 22.4     | 21.5           | 19.3  | 22.3  | 7.6   | 7.4   | 8.2   | 8.7             | 7.5   |
| b                | WY2009              | 9.5   | 17.2  | 16.5       | 17.9     | 21.1           | 25.0  | 25.6  | 9.9   | 7.9   | 10.0  | 11.7            | 8.9   |
| С                | WY2010              | 15.3  | 18.7  | 19.9       | 15.0     | 16.4           | 19.0  | 19.4  | 10.7  | 9.4   | 9.9   | 11.8            | 16.0  |
| d                | WY2011              | 8.0   | 8.8   | 23.6       | 24.6     | 21.7           | 26.1  | 25.0  | 8.7   | 10.5  | 11.1  | 15.1            | 16.3  |
| е                | WY2012              | 15.3  | 17.9  | 10.0       | 22.9     | 21.6           | 23.5  | 11.9  | 10.7  | 7.8   | 8.2   | 9.3             | 9.0   |
| f                | WY2013              | 11.5  | 18.7  | 22.3       | 9.9      | 17.4           | 26.4  | 23.5  | 9.0   | 6.9   | 14.5  | 18.0            | 12.3  |
|                  | n                   | 6     | 6     | 6          | 6        | 6              | 6     | 6     | 6     | 6     | 6     | 6               | 6     |
|                  | +                   | 4     | 4     | 6          | 6        | 6              | 6     | 6     | 6     | 6     | 6     | 6               | 6     |
|                  | ι <sub>1</sub><br>+ | 4     | 4     | 0          | 0        | 0              | 0     | 0     | 0     | 0     | 0     | 0               | 0     |
|                  | ι <sub>2</sub><br>+ | 1     | 1     | 0          | 0        | 0              | 0     | 0     | 0     | 0     | 0     | 0               | 0     |
|                  | ι <sub>3</sub><br>+ | 0     | 0     | 0          | 0        | 0              | 0     | 0     | 0     | 0     | 0     | 0               | 0     |
|                  | t-                  | 0     | 0     | 0          | 0        | 0              | 0     | 0     | 0     | 0     | 0     | 0               | 0     |
|                  | -5                  |       |       | 0          |          |                |       | 0     |       | 0     |       |                 |       |
|                  | b-a                 | -1    | 1     | -1         | -1       | -1             | 1     | 1     | 1     | 1     | 1     | 1               | 1     |
|                  | c-a                 | 1     | 1     | 1          | -1       | -1             | -1    | -1    | 1     | 1     | 1     | 1               | 1     |
|                  | d-a                 | -1    | -1    | 1          | 1        | 1              | 1     | 1     | 1     | 1     | 1     | 1               | 1     |
|                  | e-a                 | 1     | 1     | -1         | 1        | 1              | 1     | -1    | 1     | 1     | 1     | 1               | 1     |
|                  | f-a                 | -1    | 1     | 1          | -1       | -1             | 1     | 1     | 1     | -1    | 1     | 1               | 1     |
|                  | c-b                 | 1     | 1     | 1          | -1       | -1             | -1    | -1    | 1     | 1     | -1    | 1               | 1     |
|                  | d-b                 | -1    | -1    | 1          | 1        | 1              | 1     | -1    | -1    | 1     | 1     | 1               | 1     |
|                  | e-b                 | 1     | 1     | -1         | 1        | 1              | -1    | -1    | 1     | -1    | -1    | -1              | 1     |
|                  | f-b                 | 1     | 1     | 1          | -1       | -1             | 1     | -1    | -1    | -1    | 1     | 1               | 1     |
|                  | d-c                 | -1    | -1    | 1          | 1        | 1              | 1     | 1     | -1    | 1     | 1     | 1               | 1     |
|                  | e-c                 | 0     | -1    | -1         | 1        | 1              | 1     | -1    | -1    | -1    | -1    | -1              | -1    |
|                  | f-c                 | -1    | 0     | 1          | -1       | 1              | 1     | 1     | -1    | -1    | 1     | 1               | -1    |
|                  | e-d                 | 1     | 1     | -1         | -1       | -1             | -1    | -1    | 1     | -1    | -1    | -1              | -1    |
|                  | f-d                 | 1     | 1     | -1         | -1       | -1             | 1     | -1    | 1     | -1    | 1     | 1               | -1    |
|                  | t-e                 | -1    | 1     | 1          | -1       | -1             | 1     | 1     | -1    | -1    | 1     | 1               | 1     |
|                  | S <sub>k</sub>      | 0     | 6     | 3          | -3       | -1             | 7     | -3    | 3     | -1    | 7     | 9               | 7     |
|                  | 2                   | 27 33 | 27 33 | 28.33      | 28.33    | 28.33          | 28.33 | 28.33 | 28.33 | 28.33 | 28.33 | 28.33           | 28.33 |
|                  | s-                  | 27.55 | 21.55 | 20.55      | 20.00    | 20.00          | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00           | 20.00 |
| ∠ <sub>k</sub> = | $S_k/\sigma_s$      | 0.00  | 1.15  | 0.56       | -0.56    | -0.19          | 1.32  | -0.56 | 0.56  | -0.19 | 1.32  | 1.69            | 1.32  |
|                  | Z <sup>2</sup> k    | 0.00  | 1.32  | 0.32       | 0.32     | 0.04           | 1.73  | 0.32  | 0.32  | 0.04  | 1.73  | 2.86            | 1.73  |
|                  | $\Sigma 7 =$        | 6 4 1 | ſ     | Tie Extent | t,       | t <sub>2</sub> | t,    | t     | t,    |       |       | Σn              | 72    |
|                  | $\Sigma Z^2 =$      | 40.74 |       | Count      | -1<br>CO | •2             | •3    | •4    |       |       |       | ~~C             | 24    |
| _                |                     | 10.71 |       | Count      | 60       | 2              | U     | U     | U     |       |       | 23 <sub>k</sub> | 34    |

Z-bar= $\Sigma Z_k/K$ = 0.53

| $\chi^2_h = \Sigma Z^2_k$ | $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 7.28$ |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station home             | ogeneity |
|---------------------------|---------------------------------------------------------|-------|-----------------------------------------|-------|-----------------------------------|----------|
|                           | р                                                       | 0.776 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$                                     | 1.79  | @α=2.5% <b>Z</b> =                      | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT   |
| 338.00                    | р                                                       | 0.964 |                                         |       | H <sub>A</sub> (± trend)          | REJECT   |



| Site | #6 |
|------|----|
|      |    |

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

| Row label | Water Year                     | Oct                                  | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug             | Sep   |
|-----------|--------------------------------|--------------------------------------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|-----------------|-------|
| а         | WY2008                         | 9.9                                  | 10.6  | 7.6        | 6.4   | 7.5            | 12.4           | 16.6  | 8.7            | 3.2   | 3.3   | 7.3             | 12.2  |
| b         | WY2009                         | 16.7                                 | 7.9   | 13.1       | 7.3   | 8.1            | 6.4            | 14.3  | 8.2            | 3.1   | 2.6   | 10.6            | 12.6  |
| С         | WY2010                         | 6.4                                  | 10.0  | 9.0        | 6.0   | 8.4            | 9.4            | 11.7  | 4.3            | 4.0   | 3.6   | 3.5             | 4.4   |
| d         | WY2011                         | 7.3                                  | 13.0  | 7.9        | 7.5   | 10.8           | 7.3            | 10.2  | 4.0            | 3.2   | 3.6   | 4.4             | 7.7   |
| е         | WY2012                         | 7.7                                  | 10.7  | 14.6       | 12.7  | 10.1           | 8.6            | 12.0  | 10.2           | 4.1   | 4.5   | 4.7             | 6.3   |
| f         | WY2013                         | 6.5                                  | 7.4   | 6.4        | 9.0   | 7.7            | 8.7            | 9.0   | 9.9            | 2.6   | 3.6   | 6.1             | 5.2   |
|           | n                              | 6                                    | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6               | 6     |
| -         | t,                             | 6                                    | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 4     | 6               | 6     |
|           | t <sub>2</sub>                 | 0                                    | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 1     | 0               | 0     |
|           | t <sub>3</sub>                 | 0                                    | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0               | 0     |
|           | t <sub>4</sub>                 | 0                                    | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0               | 0     |
| -         | t <sub>5</sub>                 | 0                                    | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0               | 0     |
| -         | b-a                            | 1                                    | -1    | 1          | 1     | 1              | -1             | -1    | -1             | -1    | -1    | 1               | 1     |
|           | c-a                            | -1                                   | -1    | 1          | -1    | 1              | -1             | -1    | -1             | 1     | 1     | -1              | -1    |
|           | d-a                            | -1                                   | 1     | 1          | 1     | 1              | -1             | -1    | -1             | -1    | 1     | -1              | -1    |
|           | e-a                            | -1                                   | 1     | 1          | 1     | 1              | -1             | -1    | 1              | 1     | 1     | -1              | -1    |
|           | f-a                            | -1                                   | -1    | -1         | 1     | 1              | -1             | -1    | 1              | -1    | 1     | -1              | -1    |
|           | c-b                            | -1                                   | 1     | -1         | -1    | 1              | 1              | -1    | -1             | 1     | 1     | -1              | -1    |
|           | d-b                            | -1                                   | 1     | -1         | 1     | 1              | 1              | -1    | -1             | 1     | 1     | -1              | -1    |
|           | e-b                            | -1                                   | 1     | 1          | 1     | 1              | 1              | -1    | 1              | 1     | 1     | -1              | -1    |
|           | t-D                            | -1                                   | -1    | -1         | 1     | -1             | 1              | -1    | 1              | -1    | 1     | -1              | -1    |
|           | a-c                            | 1                                    | 1     | -1         | 1     | 1              | -1             | -1    | -1             | -1    | 0     | 1               | 1     |
|           | e-c                            | 1                                    | 1     | 1          | 1     | 1              | -1             | 1     | 1              | 1     | 1     | 1               | 1     |
|           | T-C                            | 1                                    | -1    | -1         | 1     | -1             | -1             | -1    | 1              | -1    | 1     | 1               | 1     |
|           | e-a                            | 1                                    | -1    | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1               | -1    |
|           | I-a<br>f o                     | -1                                   | -1    | -1         | 1     | -1             | 1              | -1    | 1              | -1    | 1     | 1               | -1    |
| =         | S.                             | -1                                   | -1    | -1         | -1    | -1             | 1              | -1    | -1             | -1    | -1    | 1               | -1    |
| -         | U <sub>k</sub>                 | -5                                   | -1    | -1         | 9     | 5              | -1             | -11   | I              | -1    | 10    | -1              | -7    |
| σ         | ²s=                            | 28.33                                | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 28.33 | 28.33          | 28.33 | 27.33 | 28.33           | 28.33 |
| $Z_k =$   | S <sub>k</sub> /σ <sub>S</sub> | -0.94                                | -0.19 | -0.19      | 1.69  | 0.94           | -0.19          | -2.07 | 0.19           | -0.19 | 1.91  | -0.19           | -1.32 |
| Z         | 2<br>k                         | 0.88                                 | 0.04  | 0.04       | 2.86  | 0.88           | 0.04           | 4.27  | 0.04           | 0.04  | 3.66  | 0.04            | 1.73  |
|           | $\Sigma Z_{L} =$               | -0.53                                |       | Tie Extent | t,    | t <sub>2</sub> | t <sub>a</sub> | t.    | t <sub>5</sub> |       |       | Σn              | 72    |
|           | $\Sigma 7^2 -$                 | 1/ /0                                |       | Count      | 70    | 1              | ů<br>O         | 0     | õ              |       |       | 22              | 2     |
| _         | کک <sub>k</sub> =              | 14.49                                |       | Count      | 70    | I              | U              | U     | U              |       |       | 20 <sub>k</sub> | -3    |
| Z         | -bar=ΣZ <sub>k</sub> /K=       | -0.04                                |       |            |       |                |                |       |                |       |       |                 |       |
| _         |                                |                                      |       |            |       |                |                |       |                |       |       |                 |       |
|           | 22 .                           | ·· · · · · · · · · · · · · · · · · · |       |            |       | . 2            |                | -     |                |       |       |                 |       |

| $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 14.47$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station home       | ogeneity |
|----------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------|----------|
|                                                    | р                   | 0.208 |                                         |       | $\chi^2_h < \chi^2_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$                                  | $\mathbf{Z}_{calc}$ | -0.11 | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)   | ACCEPT   |
| 339.00                                             | р                   | 0.457 |                                         |       | H <sub>A</sub> (± trend)    | REJECT   |



| Seasona | al-Kendall Slop | e Confidence | Intervals |
|---------|-----------------|--------------|-----------|
|         | Lower           | Sen's        | Upper     |
| α       | Limit           | Slope        | Limit     |
| 0.010   | -0.66           |              | 0.29      |
| 0.050   | -0.43           | -0.06        | 0.14      |
| 0.100   | -0.31           | -0.00        | 0.09      |
| 0.200   | -0.24           |              | 0.04      |



Site 48 vs. Site 6 – Conductivity Field

Site 48 vs. Site 6 – pH Field



Site 48 vs. Site 6 – Alkalinity Total



Site 48 vs. Site 6 – Sulfate Total





Site 48 vs. Site 6 – Zinc Dissolved

| Wil                                           | coxon-sigr    | ned-ranks t | test    |                                           |      |  |  |  |  |  |
|-----------------------------------------------|---------------|-------------|---------|-------------------------------------------|------|--|--|--|--|--|
| Exact Form                                    |               |             |         |                                           |      |  |  |  |  |  |
| Variable: Specific Conductance, Field (µS/cm) |               |             |         |                                           |      |  |  |  |  |  |
| 0.1                                           | X             | Y           | <b></b> |                                           |      |  |  |  |  |  |
| Site                                          | #48           | #6          | Differe | ences                                     |      |  |  |  |  |  |
| Year                                          | WY2013        | WY2013      | D       | <u> ע </u>                                | Rank |  |  |  |  |  |
| Oct                                           | 108.0         | 112.0       | -4.0    | 4.0                                       | -3.5 |  |  |  |  |  |
| Nov                                           | 134.0         | 139.0       | -5.0    | 5.0                                       | -5.5 |  |  |  |  |  |
| Dec                                           | 151.0         | 159.0       | -8.0    | 8.0                                       | -9   |  |  |  |  |  |
| Jan                                           | 94.0          | 101.0       | -7.0    | 7.0                                       | -7.5 |  |  |  |  |  |
| Feb                                           | 141.0         | 151.0       | -10.0   | 10.0                                      | -10  |  |  |  |  |  |
| Mar                                           | 72.0          | 182.0       | -110.0  | 110.0                                     | -12  |  |  |  |  |  |
| Apr                                           | 154.0         | 169.0       | -15.0   | 15.0                                      | -11  |  |  |  |  |  |
| May                                           | 92.0          | 97.0        | -5.0    | 5.0                                       | -5.5 |  |  |  |  |  |
| Jun                                           | 74.0          | 76.0        | -2.0    | 2.0                                       | -1   |  |  |  |  |  |
| Jul                                           | 116.0         | 120.0       | -4.0    | 4.0                                       | -3.5 |  |  |  |  |  |
| Aug                                           | 139.0         | 146.0       | -7.0    | 7.0                                       | -7.5 |  |  |  |  |  |
| Sep                                           | 119.0         | 122.0       | -3.0    | 3.0                                       | -2   |  |  |  |  |  |
| Median                                        | 117.5         | 130.5       | -6.0    | 6.0                                       |      |  |  |  |  |  |
|                                               | n             | m           |         | N=                                        | : 12 |  |  |  |  |  |
|                                               | 12            | 12          |         | $\Sigma R=$                               | -78  |  |  |  |  |  |
|                                               |               |             |         |                                           |      |  |  |  |  |  |
|                                               | α<br>5.0%     |             | [       | ••••<br>••••••••••••••••••••••••••••••••• |      |  |  |  |  |  |
|                                               | <b>W'</b> α,n |             |         | p-test                                    |      |  |  |  |  |  |
|                                               | 17            |             |         | 0.000                                     | 1    |  |  |  |  |  |
|                                               |               | 4           | L       |                                           | -    |  |  |  |  |  |
| Ш                                             | median [D]    | =0          | REJECT  |                                           | ]    |  |  |  |  |  |
| п <sub>0</sub>                                |               |             |         |                                           |      |  |  |  |  |  |

| Wilcoxon-signed-ranks test                 |               |              |         |              |      |  |  |  |  |  |
|--------------------------------------------|---------------|--------------|---------|--------------|------|--|--|--|--|--|
| Exact Form                                 |               |              |         |              |      |  |  |  |  |  |
| Variable: <b>pH, Field, Standard Units</b> |               |              |         |              |      |  |  |  |  |  |
| X Y<br>Sito #48 #6 Differences             |               |              |         |              |      |  |  |  |  |  |
| Year                                       | WY2013        | #0<br>WY2013 | Differe |              | Rank |  |  |  |  |  |
| Oct                                        | 7.75          | 7.69         | 0.06    | 0.06         | 9    |  |  |  |  |  |
| Nov                                        | 7.84          | 7.71         | 0.13    | 0.13         | 11   |  |  |  |  |  |
| Dec                                        | 7.84          | 7.82         | 0.02    | 0.02         | 2.5  |  |  |  |  |  |
| Jan                                        | 7.50          | 7.46         | 0.04    | 0.04         | 6.5  |  |  |  |  |  |
| Feb                                        | 7.75          | 7.40         | 0.35    | 0.35         | 12   |  |  |  |  |  |
| Mar                                        | 7.86          | 7.82         | 0.04    | 0.04         | 6.5  |  |  |  |  |  |
| Apr                                        | 7.86          | 7.91         | -0.05   | 0.05         | -8   |  |  |  |  |  |
| May                                        | 7.75          | 7.73         | 0.02    | 0.02         | 2.5  |  |  |  |  |  |
| Jun                                        | 7.69          | 7.58         | 0.11    | 0.11         | 10   |  |  |  |  |  |
| Jul                                        | 8.06          | 8.08         | -0.02   | 0.02         | -4   |  |  |  |  |  |
| Aug                                        | 8.00          | 7.97         | 0.03    | 0.03         | 5    |  |  |  |  |  |
| Sep                                        | 7.89          | 7.88         | 0.01    | 0.01         | 1    |  |  |  |  |  |
| Median                                     | 7.84          | 7.78         | 0.04    | 0.04         |      |  |  |  |  |  |
|                                            | n             | m            |         | N=           | 12   |  |  |  |  |  |
|                                            | 12            | 12           |         | $\Sigma R =$ | 54   |  |  |  |  |  |
|                                            | 12            | 12           |         | 21(-         | 54   |  |  |  |  |  |
|                                            |               | •            |         |              |      |  |  |  |  |  |
|                                            | α             |              |         | W*=          |      |  |  |  |  |  |
|                                            | 95.0%         |              |         | 66           |      |  |  |  |  |  |
|                                            | <b>W</b> 'α,n |              |         | p-test       |      |  |  |  |  |  |
|                                            | 59            | J            |         | 0.987        |      |  |  |  |  |  |
| H <sub>o</sub>                             | median [D]    | =0           | REJECT  |              | ]    |  |  |  |  |  |
|                                            | median [D]    | × 0          | ACCEDT  |              |      |  |  |  |  |  |

| Wilcoxon-signed-ranks test |                             |            |        |                        |      |  |  |  |  |  |  |
|----------------------------|-----------------------------|------------|--------|------------------------|------|--|--|--|--|--|--|
| .,                         | Variable: Total Alk. (mg/l) |            |        |                        |      |  |  |  |  |  |  |
|                            |                             |            |        |                        |      |  |  |  |  |  |  |
| Site                       | <b>▲</b><br>#48             | <b>¥</b> 6 | Differ | rences                 |      |  |  |  |  |  |  |
| Year                       | WY2013                      | WY2013     | D      | D                      | Rank |  |  |  |  |  |  |
| Oct                        | 44.2                        | 46.2       | -2.0   | 2.0                    | -8   |  |  |  |  |  |  |
| Nov                        | 53.1                        | 54.2       | -1.1   | 1.1                    | -5   |  |  |  |  |  |  |
| Dec                        | 58.9                        | 56.3       | 2.6    | 2.6                    | 10   |  |  |  |  |  |  |
| Jan                        | 32.1                        | 32.7       | -0.6   | 0.6                    | -3.5 |  |  |  |  |  |  |
| Feb                        | 48.1                        | 50.3       | -2.2   | 2.2                    | -9   |  |  |  |  |  |  |
| Mar                        | 59.0                        | 59.2       | -0.2   | 0.2                    | -1   |  |  |  |  |  |  |
| Apr                        | 52.7                        | 54.0       | -1.3   | 1.3                    | -6   |  |  |  |  |  |  |
| May                        | 32.4                        | 33.8       | -1.4   | 1.4                    | -7   |  |  |  |  |  |  |
| Jun                        | 29.0                        | 29.6       | -0.6   | 0.6                    | -3.5 |  |  |  |  |  |  |
| Jul                        | 42.9                        | 42.9       | 0.0    |                        |      |  |  |  |  |  |  |
| Aug                        | 50.2                        | 49.9       | 0.3    | 0.3                    | 2    |  |  |  |  |  |  |
| Sep                        | 47.6                        | 44.2       | 3.4    | 3.4                    | 11   |  |  |  |  |  |  |
| Median                     | 47.9                        | 48.1       | -0.6   | 1.3                    |      |  |  |  |  |  |  |
|                            | n                           | m          |        | N=                     | 11   |  |  |  |  |  |  |
| •                          | 12                          | 11         |        | $\Sigma R=$            | -20  |  |  |  |  |  |  |
|                            |                             |            |        |                        |      |  |  |  |  |  |  |
|                            | α<br>95.0%                  |            |        | W <sup>+</sup> =<br>23 |      |  |  |  |  |  |  |
|                            | <b>W'</b> α,n<br>51         |            |        | p-test<br>0.207        |      |  |  |  |  |  |  |
| H <sub>0</sub>             | median [D]=                 | 0          | ACCEPT |                        |      |  |  |  |  |  |  |
| I ц                        | median (D1>                 | 0          |        |                        |      |  |  |  |  |  |  |

| Wilcoxon-signed-ranks test      |                 |                |         |                  |      |  |  |  |  |  |
|---------------------------------|-----------------|----------------|---------|------------------|------|--|--|--|--|--|
|                                 |                 |                |         |                  |      |  |  |  |  |  |
| Variable: Sulfate, Total (mg/l) |                 |                |         |                  |      |  |  |  |  |  |
| Sito                            | <b>X</b><br>#40 | <b>Y</b><br>#6 | Difford |                  |      |  |  |  |  |  |
| Sile                            | #40<br>W/V2013  | #0<br>W/V2013  | Dillere |                  | Donk |  |  |  |  |  |
|                                 | 10.2            | 11.5           | 1.2     | 1.2              |      |  |  |  |  |  |
| Nov                             | 16.5            | 18.7           | -1.2    | 2.2              | -4   |  |  |  |  |  |
|                                 | 10.5            | 22.3           | -2.2    | 2.2              | -0   |  |  |  |  |  |
| lan                             | 9.8             | 9 Q            | -0.1    | 0.1              | -1   |  |  |  |  |  |
| Feb                             | 14 5            | 17.4           | -29     | 29               | -10  |  |  |  |  |  |
| Mar                             | 22.6            | 26.4           | -3.8    | 3.8              | -11  |  |  |  |  |  |
| Apr                             | 18.8            | 23.5           | -4.7    | 4.7              | -12  |  |  |  |  |  |
| Mav                             | 7.7             | 9.0            | -1.3    | 1.3              | -5.5 |  |  |  |  |  |
| Jun                             | 6.4             | 6.9            | -0.5    | 0.5              | -2   |  |  |  |  |  |
| Jul                             | 13.0            | 14.5           | -1.5    | 1.5              | -7   |  |  |  |  |  |
| Aug                             | 17.1            | 18.0           | -0.9    | 0.9              | -3   |  |  |  |  |  |
| Sep                             | 11.0            | 12.3           | -1.3    | 1.3              | -5.5 |  |  |  |  |  |
| Median                          | 13.8            | 16.0           | -1.4    | 1.4              |      |  |  |  |  |  |
|                                 | n               | m              |         | N=               | 12   |  |  |  |  |  |
| •                               | 12              | 12             |         | $\Sigma R =$     | -78  |  |  |  |  |  |
|                                 |                 |                |         |                  |      |  |  |  |  |  |
|                                 | α<br>5.0%       |                | 1       | W <sup>+</sup> = |      |  |  |  |  |  |
|                                 | <b>W</b> 'α.n   |                |         | p-test           |      |  |  |  |  |  |
|                                 | 17              | ]              |         | 0.000            |      |  |  |  |  |  |
| Ho                              | median [D]      | =0             | REJECT  |                  | ]    |  |  |  |  |  |
|                                 |                 | -              |         |                  |      |  |  |  |  |  |

| Wil                              | coxon-sign                       | ed-ranks f | test   |                                                 |      |  |  |  |  |  |
|----------------------------------|----------------------------------|------------|--------|-------------------------------------------------|------|--|--|--|--|--|
| Exact Form                       |                                  |            |        |                                                 |      |  |  |  |  |  |
| Variable: Zinc, Dissolved (ug/l) |                                  |            |        |                                                 |      |  |  |  |  |  |
| X Y                              |                                  |            |        |                                                 |      |  |  |  |  |  |
| Site                             | #48                              | #6         | Differ | ences                                           |      |  |  |  |  |  |
| Year                             | WY2013                           | WY2013     | D      | D                                               | Rank |  |  |  |  |  |
| Oct                              | 3.89                             | 6.48       | -2.59  | 2.59                                            | -3   |  |  |  |  |  |
| Nov                              | 4.08                             | 7.38       | -3.30  | 3.30                                            | -6   |  |  |  |  |  |
| Dec                              | 3.12                             | 6.36       | -3.24  | 3.24                                            | -5   |  |  |  |  |  |
| Jan                              | 3.65                             | 8.97       | -5.32  | 5.32                                            | -9   |  |  |  |  |  |
| Feb                              | 3.36                             | 7.65       | -4.29  | 4.29                                            | -8   |  |  |  |  |  |
| Mar                              | 3.24                             | 8.66       | -5.42  | 5.42                                            | -10  |  |  |  |  |  |
| Apr                              | 2.57                             | 8.95       | -6.38  | 6.38                                            | -11  |  |  |  |  |  |
| May                              | 3.31                             | 9.87       | -6.56  | 6.56                                            | -12  |  |  |  |  |  |
| Jun                              | 1.80                             | 2.55       | -0.75  | 0.75                                            | -1   |  |  |  |  |  |
| Jul                              | 2.34                             | 3.63       | -1.29  | 1.29                                            | -2   |  |  |  |  |  |
| Aug                              | 9.89                             | 6.09       | 3.80   | 3.80                                            | 7    |  |  |  |  |  |
| Sep                              | 2.59                             | 5.21       | -2.62  | 2.62                                            | -4   |  |  |  |  |  |
| Median                           | 3.28                             | 6.93       | -3.27  | 3.55                                            |      |  |  |  |  |  |
|                                  | n                                | m          |        | N=                                              | 12   |  |  |  |  |  |
|                                  | 12                               | 12         |        | $\Sigma R=$                                     | -64  |  |  |  |  |  |
|                                  | α<br>5.0%<br><b>W'</b> α,n<br>17 |            |        | W <sup>+</sup> =<br><b>7</b><br>p-test<br>0.005 |      |  |  |  |  |  |
| Ha                               | median [D]=                      | =0         | REJECT |                                                 |      |  |  |  |  |  |
| • •0                             |                                  |            |        |                                                 |      |  |  |  |  |  |

## **INTERPRETIVE REPORT SITE 54**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses with the exception of the outliers shown in the table below. During the current year no new data points were flagged as outliers after review by HGCMC.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|--|--|--|--|
| No outliers have been identified by HGCMC for the period of October 2007 through September 2013. |           |       |           |       |  |  |  |  |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeded these criteria.

#### Table of Exceedance for Water Year 2013

|             |                             |                     | Limits          |              |                 |  |  |  |  |
|-------------|-----------------------------|---------------------|-----------------|--------------|-----------------|--|--|--|--|
| Sample Date | Parameter                   | Value               | Lower           | Upper        | Hardness        |  |  |  |  |
| No exceedan | ces have been identified by | y HGCMC for the per | riod of October | 2012 through | September 2013. |  |  |  |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There were no apparent visual trends identified.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13 (WY2008-WY2013).

|                    | Mann-Ker | ndall test sta | Sen's slope estimate |      |      |
|--------------------|----------|----------------|----------------------|------|------|
| Parameter          | n*       | n* p** Trend   |                      | Q    | Q(%) |
| Conductivity Field | 6        | 0.24           |                      |      |      |
| pH Field           | 6        | 0.26           |                      |      |      |
| Alkalinity, Total  | 6        | 0.04           |                      |      |      |
| Sulfate, Total     | 6        | 0.01           | +                    | 0.48 | 3.1  |
| Zinc, Dissolved    | 6        | 0.28           | _                    |      |      |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

Total sulfate had a statistically significant (p<0.01) trend with a slope estimate of 0.48  $\mu$ g/L/yr or 3.1% increase. However given the low magnitude and similar trend noted at Site 6, HGCMC does not feel that these trends are a significant indication of changes in water chemistry at Site 54.

A comparison of median values for total alkalinity, field pH, field conductivity, total sulfate, and dissolved zinc between Site 54 and Site 6 has been conducted as specified in the Statistical Information Goals for Site 54. Additionally, X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 54 and Site 6, the upstream control site, to aid in the comparison between those sites. Calculation details of the non-parametric signed-rank tests are presented in detail on the pages following this interpretive section. The table below summarizes the results of the signed-rank test as performed on the Water Year 2013 dataset.

| Site 54 vs Site 6                                                         |         |        |        |             |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|---------|--------|--------|-------------|--|--|--|--|--|--|--|
| Signed Ranks Site 6 Site 54 Med<br>Parameter n value median median Differ |         |        |        |             |  |  |  |  |  |  |  |
| Parameter                                                                 | p-value | median | median | Differences |  |  |  |  |  |  |  |
| Conductivity Field                                                        | < 0.01  | 130.5  | 134.5  | -2.5        |  |  |  |  |  |  |  |
| pH Field                                                                  | 0.986   | 7.78   | 7.7    | 0.04        |  |  |  |  |  |  |  |
| Alkalinity, Total                                                         | 0.039   | 48.1   | 46.7   | -1.2        |  |  |  |  |  |  |  |
| Sulfate, Total                                                            | < 0.01  | 16.00  | 16.00  | -0.40       |  |  |  |  |  |  |  |
| Zinc, Dissolved                                                           | 0.995   | 6.93   | 6.32   | 0.5         |  |  |  |  |  |  |  |

#### Table of Summary Statistics for Median Analysis

The median values for pH for Site 6 and Site 54 are 7.78 su and 7.7 su respectively and the median of differences, Site 6 minus Site 54, is 0.04 su. Site 54 has intermittently (7 out of 11) had statistically significantly lower pH readings for water years (WY2002 and WY2012). This difference may in part be due to inflow of Bruin Creek which typically has a slightly lower pH than Greens Creek.

The median values for total sulfate for Site 6 and Site 54 are 16.0 mg/L and 16.0 mg/L respectively. The median of the differences, Site 6 minus Site 54, is -0.40 mg/L total sulfate.

Again similar results are obtained using the signed-rank test on the WY2004 - WY2012 total sulfate datasets.

Along with the significant difference in total sulfate there was a significant difference in field conductivity. Upgradient the median conductivity value was 130.5  $\mu$ s/cm and the downgradient median value was 134.5  $\mu$ s/cm, resulting in a -2.5  $\mu$ s/cm median difference. Datasets from WY2002 – WY2012 yield similar significant results with similar magnitudes. In general, the trend in conductivity is similar to differences measured between Site 48 and Site 6, although of a smaller magnitude. HGCMC feels the current FWMP program is adequate to measure and quantify any future changes that may occur between Site 6 and Site 54, given the small magnitude of the differences and the consistency of the variations over the past several years.

|                           | JILE UJ4FINJ - DIECHS VIECK DEIVW D-FUHU |          |          |          |          |          |          |          |          |          |          |          |          |
|---------------------------|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012                                 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           | 3.5                                      | 1.4      | 0.7      | 0        | 1.0      | 0        | 1.3      | 1.7      | 5.3      | 10.8     | 10.5     | 8.3      | 1.6      |
| Conductivity-Field(µmho)  | 116                                      | 144      | 160      | 105      | 156      | 183      | 170      | 98       | 78       | 122      | 149      | 125      | 134.5    |
| Conductivity-Lab (µmho)   | 90                                       | 142      | 118      | 100      | 136      | 179      | 171      | 94       | 73       | 114      | 141      | 92       | 116      |
| pH Lab (standard units)   | 7.93                                     | 7.62     | 7.65     | 7.45     | 7.76     | 7.64     | 7.64     | 7.48     | 7.92     | 7.9      | 7.67     | 7.36     | 7.65     |
| pH Field (standard units) | 7.64                                     | 7.38     | 7.53     | 7.49     | 6.89     | 7.8      | 7.91     | 7.75     | 7.5      | 8.02     | 7.95     | 7.88     | 7.70     |
| Total Alkalinity (mg/L)   | 45.4                                     | 56.2     | 59.2     | 34.6     | 51.5     | 61       | 53       | 34.9     | 30.1     | 44.1     | 47.6     | 45.8     | 46.7     |
| Total Sulfate (mg/L)      | 11.6                                     | 19.3     | 22.7     | 12.3     | 17.8     | 26.7     | 25.9     | 9.4      | 7        | 14.1     | 19.1     | 12.4     | 16.0     |
| Hardness (mg/L)           | 52.9                                     | 69.5     | 76.9     | 44.7     | 68.4     | 82.7     | 76.9     | 39.4     | 33.7     | 55.2     | 66.5     | 56.5     | 61.5     |
| Dissolved As (ug/L)       | 0.22                                     | 0.166    | 0.179    | 0.249    | 0.198    | 0.145    | 0.18     | 0.177    | 0.192    | 0.211    | 0.225    | 0.237    | 0.195    |
| Dissolved Ba (ug/L)       |                                          |          | 31.9     |          | 27.5     |          |          |          |          |          |          |          | 29.7     |
| Dissolved Cd (ug/L)       | 0.0462                                   | 0.0489   | 0.0396   | 0.0572   | 0.0443   | 0.0431   | 0.0465   | 0.059    | 0.0293   | 0.0409   | 0.0481   | 0.0444   | 0.0453   |
| Dissolved Cr (ug/L)       |                                          |          | 0.866    |          | 0.844    |          |          |          |          |          |          |          | 0.855    |
| Dissolved Cu (ug/L)       | 0.632                                    | 0.389    | 0.346    | 1.01     | 0.499    | 0.509    | 0.453    | 0.71     | 0.271    | 0.362    | 0.387    | 0.62     | 0.476    |
| Dissolved Pb (ug/L)       | 0.0189                                   | 0.0116   | 0.0087   | 0.108    | 0.0154   | 0.0038   | 0.0178   | 0.0207   | 0.0081   | 0.014    | 0.0128   | 0.322    | 0.0147   |
| Dissolved Ni (ug/L)       |                                          |          | 0.996    |          | 0.969    |          |          |          |          |          |          |          | 0.983    |
| Dissolved Ag (ug/L)       |                                          |          | 0.002    |          | 0.002    |          |          |          |          |          |          |          | 0.002    |
| Dissolved Zn (ug/L)       | 5.99                                     | 6.65     | 5.86     | 8.5      | 6.95     | 7.47     | 7.92     | 9.24     | 3.08     | 3.79     | 5.92     | 4.94     | 6.32     |
| Dissolved Se (ug/L)       |                                          |          | 1.26     |          | 0.821    |          |          |          |          |          |          |          | 1.041    |
| Dissolved Hg (ug/L)       | 0.00121                                  | 0.00071  | 0.000504 | 0.00249  | 0.000953 | 0.000561 | 0.000785 | 0.00152  | 0.000494 | 0.000865 | 0.00101  | 0.00114  | 0.000909 |

### Site 054FMS - 'Greens Creek Below D-Pond'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
|          |             |             |               |          |           |                            |
| 54       | 10/17/2012  | 12:00 AM    | SO4 Tot, mg/l | 11.61    | J         | Sample Temperature         |
|          |             |             | Zn diss, µg/l | 5.99     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 11/13/2012  | 12:00 AM    | pH Lab, su    | 7.62     | J         | Hold Time Violation        |
|          |             |             | Zn diss, µg/l | 6.65     | U         | Field Blank Contamination  |
|          |             |             | Hg diss, µg/l | 0.00071  | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 12/11/2012  | 12:00 AM    | Pb diss, µg/l | 0.00872  | J         | Below Quantitative Range   |
|          |             |             | Hg diss, µg/l | 0.000504 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 1/15/2013   | 12:00 AM    | Hg diss, µg/l | 0.00249  | J         | LCS Recovery               |
|          |             |             |               |          |           |                            |
| 54       | 3/18/2013   | 12:00 AM    | Pb diss, µg/l | 0.0038   | J         | Below Quantitative Range   |
|          |             |             |               |          |           | •<br>•                     |
| 54       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.48     | J         | Hold Time Violation        |
|          |             |             |               |          |           |                            |
| 54       | 6/18/2013   | 12:00 AM    | Pb diss, µg/l | 0.00811  | J         | Below Quantitative Range   |
|          |             |             | Hg diss, µg/l | 0.000494 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 14.1     | J         | Sample Receipt Temperature |
|          |             |             | Hg diss, µg/l | 0.000865 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 141      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 47.6     | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 19.1     | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.01     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 54       | 9/9/2013    | 12:00 AM    | SO4 Tot, mg/l | 12.4     | J         | Sample receipt temperature |
|          |             |             |               |          |           |                            |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | HCCMCNAtDetected Appena Authoritation              |
| UJ        | Not Detected Above Approximate Quantitation Limit  |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 54 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 54 – Mercury Dissolved

| Site      | #54                       |       |       | Seasonal   | Kendall | analysis       | for Spe        | cific Conc | ductance, F    | ield (µS/ | cm)   |              |       |
|-----------|---------------------------|-------|-------|------------|---------|----------------|----------------|------------|----------------|-----------|-------|--------------|-------|
| Row label | Water Year                | Oct   | Nov   | Dec        | Jan     | Feb            | Mar            | Apr        | May            | Jun       | Jul   | Aug          | Sep   |
| а         | WY2008                    | 113.4 | 138   | 158.8      | 164.3   | 153.7          | 170.6          | 152.3      | 91.6           | 90.6      | 89.1  | 93.2         | 92.5  |
| b         | WY2009                    | 102.9 | 145.5 | 123.5      | 144.8   | 151.5          | 176.7          | 173.5      | 99.3           | 83.7      | 86.8  | 84.3         | 73.7  |
| С         | WY2010                    | 135.5 | 119   | 157.3      | 100     | 140            | 153.1          | 142.3      | 111.3          | 88.3      | 96    | 104.8        | 130.5 |
| d         | WY2011                    | 86.7  | 84.7  | 167        | 169     | 157            | 180            | 98.9       | 93.9           | 99        | 100   | 127          | 114   |
| е         | WY2012                    | 109   | 130   | 99         | 140     | 138            | 173            | 116        | 108            | 87.1      | 87.8  | 93           | 95    |
| f         | WY2013                    | 116   | 144   | 160        | 105     | 156            | 183            | 170        | 98             | 78        | 122   | 149          | 125   |
|           | n                         | 6     | 6     | 6          | 6       | 6              | 6              | 6          | 6              | 6         | 6     | 6            | 6     |
|           | t,                        | 6     | 6     | 6          | 6       | 6              | 6              | 6          | 6              | 6         | 6     | 6            | 6     |
|           | t <sub>2</sub>            | 0     | 0     | 0          | 0       | 0              | 0              | 0          | 0              | 0         | 0     | 0            | 0     |
|           | t <sub>3</sub>            | 0     | 0     | 0          | 0       | 0              | 0              | 0          | 0              | 0         | 0     | 0            | 0     |
|           | t <sub>4</sub>            | 0     | 0     | 0          | 0       | 0              | 0              | 0          | 0              | 0         | 0     | 0            | 0     |
|           | t <sub>5</sub>            | 0     | 0     | 0          | 0       | 0              | 0              | 0          | 0              | 0         | 0     | 0            | 0     |
|           | b-a                       | -1    | 1     | -1         | -1      | -1             | 1              | 1          | 1              | -1        | -1    | -1           | -1    |
|           | c-a                       | 1     | -1    | -1         | -1      | -1             | -1             | -1         | 1              | -1        | 1     | 1            | 1     |
|           | d-a                       | -1    | -1    | 1          | 1       | 1              | 1              | -1         | 1              | 1         | 1     | 1            | 1     |
|           | e-a                       | -1    | -1    | -1         | -1      | -1             | 1              | -1         | 1              | -1        | -1    | -1           | 1     |
|           | f-a                       | 1     | 1     | 1          | -1      | 1              | 1              | 1          | 1              | -1        | 1     | 1            | 1     |
|           | c-b                       | 1     | -1    | 1          | -1      | -1             | -1             | -1         | 1              | 1         | 1     | 1            | 1     |
|           | d-b                       | -1    | -1    | 1          | 1       | 1              | 1              | -1         | -1             | 1         | 1     | 1            | 1     |
|           | e-b                       | 1     | -1    | -1         | -1      | -1             | -1             | -1         | 1              | 1         | 1     | 1            | 1     |
|           | f-b                       | 1     | -1    | 1          | -1      | 1              | 1              | -1         | -1             | -1        | 1     | 1            | 1     |
|           | d-c                       | -1    | -1    | 1          | 1       | 1              | 1              | -1         | -1             | 1         | 1     | 1            | -1    |
|           | e-c                       | -1    | 1     | -1         | 1       | -1             | 1              | -1         | -1             | -1        | -1    | -1           | -1    |
|           | I-C                       | -1    | 1     | 1          | 1       | 1              | 1              | 1          | -1             | -1        | 1     | 1            | -1    |
|           | e-u<br>f d                | 1     | 1     | -1         | -1      | -1             | -1             | 1          | 1              | -1        | -1    | -1           | -1    |
|           | f-e                       | 1     | 1     | -1         | -1      | -1             | 1              | 1          | -1             | -1        | 1     | 1            | 1     |
|           | S <sub>k</sub>            | 1     | -1    | 1          | -5      | -1             | 7              | -3         | 3              | -5        | 7     | 7            | 5     |
|           | $r_{c=}^{2}$              | 28.33 | 28.33 | 28.33      | 28.33   | 28.33          | 28.33          | 28.33      | 28.33          | 28.33     | 28.33 | 28.33        | 28.33 |
| 7         | S./G.                     | 0.19  | -0.19 | 0.19       | _0.94   | _0.19          | 1 32           | -0.56      | 0.56           | _0.94     | 1 32  | 1 32         | 0.94  |
| -к-       | <b>7</b> <sup>2</sup>     | 0.10  | 0.10  | 0.10       | 0.01    | 0.10           | 1.02           | 0.00       | 0.00           | 0.01      | 1.02  | 1.02         | 0.04  |
|           | - k                       | 0.04  | 0.04  | 0.04       | 0.88    | 0.04           | 1.73           | 0.32       | 0.32           | 0.88      | 1.73  | 1.73         | 0.00  |
|           | $\Sigma Z_k =$            | 3.01  | Γ     | Tie Extent | t1      | t <sub>2</sub> | t <sub>3</sub> | t4         | t <sub>5</sub> |           |       | Σn           | 72    |
|           | $\Sigma Z_{k}^{2} =$      | 8.61  |       | Count      | 72      | 0              | 0              | 0          | 0              |           |       | $\Sigma S_k$ | 16    |
| Z         | Z-bar=ΣZ <sub>k</sub> /K= | 0.25  | L     |            |         |                |                |            |                |           |       |              |       |

| $\chi^2_h = \Sigma Z^2_k$ | -K(Z-bar) <sup>2</sup> = | 7.86  |   | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homogeneity      |        |
|---------------------------|--------------------------|-------|---|-----------------------------------------|-------|-----------------------------------|--------|
|                           | р                        | 0.726 | _ |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$      | 0.81  |   | @α/2=2.5% <b>Ζ</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT |
| 340.00                    | р                        | 0.792 |   |                                         |       | H <sub>A</sub> (± trend)          | REJECT |



| Seasonal-Kendall Slope Confidence Intervals |                |                |                |  |  |  |  |  |  |
|---------------------------------------------|----------------|----------------|----------------|--|--|--|--|--|--|
| α                                           | Lower<br>Limit | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |
| 0.010                                       | -1.50          |                | 3.49           |  |  |  |  |  |  |
| 0.050                                       | -0.88          | 1 00           | 2.76           |  |  |  |  |  |  |
| 0.100                                       | -0.48          | 1.00           | 2.05           |  |  |  |  |  |  |
| 0.200                                       | 0.02           |                | 1.57           |  |  |  |  |  |  |

| Site | #54 |
|------|-----|
|------|-----|

Seasonal Kendall analysis for pH, Field, Standard Units

| Row label                   | Water Year                     | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug          | Sep   |
|-----------------------------|--------------------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| а                           | WY2008                         | 7.8   | 7.7   | 7.7        | 7.8   | 7.9            | 7.7            | 7.9   | 7.5            | 7.9   | 7.4   | 7.8          | 7.5   |
| b                           | WY2009                         | 7.1   | 7.7   | 7.7        | 7.3   | 7.8            | 7.2            | 7.0   | 7.1            | 6.9   | 6.6   | 6.7          | 6.9   |
| С                           | WY2010                         | 7.7   | 7.1   | 7.2        | 6.7   | 7.3            | 7.8            | 7.0   | 7.6            | 7.0   | 7.0   | 7.0          | 7.5   |
| d                           | WY2011                         | 6.8   | 7.6   | 7.7        | 7.5   | 7.7            | 7.4            | 7.4   | 7.3            | 6.9   | 7.9   | 7.5          | 7.8   |
| е                           | WY2012                         | 6.8   | 7.9   | 7.7        | 6.3   | 7.5            | 7.3            | 7.7   | 7.6            | 7.9   | 7.8   | 7.4          | 7.5   |
| f                           | WY2013                         | 7.6   | 7.4   | 7.5        | 7.5   | 6.9            | 7.8            | 7.9   | 7.8            | 7.5   | 8.0   | 8.0          | 7.9   |
|                             | n                              | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
|                             | t <sub>1</sub>                 | 6     | 6     | 4          | 4     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 4     |
|                             | t <sub>2</sub>                 | 0     | 0     | 1          | 1     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 1     |
|                             | t <sub>3</sub>                 | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                             | t4                             | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                             | t <sub>5</sub>                 | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|                             | b-a                            | -1    | 1     | -1         | -1    | -1             | -1             | -1    | -1             | -1    | -1    | -1           | -1    |
|                             | c-a                            | -1    | -1    | -1         | -1    | -1             | 1              | -1    | 1              | -1    | -1    | -1           | 0     |
|                             | d-a                            | -1    | -1    | 1          | -1    | -1             | -1             | -1    | -1             | -1    | 1     | -1           | 1     |
|                             | e-a                            | -1    | 1     | 1          | -1    | -1             | -1             | -1    | 1              | -1    | 1     | -1           | -1    |
|                             | f-a                            | -1    | -1    | -1         | -1    | -1             | 1              | 1     | 1              | -1    | 1     | 1            | 1     |
|                             | c-b                            | 1     | -1    | -1         | -1    | -1             | 1              | -1    | 1              | 1     | 1     | 1            | 1     |
|                             | d-b                            | -1    | -1    | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                             | e-b                            | -1    | 1     | 1          | -1    | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                             | f-b                            | 1     | -1    | -1         | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                             | d-c                            | -1    | 1     | 1          | 1     | 1              | -1             | 1     | -1             | -1    | 1     | 1            | 1     |
|                             | e-c                            | -1    | 1     | 1          | -1    | 1              | -1             | 1     | 1              | 1     | 1     | 1            | -1    |
|                             | f-c                            | -1    | 1     | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                             | e-d                            | 1     | 1     | 0          | -1    | -1             | -1             | 1     | 1              | 1     | -1    | -1           | -1    |
|                             | f-d                            | 1     | -1    | -1         | 0     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | 1     |
|                             | f-e                            | 1     | -1    | -1         | 1     | -1             | 1              | 1     | 1              | -1    | 1     | 1            | 1     |
|                             | S <sub>k</sub>                 | -5    | -1    | 0          | -4    | -11            | 3              | 5     | 9              | 1     | 9     | 5            | 6     |
|                             | <sup>2</sup> c=                | 28.33 | 28.33 | 27 33      | 27 33 | 28.33          | 28.33          | 28 33 | 28 33          | 28.33 | 28.33 | 28.33        | 27 33 |
|                             | S-                             | 20.00 | 20.00 | 27.00      | 0.77  | 20.00          | 20.00          | 20.00 | 20.00          | 20.00 | 4.00  | 20.00        | 4 4 5 |
| $\mathbf{Z}_{\mathbf{k}} =$ | S <sub>k</sub> /O <sub>S</sub> | -0.94 | -0.19 | 0.00       | -0.77 | -2.07          | 0.56           | 0.94  | 1.69           | 0.19  | 1.69  | 0.94         | 1.15  |
| 2                           | <u>Z</u> <sup>2</sup> k        | 0.88  | 0.04  | 0.00       | 0.59  | 4.27           | 0.32           | 0.88  | 2.86           | 0.04  | 2.86  | 0.88         | 1.32  |
|                             | $\Sigma Z_k =$                 | 3.20  | [     | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 72    |
|                             | $\Sigma Z_k^2 =$               | 14.93 |       | Count      | 66    | 3              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 17    |

Z-bar= $\Sigma Z_k/K$ = 0.27

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 14.07 | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homog            | geneity |
|---------------------------|-------------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                           | р                       | 0.229 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT  |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.87  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT  |
| 337.00                    | р                       | 0.808 |                                         |       | H <sub>A</sub> (± trend)          | REJECT  |



| Seasonal-Kendall Slope Confidence Intervals |                |                |      |  |  |  |  |  |  |  |
|---------------------------------------------|----------------|----------------|------|--|--|--|--|--|--|--|
| a                                           | Sen's<br>Slope | Upper<br>Limit |      |  |  |  |  |  |  |  |
| 0.010                                       | -0.05          |                | 0.09 |  |  |  |  |  |  |  |
| 0.050                                       | -0.02          | 0.03           | 0.06 |  |  |  |  |  |  |  |
| 0.100                                       | -0.01          | 0.00           | 0.05 |  |  |  |  |  |  |  |
| 0.200                                       | 0.00           |                | 0.04 |  |  |  |  |  |  |  |

Site #54 Seasonal Kendall analysis for Total Alk, (mg/l)

| 00            |                                |                     |               |              | •••••          |                     |              |       |                                       | (          |               |              |          |
|---------------|--------------------------------|---------------------|---------------|--------------|----------------|---------------------|--------------|-------|---------------------------------------|------------|---------------|--------------|----------|
| Row label     | Water Year                     | Oct                 | Nov           | Dec          | Jan            | Feb                 | Mar          | Apr   | May                                   | Jun        | Jul           | Aug          | Sep      |
| а             | WY2008                         | 40.6                | 45.9          | 52.4         | 55.5           | 49.6                | 51.6         | 54.6  | 33.8                                  | 33.1       | 33.0          | 59.5         | 34.6     |
| b             | WY2009                         | 31.1                | 46.6          | 39.1         | 45.8           | 52.2                | 54.4         | 54.7  | 34.7                                  | 29.7       | 34.7          | 34.3         | 32.6     |
| С             | WY2010                         | 45.9                | 45.7          | 52.0         | 41.3           | 43.1                | 47.2         | 45.5  | 37.8                                  | 33.2       | 34.7          | 39.1         | 49.2     |
| b             | WY2011                         | 30.4                | 25.4          | 53.3         | 53 5           | 48.9                | 56.9         | 53.1  | 35.5                                  | 34.0       | 35.8          | 46 7         | 47.6     |
| G             | WY2012                         | 47.7                | 51.2          | 31.8         | 54.1           | 54.4                | 55.0         | 37.0  | 30.0                                  | 34.4       | 33.6          | 31.6         | 38.7     |
| f             | WY2012                         | 47.7                | 56.2          | 59.2         | 34.1           | 51.5                | 55.9<br>61.0 | 53.0  | 34.0                                  | 30.1       | 33.0<br>11 1  | 47.6         | 15.8     |
| I             | W12013                         | 40.4                | 50.2          | 55.2         | 54.0           | 51.5                | 6            | 55.0  | 54.5                                  | 50.1       |               | 47.0         | 40.0     |
|               | 11                             | 0                   | 0             | 0            | 0              | 0                   | 0            | 0     | 0                                     | 0          | 0             | 0            | 0        |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | t,                             | 6                   | 6             | 6            | 6              | 6                   | 6            | 6     | 6                                     | 6          | 4             | 6            | 6        |
|               | t <sub>2</sub>                 | 0                   | 0             | 0            | 0              | 0                   | 0            | 0     | 0                                     | 0          | 1             | 0            | 0        |
|               | t <sub>3</sub>                 | 0                   | 0             | 0            | 0              | 0                   | 0            | 0     | 0                                     | 0          | 0             | 0            | 0        |
|               | t4                             | 0                   | 0             | 0            | 0              | 0                   | 0            | 0     | 0                                     | 0          | 0             | 0            | 0        |
|               | t <sub>5</sub>                 | 0                   | 0             | 0            | 0              | 0                   | 0            | 0     | 0                                     | 0          | 0             | 0            | 0        |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | b-a                            | -1                  | 1             | -1           | -1             | 1                   | 1            | 1     | 1                                     | -1         | 1             | -1           | -1       |
|               | c-a                            | 1                   | -1            | -1           | -1             | -1                  | -1           | -1    | 1                                     | 1          | 1             | -1           | 1        |
|               | d-2                            | -1                  | -1            | 1            | -1             | -1                  | 1            | -1    | 1                                     | 1          | 1             | -1           | 1        |
|               | u-a                            | -1                  | -1            | 1            | -1             | -1                  | 1            | -1    |                                       |            |               | -1           | 1        |
|               | e-a                            | 1                   | 1             | -1           | -1             | 1                   | 1            | -1    | 1                                     | 1          | 1             | -1           | 1        |
|               | f-a                            | 1                   | 1             | 1            | -1             | 1                   | 1            | -1    | 1                                     | -1         | 1             | -1           | 1        |
|               | c-b                            | 1                   | -1            | 1            | -1             | -1                  | -1           | -1    | 1                                     | 1          | 0             | 1            | 1        |
|               | d-b                            | -1                  | -1            | 1            | 1              | -1                  | 1            | -1    | 1                                     | 1          | 1             | 1            | 1        |
|               | e-b                            | 1                   | 1             | -1           | 1              | 1                   | 1            | -1    | 1                                     | 1          | -1            | -1           | 1        |
|               | f-b                            | 1                   | 1             | 1            | -1             | -1                  | 1            | -1    | 1                                     | 1          | 1             | 1            | 1        |
|               | d-c                            | -1                  | -1            | 1            | 1              | 1                   | 1            | 1     | -1                                    | 1          | 1             | 1            | -1       |
|               | e-c                            | 1                   | 1             | -1           | 1              | 1                   | 1            | -1    | 1                                     | 1          | -1            | -1           | -1       |
|               | f-c                            | -1                  | 1             | 1            | -1             | 1                   | 1            | 1     | -1                                    | -1         | 1             | 1            | -1       |
|               | e-d                            | 1                   | 1             | -1           | 1              | 1                   | -1           | -1    | 1                                     | 1          | -1            | -1           | -1       |
|               | e-u<br>f d                     | 1                   | 1             | -1           | 1              | 1                   | -1           | -1    | 1                                     | 1          | -1            | -1           | -1       |
|               | f o                            | 1                   | 1             | 1            | -1             | 1                   | 1            | -1    | -1                                    | -1         | 1             | 1            | -1       |
|               | 1-e                            | -1                  |               |              | -1             | -1                  |              | I     | -1                                    | -1         | I             |              |          |
|               | Sk                             | 3                   | 5             | 3            | -5             | 3                   | 9            | -7    | 7                                     | 5          | 8             | -1           | 3        |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
| 0             | $^{2}$ =                       | 28 33               | 28 33         | 28 33        | 28 33          | 28 33               | 28.33        | 28.33 | 28.33                                 | 28 33      | 27 33         | 28 33        | 28 33    |
| _ 0           | s-                             | 20.00               | 20.00         | 20.00        | 20.00          | 20.00               | 20.00        | 20.00 | 20.00                                 | 20.00      | 27.55         | 20.00        | 20.55    |
| $Z_k =$       | S <sub>k</sub> /σ <sub>S</sub> | 0.56                | 0.94          | 0.56         | -0.94          | 0.56                | 1.69         | -1.32 | 1.32                                  | 0.94       | 1.53          | -0.19        | 0.56     |
| 2             | $Z_{k}^{2}$                    | 0.32                | 0.88          | 0.32         | 0.88           | 0.32                | 2.86         | 1.73  | 1.73                                  | 0.88       | 2.34          | 0.04         | 0.32     |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | Σ7. –                          | 6.23                | Г             | Tio Extent   | t.             | t.                  | t.           | t.    | t.                                    |            |               | Σn           | 72       |
|               |                                | 0.25                |               |              | •1             | •2                  | •3           | •4    | •5                                    |            |               |              | 12       |
|               | $\Sigma Z_{k}^{-}$             | 12.61               |               | Count        | 70             | 1                   | 0            | 0     | 0                                     |            |               | $\Sigma S_k$ | 33       |
| Z             | -bar=ΣZ <sub>k</sub> /K=       | 0.52                | •             |              |                |                     |              |       | •                                     |            |               |              |          |
|               | i.                             |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | $x^2 \nabla 7^2 k$             | $(7 \text{ hor})^2$ | 0.20          |              | @~_E0          | $\sqrt{\alpha^2}$ – | 10.69        | Т     | Toot for atot                         | ion homogo | noitu         |              |          |
|               | λ h=ΔZ k <sup>-</sup> r        | (2-bai) =           | 9.30          | L            | @α=57          | ο χ (K-1)=          | 19.00        | '     |                                       | ion nomoge | neity         |              |          |
|               |                                | р                   | 0.587         |              |                |                     |              | )     | ζ <sup>2</sup> h<χ <sup>2</sup> (K-1) | A          | CCEPT         |              |          |
|               | $\Sigma V \Delta P(S)$         | 7                   | 1 7/          |              | @~/ <b>?</b> _ | 2 5% 7_             | 1.06         |       | L (No                                 | trond) A   | CCEPT         |              |          |
|               | $2$ VAR $(O_k)$                |                     | 1.74          | L            | @0/2=          | 2.3 /0 <b>L</b> =   | 1.90         |       |                                       |            | COLFI         |              |          |
|               | 339.00                         | р                   | 0.959         |              |                |                     |              |       | H <sub>A</sub> (± t                   | rend) F    | REJECT        |              |          |
|               |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
| 70 1          | _                              |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | -                              |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
| 60            |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
| 00 -          |                                |                     |               |              |                |                     |              |       |                                       |            |               |              |          |
|               | - #                            |                     | •             |              |                |                     |              |       | ť I                                   | Seasonal-  | Kendall Slope | Confidence l | ntervals |
| <b>~</b> 50 - |                                | +                   |               |              | ×              |                     |              |       | <u> </u>                              | 22400.141  | Lowor         | Sen's        | Unnor    |
| J6            |                                |                     | $\rightarrow$ |              |                |                     |              |       |                                       | ~          | Limit         | Slong        | Limit    |
| Ē,            |                                |                     | $\nearrow$    | $\checkmark$ |                |                     | Κ 4          | 1 m   | ` -                                   | <u>u</u>   |               | Siope        | 4.20     |
| <u>40</u>     |                                |                     |               | Ĭ            |                | $\sim$              | $\sim$       |       |                                       | 0.010      | -0.21         |              | 1.39     |
| ¥ I           |                                |                     |               | ¥            |                |                     |              |       | •                                     | 0.050      | 0.04          | 0.58         | 1.21     |
| 30 -          |                                |                     |               |              | $ \searrow $   | //                  | <b>T</b>     |       |                                       | 0.100      | 0.11          |              | 1.01     |
|               |                                |                     | -             |              | \              | /                   |              |       |                                       | 0 000      | 0.04          |              | 0.00     |



0.200 0.31 0.89 Site #54

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| Row label        | Water Year                  | Oct   | Nov   | Dec        | Jan   | Feb     | Mar   | Apr    | May   | Jun   | Jul   | Aug    | Sep   |
|------------------|-----------------------------|-------|-------|------------|-------|---------|-------|--------|-------|-------|-------|--------|-------|
| а                | WY2008                      | 13.0  | 13.3  | 18.2       | 23.0  | 21.5    | 20.1  | 22.7   | 8.5   | 7.6   | 8.4   | 8.8    | 7.7   |
| b                | WY2009                      | 9.7   | 17.4  | 16.3       | 18.0  | 21.0    | 24.8  | 25.4   | 10.0  | 8.0   | 10.0  | 11.8   | 8.7   |
| С                | WY2010                      | 15.2  | 18.7  | 19.9       | 15.0  | 16.4    | 19.1  | 19.7   | 10.7  | 9.6   | 10.1  | 11.9   | 16.0  |
| d                | WY2011                      | 8.9   | 8.9   | 24.1       | 25.0  | 22.4    | 26.8  | 25.8   | 8.7   | 10.6  | 11.2  | 15.3   | 16.5  |
| е                | WY2012                      | 15.5  | 18.3  | 10.5       | 25.0  | 23.2    | 23.8  | 12.2   | 10.9  | 7.8   | 8.4   | 8.6    | 9.0   |
| f                | WY2013                      | 11.6  | 19.3  | 22.7       | 12.3  | 17.8    | 26.7  | 25.9   | 9.4   | 7.0   | 14.1  | 19.1   | 12.4  |
|                  | n                           | 6     | 6     | 6          | 6     | 6       | 6     | 6      | 6     | 6     | 6     | 6      | 6     |
|                  | t,                          | 6     | 6     | 6          | 4     | 6       | 6     | 6      | 6     | 6     | 6     | 6      | 6     |
|                  | t <sub>2</sub>              | 0     | 0     | 0          | 1     | 0       | 0     | 0      | 0     | 0     | 0     | 0      | 0     |
|                  | t <sub>3</sub>              | 0     | 0     | 0          | 0     | 0       | 0     | 0      | 0     | 0     | 0     | 0      | 0     |
|                  | t <sub>4</sub>              | 0     | 0     | 0          | 0     | 0       | 0     | 0      | 0     | 0     | 0     | 0      | 0     |
|                  | L <sub>5</sub>              | 0     | 0     | 0          | 0     | 0       | 0     | 0      | 0     | 0     | 0     | 0      | 0     |
|                  | b-a                         | -1    | 1     | -1         | -1    | -1      | 1     | 1      | 1     | 1     | 1     | 1      | 1     |
|                  | c-a                         | 1     | 1     | 1          | -1    | -1      | -1    | -1     | 1     | 1     | 1     | 1      | 1     |
|                  | d-a                         | -1    | -1    | 1          | 1     | 1       | 1     | 1      | 1     | 1     | 1     | 1      | 1     |
|                  | e-a                         | 1     | 1     | -1         | 1     | 1       | 1     | -1     | 1     | 1     | -1    | -1     | 1     |
|                  | f-a                         | -1    | 1     | 1          | -1    | -1      | 1     | 1      | 1     | -1    | 1     | 1      | 1     |
|                  | c-b                         | 1     | 1     | 1          | -1    | -1      | -1    | -1     | 1     | 1     | 1     | 1      | 1     |
|                  | d-b                         | -1    | -1    | 1          | 1     | 1       | 1     | 1      | -1    | 1     | 1     | 1      | 1     |
|                  | e-b                         | 1     | 1     | -1         | 1     | 1       | -1    | -1     | 1     | -1    | -1    | -1     | 1     |
|                  | f-b                         | 1     | 1     | 1          | -1    | -1      | 1     | 1      | -1    | -1    | 1     | 1      | 1     |
|                  | d-c                         | -1    | -1    | 1          | 1     | 1       | 1     | 1      | -1    | 1     | 1     | 1      | 1     |
|                  | e-c                         | 1     | -1    | -1         | 1     | 1       | 1     | -1     | 1     | -1    | -1    | -1     | -1    |
|                  | t-c                         | -1    | 1     | 1          | -1    | 1       | 1     | 1      | -1    | -1    | 1     | 1      | -1    |
|                  | e-d                         | 1     | 1     | -1         | 0     | 1       | -1    | -1     | 1     | -1    | -1    | -1     | -1    |
|                  | 1-0                         | 1     | 1     | -1         | -1    | -1      | -1    | 1      | 1     | -1    | 1     | 1      | -1    |
|                  | I-e                         | -1    | 7     | l          | -1    | -1      |       | ۱<br>د | -1    | -1    | 7     | 7      | 7     |
|                  | O <sub>k</sub>              | 1     | 1     | 3          | -2    | ļ       | 5     | 3      | 5     | -1    | 1     | 1      | 1     |
| σ                | 5 <sup>2</sup> s=           | 28.33 | 28.33 | 28.33      | 27.33 | 28.33   | 28.33 | 28.33  | 28.33 | 28.33 | 28.33 | 28.33  | 28.33 |
| Z <sub>k</sub> = | $S_k/\sigma_S$              | 0.19  | 1.32  | 0.56       | -0.38 | 0.19    | 0.94  | 0.56   | 0.94  | -0.19 | 1.32  | 1.32   | 1.32  |
|                  | Z <sup>2</sup> <sub>k</sub> | 0.04  | 1.73  | 0.32       | 0.15  | 0.04    | 0.88  | 0.32   | 0.88  | 0.04  | 1.73  | 1.73   | 1.73  |
|                  | Σ7                          | 8.07  |       | Tie Extent | t.    | t.      | t.    | t.     | t.    |       |       | Σn     | 72    |
|                  | $\Sigma Z_k^2$              | 0.07  |       |            | 70    | *2<br>4 | •3    | •4     |       |       |       | <br>72 | 12    |
| _                | ∠∠ <sub>k</sub> =           | 9.57  |       | Count      | 70    | 1       | U     | U      | U     |       |       | 23k    | 43    |
| Z                | L-bar=ΣZ <sub>k</sub> /K=   | 0.67  |       |            |       |         |       |        |       |       |       |        |       |

 $\chi^2_h = \Sigma Z^2_k - K(Z-bar)^2 =$ @α=5% χ<sup>2</sup><sub>(K-1)</sub>= Test for station homogeneity 4.14 19.68  $\chi^2_h < \chi^2_{(K-1)}$ р 0.966 ACCEPT  $\Sigma VAR(S_k)$  $\mathbf{Z}_{\text{calc}}$ 2.28 @α=2.5% **Z**= 1.96 H<sub>0</sub> (No trend) REJECT 339.00 0.989 H<sub>A</sub> (± trend) ACCEPT р



Site #54

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Row label | Water Year                | Oct   | Nov   | Dec        | Jan   | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug          | Sep   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|-------|-------|------------|-------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | а         | WY2008                    | 9.7   | 9.3   | 7.1        | 5.7   | 7.0            | 11.0           | 15.0  | 8.4            | 3.3   | 3.4   | 7.3          | 11.3  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b         | WY2009                    | 14.6  | 7.9   | 11.8       | 7.3   | 7.3            | 5.6            | 12.8  | 7.9            | 3.6   | 2.7   | 10.0         | 11.4  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с         | WY2010                    | 6.2   | 9.2   | 8.4        | 5.9   | 7.9            | 8.5            | 10.6  | 4.1            | 3.6   | 4.0   | 3.6          | 4.3   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d         | WY2011                    | 7.5   | 11.8  | 6.9        | 6.5   | 9.3            | 6.5            | 10.5  | 3.8            | 3.7   | 3.7   | 4.2          | 7.0   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | е         | WY2012                    | 7.3   | 10.3  | 13.2       | 10.2  | 9.0            | 7.8            | 11.1  | 9.9            | 4.1   | 4.5   | 4.7          | 5.9   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f         | WY2013                    | 6.0   | 6.7   | 5.9        | 8.5   | 7.0            | 7.5            | 7.9   | 9.2            | 3.1   | 3.8   | 5.9          | 4.9   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | n                         | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | t <sub>1</sub>            | 6     | 6     | 6          | 6     | 6              | 6              | 6     | 6              | 6     | 6     | 6            | 6     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | t <sub>2</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | t <sub>3</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | t4                        | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | t <sub>5</sub>            | 0     | 0     | 0          | 0     | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | b-a                       | 1     | -1    | 1          | 1     | 1              | -1             | -1    | -1             | 1     | -1    | 1            | 1     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | c-a                       | -1    | -1    | 1          | 1     | 1              | -1             | -1    | -1             | 1     | 1     | -1           | -1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | d-a                       | -1    | 1     | -1         | 1     | 1              | -1             | -1    | -1             | 1     | 1     | -1           | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e-a                       | -1    | 1     | 1          | 1     | 1              | -1             | -1    | 1              | 1     | 1     | -1           | -1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | f-a                       | -1    | -1    | -1         | 1     | -1             | -1             | -1    | 1              | -1    | 1     | -1           | -1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | c-b                       | -1    | 1     | -1         | -1    | 1              | 1              | -1    | -1             | -1    | 1     | -1           | -1    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | d-b                       | -1    | 1     | -1         | -1    | 1              | 1              | -1    | -1             | 1     | 1     | -1           | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e-b                       | -1    | 1     | 1          | 1     | 1              | 1              | -1    | 1              | 1     | 1     | -1           | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-b                       | -1    | -1    | -1         | 1     | -1             | 1              | -1    | 1              | -1    | 1     | -1           | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | d-c                       | 1     | 1     | -1         | 1     | 1              | -1             | -1    | -1             | 1     | -1    | 1            | 1     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e-c                       | 1     | 1     | 1          | 1     | 1              | -1             | 1     | 1              | 1     | 1     | 1            | 1     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-c                       | -1    | -1    | -1         | 1     | -1             | -1             | -1    | 1              | -1    | -1    | 1            | 1     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e-d                       | -1    | -1    | 1          | 1     | -1             | 1              | 1     | 1              | 1     | 1     | 1            | -1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | f-d                       | -1    | -1    | -1         | 1     | -1             | 1              | -1    | 1              | -1    | 1     | 1            | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :         | f-e                       | -1    | -1    | -1         | -1    | -1             | -1             | -1    | -1             | -1    | -1    | 1            | -1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | S <sub>k</sub>            | -9    | -1    | -3         | 9     | 3              | -3             | -11   | 1              | 3     | 7     | -1           | -7    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ         | 2 <sub>s=</sub>           | 28.33 | 28.33 | 28.33      | 28.33 | 28.33          | 28.33          | 28.33 | 28.33          | 28.33 | 28.33 | 28.33        | 28.33 |
| $\frac{\Sigma Z_{k}}{Z_{k}^{2}} = \frac{-2.25}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{-2.25}{14.82} \qquad \boxed{ Tie Extent t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline \Sigma Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline Z_{k} = \frac{14.82}{14.82} \qquad \boxed{ Tie Extent t_{1} t_{2} t_{3} t_{4} t_{5} } \\ \hline Z_{k} = 14$ | 7. =      | S./m                      | -1 69 | -0.19 | -0.56      | 1 69  | 0.56           | -0.56          | -2 07 | 0 19           | 0.56  | 1.32  | -0 19        | -1.32 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _к –      | -2<br>-2                  | 1.00  | 0.15  | 0.00       | 1.00  | 0.00           | 0.00           | 2.07  | 0.10           | 0.00  | 1.02  | 0.10         | 1.02  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ∠- <sub>k</sub>           | 2.86  | 0.04  | 0.32       | 2.86  | 0.32           | 0.32           | 4.27  | 0.04           | 0.32  | 1.73  | 0.04         | 1.73  |
| $\Sigma Z_{k}^{2} = 14.82$ Count 72 0 0 0 0 $\Sigma S_{k}$ -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | $\Sigma Z_k =$            | -2.25 |       | Tie Extent | t,    | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 72    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | $\Sigma Z_{k}^{2} =$      | 14.82 |       | Count      | 72    | 0              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | -12   |
| $Z$ -bar= $\Sigma Z_{\nu}/K$ = -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7         | 2-bar=ΣΖ <sub>ν</sub> /K= | -0 19 |       |            |       |                |                |       |                |       |       |              |       |

| $\chi^2_h = \Sigma Z^2_k - I$ | K(Z-bar) <sup>2</sup> = | 14.40 | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homo             | geneity |
|-------------------------------|-------------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                               | р                       | 0.212 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT  |
| $\Sigma VAR(S_k)$             | $\mathbf{Z}_{calc}$     | -0.60 | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT  |
| 340.00                        | р                       | 0.275 |                                         |       | H <sub>A</sub> (± trend)          | REJECT  |



| Seasonal-Kendall Slope Confidence Intervals |       |       |       |  |  |  |  |  |  |  |  |
|---------------------------------------------|-------|-------|-------|--|--|--|--|--|--|--|--|
|                                             | Lower | Sen's | Upper |  |  |  |  |  |  |  |  |
| α                                           | Limit | Slope | Limit |  |  |  |  |  |  |  |  |
| 0.010                                       | -0.57 |       | 0.25  |  |  |  |  |  |  |  |  |
| 0.050                                       | -0.37 | -0.00 | 0.14  |  |  |  |  |  |  |  |  |
| 0.100                                       | -0.32 | -0.09 | 0.11  |  |  |  |  |  |  |  |  |
| 0.200                                       | -0.30 |       | 0.07  |  |  |  |  |  |  |  |  |
|                                             |       |       |       |  |  |  |  |  |  |  |  |



Site 6 vs. Site 54 – Conductivity Field

Site 6 vs. Site 54 – pH Field



ns

Site 6 vs. Site 54 – Alkalinity Total



Site 6 vs. Site 54 – Sulfate Total







| Wil            | coxon-sigr                       | ned-ranks t | test        |                                                 |       |
|----------------|----------------------------------|-------------|-------------|-------------------------------------------------|-------|
|                | Exact                            | Form        |             |                                                 |       |
| Variable:      | Specific                         | c Conducta  | ance, Field | (µS/cm)                                         |       |
|                | X                                | Y           |             |                                                 |       |
| Site           | #6                               | #54         | Differe     | ences                                           |       |
| Year           | WY2013                           | WY2013      | D           | D                                               | Rank  |
| Oct            | 112.0                            | 116.0       | -4.0        | 4.0                                             | -9.5  |
| Nov            | 139.0                            | 144.0       | -5.0        | 5.0                                             | -11.5 |
| Dec            | 159.0                            | 160.0       | -1.0        | 1.0                                             | -2.5  |
| Jan            | 101.0                            | 105.0       | -4.0        | 4.0                                             | -9.5  |
| Feb            | 151.0                            | 156.0       | -5.0        | 5.0                                             | -11.5 |
| Mar            | 182.0                            | 183.0       | -1.0        | 1.0                                             | -2.5  |
| Apr            | 169.0                            | 170.0       | -1.0        | 1.0                                             | -2.5  |
| May            | 97.0                             | 98.0        | -1.0        | 1.0                                             | -2.5  |
| Jun            | 76.0                             | 78.0        | -2.0        | 2.0                                             | -5.5  |
| Jul            | 120.0                            | 122.0       | -2.0        | 2.0                                             | -5.5  |
| Aug            | 146.0                            | 149.0       | -3.0        | 3.0                                             | -7.5  |
| Sep            | 122.0                            | 125.0       | -3.0        | 3.0                                             | -7.5  |
| Median         | 130.5                            | 134.5       | -2.5        | 2.5                                             |       |
|                | n                                | m           |             | N=                                              | 12    |
|                | 12                               | 12          |             | $\Sigma R=$                                     | -78   |
|                | α<br>5.0%<br><b>W'</b> α,n<br>17 |             |             | W <sup>+</sup> =<br><b>0</b><br>p-test<br>0.000 |       |
| H <sub>0</sub> | median [D]                       | =0          | REJECT      |                                                 |       |
| H <sub>1</sub> | median [D]                       | <0          | ACCEPT      |                                                 |       |

| Exact FormVariable:pH, Field, Standard UnitsXYSite#6#54YearWY2013WY2013Oct7.697.64Name7.740.05                   | s<br><b>D Ran</b> i<br>0.05 5 |   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|---|
| Variable: pH, Field, Standard Units   X Y   Site #6 #54 Difference   Year WY2013 WY2013 D   Oct 7.69 7.64 0.05 0 | s<br><b>D Ran</b><br>0.05 5   |   |
| X Y   Site #6 #54 Difference   Year WY2013 WY2013 D   Oct 7.69 7.64 0.05 0                                       | s<br><b>D Ran</b><br>0.05 5   |   |
| Site #6 #54 Difference   Year WY2013 WY2013 D   Oct 7.69 7.64 0.05 0   New 7.74 7.02 0.05 0                      | <b>D</b> Ran<br>0.05 5        |   |
| Oct 7.69 7.64 0.05 0   Name 7.74 7.62 0.05 0                                                                     | ).05 5                        | k |
| Nac. 7.74 7.00 0.00 0                                                                                            |                               |   |
| NOV (11 (38 1 0.33 0                                                                                             | ).33 9                        |   |
| Dec 7.82 7.53 0.29 0                                                                                             | 0.29 8                        |   |
| Jan 7.46 7.49 -0.03 0                                                                                            | ).03 -4                       |   |
| Feb 7.40 6.89 0.51 0                                                                                             | ).51 10                       |   |
| Mar 7.82 7.80 0.02 0                                                                                             | ).02 2.5                      |   |
| Apr 7.91 7.91 0.00                                                                                               |                               |   |
| May 7.73 7.75 -0.02 0                                                                                            | ).02 -2.5                     |   |
| Jun 7.58 7.50 0.08 0                                                                                             | 0.08 7                        |   |
| Jul 8.08 8.02 0.06 0                                                                                             | 0.06 6                        |   |
| Aug 7.97 7.95 0.02 0                                                                                             | 0.02 1                        |   |
| Sep 7.88 7.88 0.00                                                                                               |                               |   |
| Median 7.78 7.70 0.04 0                                                                                          | 0.06                          |   |
|                                                                                                                  | N 40                          |   |
| <u>n</u> m                                                                                                       | N= 10                         |   |
| 12 10                                                                                                            | ΣR= 42                        |   |
|                                                                                                                  |                               |   |
|                                                                                                                  | A / +                         |   |
| α ν                                                                                                              | /V · =                        |   |
| 95.0%                                                                                                            | 6.5                           |   |
| <b>VV</b> <sup>*</sup> α,n p·                                                                                    | -test                         |   |
| 43 0.                                                                                                            | .986                          |   |
|                                                                                                                  |                               |   |
|                                                                                                                  |                               |   |
| H <sub>1</sub> median [D]>0 ACCEPT                                                                               |                               |   |
|                                                                                                                  |                               |   |

| Wile           | coxon-signe   | ed-ranks t    | est         |              |          |
|----------------|---------------|---------------|-------------|--------------|----------|
|                | Exact F       | Form          |             |              |          |
| Variable:      | Total Alk     | k, (mg/l)     |             |              |          |
| 0:4-           | X             | Υ<br>μΓΛ      | D:#+-       |              |          |
| Site           | #b            | #54<br>WV2012 | Diffe       | rences       | Donk     |
| Tear           | 46.2          | VV 12013      |             |              | Rank     |
|                | 40.Z          | 40.4<br>56.2  | 0.0         | 0.8          | 2<br>10  |
|                | 04.Z          | 50.Z          | -2.0        | 2.0          | -10      |
| Dec            | 00.0<br>20.7  | 09.Z          | -2.9        | 2.9          | -12      |
| Jan<br>Tab     | 52.7          | 54.0<br>54.5  | -1.9        | 1.9          | -9<br>55 |
| reu<br>Mar     | 5U.3          |               | -1.Z<br>1 0 | 1.Z          | -0.0     |
| Apr            | 09.Z          | 01.0<br>52.0  | -1.0<br>1.0 | 1.0          | -0<br>2  |
| Apr            | 04.U          | 53.U<br>24.0  | 1.0         | 1.0          | 3        |
| iviay          | 33.0<br>20.6  | 34.9          | -1.1        | 1.1          | -4       |
| Jun            | 29.6          | 30.1          | -0.5        | 0.5          |          |
| Jui            | 42.9          | 44.1<br>47.6  | -1.Z        | 1.2          | -5.5     |
| Sen            | 49.9          | 47.0<br>45.8  | -1.6        | 2.3          | -7       |
| Median         | 48.1          | 46.7          | -1.2        | 1.0          | 1        |
| Wedian         |               | +0.7          | -1.2        | 1.4          |          |
|                | n             | m             |             | N=           | 12       |
| -              | 12            | 12            |             | $\Sigma R =$ | -46      |
|                | 12            | 12            |             | 21.          | 40       |
|                |               |               |             |              |          |
| ]              | α             |               |             | W+=          | ]        |
|                | 95.0%         |               |             | 16           |          |
|                | <b>W'</b> α n |               |             | n-test       |          |
|                | 59            |               |             | 0.039        |          |
| L              | 00            |               |             | 0.000        |          |
| H <sub>0</sub> | median [D]=   | 0             | ACCEPT      |              |          |
| -              |               | •             |             |              |          |

| Wil            | coxon-sigr     | ned-ranks     | test   |        |       |
|----------------|----------------|---------------|--------|--------|-------|
| .,             | Exact          | Form          | 41)    |        |       |
| Variable:      | Suitate,       | , i otal (mg  | /1)    |        |       |
| Sito           | <b>X</b><br>#6 | ₩51           | Diffor | ances  |       |
| Year           | #0<br>WY2013   | #34<br>WY2013 | Diller |        | Rank  |
|                | 11.5           | 11.6          | -0.1   | 0 1    | -1.5  |
| Nov            | 18.7           | 19.3          | -0.6   | 0.6    | -9    |
| Dec            | 22.3           | 22.7          | -0.4   | 0.4    | -6    |
| Jan            | 9.9            | 12.3          | -2.4   | 2.4    | -11.5 |
| Feb            | 17.4           | 17.8          | -0.4   | 0.4    | -8    |
| Mar            | 26.4           | 26.7          | -0.3   | 0.3    | -4    |
| Apr            | 23.5           | 25.9          | -2.4   | 2.4    | -11.5 |
| May            | 9.0            | 9.4           | -0.4   | 0.4    | -6    |
| Jun            | 6.9            | 7.0           | -0.1   | 0.1    | -3    |
| Jul            | 14.5           | 14.1          | 0.4    | 0.4    | 6     |
| Aug            | 18.0           | 19.1          | -1.1   | 1.1    | -10   |
| Sep            | 12.3           | 12.4          | -0.1   | 0.1    | -1.5  |
| Median         | 16.0           | 16.0          | -0.4   | 0.4    |       |
|                | n              | m             |        | N.—    | 10    |
|                | 10             | 10            |        |        | 12    |
|                | 12             | 12            |        | 2K=    | -66   |
|                |                |               |        |        |       |
|                | α              |               |        | W+=    | 1     |
|                | 5.0%           |               |        | 6      |       |
|                | <b>W'</b> α,n  |               |        | p-test |       |
|                | 17             |               |        | 0.003  |       |
|                |                | 1             | I      | 0.000  | J     |
| H <sub>0</sub> | median [D]     | =0            | REJECT |        | ]     |
| І н.           | median [D]     | <0            | ACCEPT |        |       |

| Wil            | coxon-signe   | ed-ranks t   | est         |        |       |
|----------------|---------------|--------------|-------------|--------|-------|
|                | Exact I       | Form         | <i>4</i> 13 |        |       |
| Variable:      | Zinc, Dis     | solved (u    | g/l)        |        |       |
| 0.1            | X             | Y            | D://        |        |       |
| Site           | #6            | #54          | Differ      | rences | Daula |
| Year           | VVY2013       | VVY2013      | <b>D</b>    |        | Rank  |
| Oct            | 6.48          | 5.99         | 0.49        | 0.49   | 5     |
| NOV            | 7.38          | 6.65<br>5.00 | 0.73        | 0.73   |       |
| Dec            | 6.36          | 5.86         | 0.50        | 0.50   | 6     |
| Jan            | 8.97          | 8.50         | 0.47        | 0.47   | 4     |
| Feb            | 7.65          | 6.95         | 0.70        | 0.70   | 9     |
| Mar            | 8.66          | 7.47         | 1.19        | 1.19   | 12    |
| Apr            | 8.95          | 7.92         | 1.03        | 1.03   | 11    |
| May            | 9.87          | 9.24         | 0.63        | 0.63   | 8     |
| Jun            | 2.55          | 3.08         | -0.53       | 0.53   | -7    |
| Jul            | 3.63          | 3.79         | -0.16       | 0.16   | -1    |
| Aug            | 6.09          | 5.92         | 0.17        | 0.17   | 2     |
| Sep            | 5.21          | 4.94         | 0.27        | 0.27   | 3     |
| Median         | 6.93          | 6.32         | 0.50        | 0.52   |       |
|                | n             | m            |             | N=     | 12    |
|                | 12            | 12           |             | ΣR=    | 62    |
|                |               |              |             |        | 0-    |
|                |               |              |             |        |       |
|                | α             |              |             | VV *=  |       |
|                | 5.0%          |              |             | 70     |       |
|                | <b>W'</b> α,n |              |             | p-test |       |
|                | 17            |              |             | 0.995  |       |
|                |               |              |             |        |       |
|                |               | 0            | AOOFDT      |        |       |
| H <sub>0</sub> | median [D]=   | :0           | ACCEPT      |        |       |

## **INTERPRETIVE REPORT SITE 62**

Sampling at this site was initiated during the spring of the water year 2013. Site 62 is located approximately 1,000 feet downstream from Site 54, and therefore is downstream of Site 23 and Inactive Site D. Sampling is on a monthly basis in conjunction with the other routine monthly sampling along Greens Creek.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past year is included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|
| No outliers have been identified by HGCMC for the period of October 2012 through September 2013. |           |       |           |       |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

| Sample Date | Parameter                   | Value               | Lower           | Upper        | Hardness        |
|-------------|-----------------------------|---------------------|-----------------|--------------|-----------------|
| No exceedan | ces have been identified by | y HGCMC for the per | riod of October | 2012 through | September 2013. |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Because of the limited amount of data, visual trend analysis and statistical analysis of the data was not performed.

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           |          |          |          |          |          | 0.1      | 1.4      | 1.7      | 5.1      | 9.8      | 10.3     | 8.3      | 5.1      |
| Conductivity-Field(µmho)  |          |          |          |          |          | 198      | 181      | 105      | 78       | 127      | 154      | 130      | 130.0    |
| Conductivity-Lab (µmho)   |          |          |          |          |          | 193      | 175      | 100      | 73       | 121      | 148      | 94       | 121      |
| pH Lab (standard units)   |          |          |          |          |          | 7.74     | 7.61     | 7.58     | 7.83     | 7.94     | 7.53     | 7.82     | 7.74     |
| pH Field (standard units) |          |          |          |          |          | 8.23     | 8.06     | 7.5      | 7.63     | 8        | 7.89     | 7.83     | 7.89     |
| Total Alkalinity (mg/L)   |          |          |          |          |          | 67.8     | 62.5     | 36.9     | 30.9     | 46.3     | 54.1     | 47.8     | 47.8     |
| Total Sulfate (mg/L)      |          |          |          |          |          | 27.3     | 24.8     | 9.7      | 6.6      | 14.5     | 18.9     | 12.7     | 14.5     |
| Hardness (mg/L)           |          |          |          |          |          | 90.6     | 80.5     | 42.7     | 34.8     | 58.3     | 71.1     | 59.2     | 59.2     |
| Dissolved As (ug/L)       |          |          |          |          |          | 0.163    | 0.147    | 0.183    | 0.197    | 0.423    | 0.225    | 0.227    | 0.197    |
| Dissolved Ba (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Cd (ug/L)       |          |          |          |          |          | 0.052    | 0.0598   | 0.0609   | 0.0308   | 0.0841   | 0.049    | 0.0446   | 0.0520   |
| Dissolved Cr (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Cu (ug/L)       |          |          |          |          |          | 0.483    | 0.416    | 0.639    | 0.251    | 0.656    | 0.368    | 0.574    | 0.483    |
| Dissolved Pb (ug/L)       |          |          |          |          |          | 0.0064   | 0.0186   | 0.0257   | 0.01     | 0.0338   | 0.0133   | 0.0572   | 0.0186   |
| Dissolved Ni (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Ag (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Zn (ug/L)       |          |          |          |          |          | 7.46     | 7.76     | 8.66     | 2.38     | 7.1      | 6.08     | 4.68     | 7.10     |
| Dissolved Se (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Hg (ug/L)       |          |          |          |          |          | 0.00048  | 0.000699 | 0.00153  | 0.000573 | 0.00121  | 0.00064  | 0.00114  | 0.000699 |

#### Site 062FMS - 'Greens Creek Below Site 54'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
|          |             |             |               |          |           |                            |
| 62       | 3/18/2013   | 12:00 AM    | Pb diss, µg/l | 0.00642  | J         | Below Quantitative Range   |
|          |             |             | Hg diss, µg/l | 0.00048  | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 62       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.58     | J         | Hold Time Violation        |
|          |             |             |               |          |           |                            |
| 62       | 6/18/2013   | 12:00 AM    | Hg diss, µg/l | 0.000573 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 62       | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 14.5     | J         | Sample Receipt Temperature |
|          |             |             |               |          |           |                            |
| 62       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 148      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 54.1     | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 18.9     | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.01     | U         | Field Blank Contamination  |
|          |             |             | Hg diss, µg/l | 0.00064  | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 62       | 9/9/2013    | 12:00 AM    | SO4 Tot, mg/l | 12.7     | J         | Sample receipt temperature |

| Qualifier | D escription                                       |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | uccw.Not.Detected.Abowe.Quantitation.Limit         |
| UJ        | Not Detected Above Approximate Quantitation Limit  |
|           |                                                    |



Site 62 – Water Temperature



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis







Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis




Site 62 – Hardness



Site 62 – Arsenic Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 62 – Copper Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 62 – Zinc Dissolved



Site 62 – Mercury Dissolved

# **INTERPRETIVE REPORT SITE 61**

Sampling at this site was initiated during the spring of water year 2013. This site was added to the FWMP at the request of the state and federal regulators. Site 61 is located in a floodplain of Greens Creek, approximately 250 feet down gradient of D Pond. The sampling location is at just past the confluence of two drainages, one of which originates from the north and the other from the east. Sampling began in May 2013 and will occur on quarterly basis.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past year is included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date      | Parameter             | Value             | Qualifier     | Notes                        |  |
|------------------|-----------------------|-------------------|---------------|------------------------------|--|
| No outliers have | been identified by HG | CMC for the peri- | od of October | 2012 through September 2013. |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Four results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|             |                    |           | Lin   | nits  |          |
|-------------|--------------------|-----------|-------|-------|----------|
| Sample Date | Parameter          | Value     | Lower | Upper | Hardness |
| 6-May-13    | Cadmium Dissolved  | 2.79 µg/L |       | 0.52  | 291 mg/L |
| 6-May-13    | Mercury Dissolved  | 0.2 µg/L  |       | 0.012 |          |
| 6-May-13    | Selenium Dissolved | 20.5 µg/L |       | 4.60  |          |
| 6-May-13    | Zinc Dissolved     | 393 μg/L  |       | 292   | 291 mg/L |

Though these four exceedances were greatly above the upper limit of the AWQS, the down gradient monitoring point Site 62 had no exceedances. Site 61 has been sampled on a quarterly basis since May 2013, and the other sampling was not in exceedance for these analytes. After a

review of this data HGCMC will increase the sampling frequency to monthly, to determine if this is a seasonal trend or an intermittent pulse.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Because of the limited amount of data, visual trend analysis and statistical analysis of the data was not performed.

|                           |          |          | 310      |          | 13 - Gre |          | EK FIOU  | upiain   |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          |          |          |          |          |          |          | 4.6      |          |          | 6.5      |          | 5.6      |
| Conductivity-Field(µmho)  |          |          |          |          |          |          |          | 658      |          |          | 353      |          | 505.5    |
| Conductivity-Lab (µmho)   |          |          |          |          |          |          |          | 640      |          |          | 334      |          | 487      |
| pH Lab (standard units)   |          |          |          |          |          |          |          | 7.47     |          |          | 7.67     |          | 7.57     |
| pH Field (standard units) |          |          |          |          |          |          |          | 7.33     |          |          | 7.76     |          | 7.55     |
| Total Alkalinity (mg/L)   |          |          |          |          |          |          |          | 109      |          |          | 122      |          | 115.5    |
| Total Sulfate (mg/L)      |          |          |          |          |          |          |          | 208.7    |          |          | 43.4     |          | 126.1    |
| Hardness (mg/L)           |          |          |          |          |          |          |          | 291      |          |          | 168      |          | 229.5    |
| Dissolved As (ug/L)       |          |          |          |          |          |          |          | 0.183    |          |          | 0.239    |          | 0.211    |
| Dissolved Ba (ug/L)       |          |          |          |          |          |          |          | 58.5     |          |          |          |          | 58.5     |
| Dissolved Cd (ug/L)       |          |          |          |          |          |          |          | 2.79     |          |          | 0.231    |          | 1.5105   |
| Dissolved Cr (ug/L)       |          |          |          |          |          |          |          | 0.476    |          |          |          |          | 0.476    |
| Dissolved Cu (ug/L)       |          |          |          |          |          |          |          | 3.21     |          |          | 0.17     |          | 1.690    |
| Dissolved Pb (ug/L)       |          |          |          |          |          |          |          | 1.46     |          |          | 0.0217   |          | 0.7409   |
| Dissolved Ni (ug/L)       |          |          |          |          |          |          |          | 9.4      |          |          |          |          | 9.400    |
| Dissolved Ag (ug/L)       |          |          |          |          |          |          |          | 9.03     |          |          |          |          | 9.030    |
| Dissolved Zn (ug/L)       |          |          |          |          |          |          |          | 393      |          |          | 45.9     |          | 219.45   |
| Dissolved Se (ug/L)       |          |          |          |          |          |          |          | 20.5     |          |          |          |          | 20.500   |
| Dissolved Hg (ug/L)       |          |          |          |          |          |          |          | 0.2      |          |          | 0.000231 |          | 0.100116 |

### Site 061FMS - 'Greens Creek Floodplain'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
| 61       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.47     | J         | Hold Time Violation        |
|          |             |             | 1             |          |           |                            |
| 61       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 334      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 122      | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 43.4     | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.02     | U         | Field Blank Contamination  |
|          |             |             | Hg diss, µg/l | 0.000231 | U         | Field Blank Contamination  |

| Qualifier          | Description                                                                                                                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J<br>NJ<br>R<br>UJ | PositivelyIdentified - Approximate concentration<br>Presumptive Evidence For Tentative Identification<br>Tentatively Identified - Approximate Concentration<br>Rejected - Cannot be Verified<br>HGCMC 2013 Water Vear FWMP Annual Report<br>Not Detected Above Approximate Quantitation Limit |



Site 61 – Water Temperature



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 61 – Conductivity Field











Site 61 – Hardness



Site 61 – Arsenic Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 61 – Cadmium Dissolved



Site 61 – Chromium Dissolved





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 61 – Nickel Dissolved



Site 61 – Silver Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 61 – Selenium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

# **INTERPRETIVE REPORT SITE 49**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date        | Parameter             | Value            | Qualifier    | Notes                           |
|--------------------|-----------------------|------------------|--------------|---------------------------------|
| No outliers have l | been identified by HG | CMC for the peri | od of Octobe | er 2007 through September 2013. |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|             |                             | Limits              |                |              |                 |  |
|-------------|-----------------------------|---------------------|----------------|--------------|-----------------|--|
| Sample Date | Parameter                   | Value               | Lower          | Upper        | Hardness        |  |
| No exceedan | ces have been identified by | y HGCMC for the per | iod of October | 2012 through | September 2013. |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There were no visually identifiable trends noted for the current water year.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The below table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013). For datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. There were no statistically significant trends detected during the current water year.

|                    | Mann-Ker | ndall test st | Sen's slope estimate |   |      |  |
|--------------------|----------|---------------|----------------------|---|------|--|
| Parameter          | n*       | <b>p</b> **   | Trend                | Q | Q(%) |  |
| Conductivity Field | 6        | 0.46          |                      |   |      |  |
| pH Field           | 6        | 0.08          |                      |   |      |  |
| Alkalinity, Total  | 6        | 0.03          |                      |   |      |  |
| Sulfate, Total     | 6        | 0.27          |                      |   |      |  |
| Zinc, Dissolved    | 6        | 0.43          |                      |   |      |  |

### Table of Summary Statistics for Trend Analysis

\* Number of Years \*\* Significance level



Figure 1. Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate from Site 49 Compared to the Shewhart-CUSUM Control Limits From Table 1

#### Table of Results for Water Year 2013

|                           |          |          |          |          |          | obbei r  |          | CCN      |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          | 0.9      |          |          | 1.1      |          |          | 2.1      |          |          | 11.7     |          | 1.6      |
| Conductivity-Field(µmho)  |          | 168      |          |          | 170      |          |          | 120      |          |          | 188      |          | 169.0    |
| Conductivity-Lab (µmho)   |          | 165      |          |          | 145      |          |          | 118      |          |          | 180      |          | 155      |
| pH Lab (standard units)   |          | 7.92     |          |          | 7.75     |          |          | 7.86     |          |          | 7.93     |          | 7.89     |
| pH Field (standard units) |          | 7.99     |          |          | 7.88     |          |          | 7.93     |          |          | 8.1      |          | 7.96     |
| Total Alkalinity (mg/L)   |          | 74.9     |          |          | 64.8     |          |          | 48       |          |          | 73.5     |          | 69.2     |
| Total Sulfate (mg/L)      |          | 14.3     |          |          | 11.7     |          |          | 7.3      |          |          | 16.1     |          | 13.0     |
| Hardness (mg/L)           |          | 78.8     |          |          | 77.9     |          |          | 52       |          |          | 86.1     |          | 78.4     |
| Dissolved As (ug/L)       |          | 0.179    |          |          | 0.156    |          |          | 0.148    |          |          | 0.222    |          | 0.168    |
| Dissolved Ba (ug/L)       |          | 12       |          |          | 10.8     |          |          |          |          |          |          |          | 11.4     |
| Dissolved Cd (ug/L)       |          | 0.0323   |          |          | 0.0265   |          |          | 0.0224   |          |          | 0.0315   |          | 0.0290   |
| Dissolved Cr (ug/L)       |          | 0.272    |          |          | 0.579    |          |          |          |          |          |          |          | 0.426    |
| Dissolved Cu (ug/L)       |          | 0.437    |          |          | 0.451    |          |          | 0.504    |          |          | 0.565    |          | 0.478    |
| Dissolved Pb (ug/L)       |          | 0.0201   |          |          | 0.0015   |          |          | 0.0088   |          |          | 0.0088   |          | 0.0088   |
| Dissolved Ni (ug/L)       |          | 1.19     |          |          | 1.15     |          |          |          |          |          |          |          | 1.170    |
| Dissolved Ag (ug/L)       |          | 0.002    |          |          | 0.002    |          |          |          |          |          |          |          | 0.002    |
| Dissolved Zn (ug/L)       |          | 2.19     |          |          | 2.05     |          |          | 2.79     |          |          | 9.18     |          | 2.49     |
| Dissolved Se (ug/L)       |          | 1.4      |          |          | 0.663    |          |          |          |          |          |          |          | 1.032    |
| Dissolved Hg (ug/L)       |          | 0.00123  |          |          | 0.00146  |          |          | 0.00205  |          |          | 0.00105  |          | 0.001345 |

#### Site 049FMS - 'Upper Bruin Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|---------|-----------|----------------------------|
|          |             |             |               |         |           |                            |
| 49       | 11/13/2012  | 12:00 AM    | pH Lab, su    | 7.92    | J         | Hold Time Violation        |
|          |             |             | Zn diss, µg/l | 2.19    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 49       | 5/6/2013    | 12:00 AM    | Pb diss, µg/l | 0.00884 | J         | Below Quantitative Range   |
|          |             |             | pH Lab, su    | 7.86    | J         | Hold Time Violation        |
|          |             | n.          |               |         |           |                            |
| 49       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 180     | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 73.5    | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 16.1    | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.00882 | U         | Field Blank Contamination  |

| Qualifier          | Description                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J<br>NJ<br>R<br>UJ | PositivelyIdentified - Approximate concentration<br>Presumptive Evidence For Tentative Identification<br>TentativelyIdentified - Approximate Concentration<br>Rejected - Cannot be Verified<br>HGCMC 2013 Water Vear WMP Annuar Report<br>Not Detected Above Approximate Guantitation Limit |






Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Site 49 – Arsenic Dissolved



Site 49 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 49 – Selenium Dissolved



Site 49 – Mercury Dissolved

| Site             | #49                         |                          |       | Seasonal   | Kendall | analysis               | for Spec | cific Conc | luctance, Fi                | ield (µS/ | cm)    |        |       |
|------------------|-----------------------------|--------------------------|-------|------------|---------|------------------------|----------|------------|-----------------------------|-----------|--------|--------|-------|
| Row label        | Water Year                  | Oct                      | Nov   | Dec        | Jan     | Feb                    | Mar      | Apr        | May                         | Jun       | Jul    | Aug    | Sep   |
| а                | WY2008                      | 130.1                    | 155.4 | 183.8      | 193.7   | 196                    | 191.8    | 168.1      | 124.3                       | 91.7      | 112.8  | 119    | 112   |
| b                | WY2009                      |                          | 160.1 | 134.5      | 170.8   | 165.7                  | 168.5    | 193.5      | 110.8                       | 87.8      | 128.3  | 116.9  | 92    |
| C                | WY2010                      | 153.9                    | 113.2 | 175.8      |         | 179.1                  |          |            | 121.6                       |           |        | 147.4  |       |
| d                | WY2011                      |                          | 108.5 |            |         | 171                    |          |            | 114.3                       |           |        | 153    |       |
| e                | WY2012                      |                          | 141   |            |         | 150                    |          |            | 145                         |           |        | 130    |       |
| 1                | n                           | 2                        | 6     | 3          | 2       | 6                      | 2        | 2          | 6                           | 2         | 2      | 6      | 2     |
|                  |                             | 0                        | 6     | 2          | 2       | 6                      | 0        | 0          | 6                           | 2         | 2      | 6      |       |
|                  | t <sub>a</sub>              | 2                        | 0     | 0          | 2       | 0                      | 2        | 2          | 0                           | 2         | 2      | 0      | 2     |
|                  | t <sub>3</sub>              | 0<br>0                   | 0     | 0          | Ő       | 0                      | 0        | 0<br>0     | 0<br>0                      | Õ         | 0      | ů<br>0 | 0     |
|                  | t4                          | 0                        | 0     | 0          | 0       | 0                      | 0        | 0          | 0                           | 0         | 0      | 0      | 0     |
|                  | t₅                          | 0                        | 0     | 0          | 0       | 0                      | 0        | 0          | 0                           | 0         | 0      | 0      | 0     |
|                  | b-a                         |                          | 1     | -1         | -1      | -1                     | -1       | 1          | -1                          | -1        | 1      | -1     | -1    |
|                  | c-a                         | 1                        | -1    | -1         |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | d-a                         |                          | -1    |            |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | e-a                         |                          | -1    |            |         | -1                     |          |            | 1                           |           |        | 1      |       |
|                  | t-a                         |                          | 1     | 1          |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | с-b<br>d-b                  |                          | -1    | I          |         | 1                      |          |            | 1                           |           |        | 1      |       |
|                  | e-b                         |                          | -1    |            |         | -1                     |          |            | 1                           |           |        | 1      |       |
|                  | f-b                         |                          | 1     |            |         | 1                      |          |            | 1                           |           |        | 1      |       |
|                  | d-c                         |                          | -1    |            |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | e-c                         |                          | 1     |            |         | -1                     |          |            | 1                           |           |        | -1     |       |
|                  | f-c                         |                          | 1     |            |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | e-d                         |                          | 1     |            |         | -1                     |          |            | 1                           |           |        | -1     |       |
|                  | f-e                         |                          | 1     |            |         | -1                     |          |            | -1                          |           |        | 1      |       |
|                  | S <sub>k</sub>              | 1                        | 1     | -1         | -1      | -7                     | -1       | 1          | 1                           | -1        | 1      | 9      | -1    |
| o                | <sup>2</sup> s=             | 1.00                     | 28.33 | 3.67       | 1.00    | 28.33                  | 1.00     | 1.00       | 28.33                       | 1.00      | 1.00   | 28.33  | 1.00  |
| Z <sub>k</sub> = | $S_{\nu}/\sigma_{s}$        | 1.00                     | 0.19  | -0.52      | -1.00   | -1.32                  | -1.00    | 1.00       | 0.19                        | -1.00     | 1.00   | 1.69   | -1.00 |
|                  | Z <sup>2</sup> <sub>k</sub> | 1.00                     | 0.04  | 0.27       | 1.00    | 1.73                   | 1.00     | 1.00       | 0.04                        | 1.00      | 1.00   | 2.86   | 1.00  |
|                  | $\Sigma Z_{i} =$            | -0.77                    | Г     | Tie Extent | t.      | t <sub>2</sub>         | t.       | t.         | t.                          |           |        | Σn     | 41    |
|                  | $\Sigma Z_{k}^{2}$          | 11.03                    |       | Count      | /1      | 0                      | 0        | •4<br>∩    | ů.                          |           |        | ΣS.    | 2     |
| 2                | $Z-bar=\Sigma Z_k/K=$       | -0.06                    | L     | Count      | 41      | 0                      | 0        | 0          | 0                           |           |        | 20k    | 2     |
|                  |                             |                          |       |            |         |                        |          |            |                             |           |        |        |       |
|                  | $\chi^2_h = \Sigma Z^2_k$   | -K(Z-bar) <sup>2</sup> = | 11.88 |            | @α=5°   | $% \chi^{2}_{(K-1)} =$ | 19.68    | Te         | est for station ho          | mogeneity |        |        |       |
|                  |                             | р                        | 0.373 |            |         |                        |          |            | $\chi^2_h < \chi^2_{(K-1)}$ |           | ACCEPT |        |       |
|                  | $\Sigma VAR(S_k)$           | $\mathbf{Z}_{calc}$      | 0.09  |            | @α/2=   | 2.5% <b>Z</b> =        | 1.96     |            | H <sub>0</sub> (No tren     | nd)       | ACCEPT |        |       |
|                  | 124.00                      | р                        | 0.536 |            |         |                        |          |            | H <sub>A</sub> (± tren      | d)        | REJECT |        |       |



| Seasonal-Kendall Slope Confidence Intervals |       |       |       |  |  |  |  |  |  |  |  |
|---------------------------------------------|-------|-------|-------|--|--|--|--|--|--|--|--|
|                                             | Lower | Sen's | Upper |  |  |  |  |  |  |  |  |
| α                                           | Limit | Slope | Limit |  |  |  |  |  |  |  |  |
| 0.010                                       | -5.23 |       | 11.31 |  |  |  |  |  |  |  |  |
| 0.050                                       | -3.92 | 1 11  | 4.78  |  |  |  |  |  |  |  |  |
| 0.100                                       | -3.37 | 1.41  | 3.06  |  |  |  |  |  |  |  |  |
| 0.200                                       | -1.86 |       | 2.61  |  |  |  |  |  |  |  |  |

| Site | #4 |
|------|----|
| One  |    |

**#49** 

Seasonal Kendall analysis for pH, Field, Standard Units

| Row label | Water Year       | Oct   | Nov   | Dec        | Jan            | Feb            | Mar            | Apr   | May            | Jun   | Jul   | Aug          | Sep   |
|-----------|------------------|-------|-------|------------|----------------|----------------|----------------|-------|----------------|-------|-------|--------------|-------|
| а         | WY2008           | 8.0   | 7.6   | 7.8        | 8.0            | 7.6            |                | 8.0   | 8.0            | 7.9   | 7.8   | 7.2          | 7.6   |
| b         | WY2009           | 7.9   | 7.7   | 7.9        | 7.9            | 7.9            | 8.0            | 7.4   | 7.2            | 7.7   | 7.1   | 7.4          | 7.4   |
| С         | WY2010           | 8.0   | 7.4   | 7.7        |                | 7.6            |                |       | 7.8            |       |       | 7.4          |       |
| d         | WY2011           |       | 7.9   |            |                | 7.3            |                |       | 7.9            |       |       | 8.1          |       |
| е         | WY2012           |       | 8.0   |            |                | 7.8            |                |       | 8.0            |       |       | 8.0          |       |
| f         | WY2013           |       | 8.0   |            |                | 7.9            |                |       | 7.9            |       |       | 8.1          |       |
|           | n                | 3     | 6     | 3          | 2              | 6              | 1              | 2     | 6              | 2     | 2     | 6            | 2     |
|           | t,               | 3     | 6     | 3          | 2              | 6              | 1              | 2     | 2              | 2     | 2     | 6            | 2     |
|           | t <sub>2</sub>   | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 2              | 0     | 0     | 0            | 0     |
|           | t <sub>3</sub>   | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|           | t <sub>4</sub>   | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|           | t <sub>5</sub>   | 0     | 0     | 0          | 0              | 0              | 0              | 0     | 0              | 0     | 0     | 0            | 0     |
|           | b-a              | -1    | 1     | 1          | -1             | 1              |                | -1    | -1             | -1    | -1    | 1            | -1    |
|           | c-a              | -1    | -1    | -1         |                | -1             |                |       | -1             |       |       | 1            |       |
|           | d-a              |       | 1     |            |                | -1             |                |       | -1             |       |       | 1            |       |
|           | e-a              |       | 1     |            |                | 1              |                |       | 0              |       |       | 1            |       |
|           | f-a              |       | 1     |            |                | 1              |                |       | -1             |       |       | 1            |       |
|           | c-b              | 1     | -1    | -1         |                | -1             |                |       | 1              |       |       | 1            |       |
|           | d-b              |       | 1     |            |                | -1             |                |       | 1              |       |       | 1            |       |
|           | e-b              |       | 1     |            |                | -1             |                |       | 1              |       |       | 1            |       |
|           | f-b              |       | 1     |            |                | -1             |                |       | 1              |       |       | 1            |       |
|           | d-c              |       | 1     |            |                | -1             |                |       | 1              |       |       | 1            |       |
|           | e-c              |       | 1     |            |                | 1              |                |       | 1              |       |       | 1            |       |
|           | f-c              |       | 1     |            |                | 1              |                |       | 1              |       |       | 1            |       |
|           | e-d              |       | 1     |            |                | 1              |                |       | 1              |       |       | -1           |       |
|           | f-d              |       | 1     |            |                | 1              |                |       | 0              |       |       | -1           |       |
|           | f-e              |       | -1    |            |                | 1              |                |       | -1             |       |       | 1            |       |
|           | S <sub>k</sub>   | -1    | 9     | -1         | -1             | 1              | 0              | -1    | 3              | -1    | -1    | 11           | -1    |
| σ         | 2 <sub>s=</sub>  | 3.67  | 28.33 | 3.67       | 1.00           | 28.33          |                | 1.00  | 26.33          | 1.00  | 1.00  | 28.33        | 1.00  |
| 7. –      | S./m             | -0.52 | 1 69  | -0.52      | -1 00          | 0 19           |                | -1.00 | 0.58           | -1.00 | -1 00 | 2 07         | -1 00 |
|           | -2               | 0.02  | 1.00  | 0.02       | 1.00           | 0.13           |                | 1.00  | 0.00           | 1.00  | 1.00  | 2.07         | 1.00  |
|           | <u>/ k</u>       | 0.27  | 2.86  | 0.27       | 1.00           | 0.04           |                | 1.00  | 0.34           | 1.00  | 1.00  | 4.27         | 1.00  |
|           | $\Sigma Z_k =$   | -1.51 | Γ     | Tie Extent | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t4    | t <sub>5</sub> |       |       | Σn           | 41    |
|           | $\Sigma Z_k^2 =$ | 13.05 |       | Count      | 37             | 2              | 0              | 0     | 0              |       |       | $\Sigma S_k$ | 17    |

Z-bar= $\Sigma Z_k/K$ = -0.14

| $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 12.84$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 18.31 | Test for station homo             | geneity |
|----------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                                                    | р                   | 0.233 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT  |
| $\Sigma VAR(S_k)$                                  | $\mathbf{Z}_{calc}$ | 1.44  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT  |
| 123.67                                             | р                   | 0.925 |                                         |       | H <sub>A</sub> (± trend)          | REJECT  |



| Seasonal-Kendall Slope Confidence Intervals |                |                |                |  |  |  |  |  |  |  |  |
|---------------------------------------------|----------------|----------------|----------------|--|--|--|--|--|--|--|--|
| α                                           | Lower<br>Limit | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |  |  |
| 0.010                                       | -0.01          |                | 0.13           |  |  |  |  |  |  |  |  |
| 0.050                                       | 0.00           | 0.06           | 0.11<br>0.10   |  |  |  |  |  |  |  |  |
| 0.200                                       | 0.04           |                | 0.09           |  |  |  |  |  |  |  |  |

Site #49

Seasonal Kendall analysis for Total Alk, (mg/l)

| Row label        | Water Year                          | Oct                     | Nov      | Dec              | Jan        | Feb                    | Mar            | Apr      | May                                    | Jun        | Jul             | Aug            | Sep      |
|------------------|-------------------------------------|-------------------------|----------|------------------|------------|------------------------|----------------|----------|----------------------------------------|------------|-----------------|----------------|----------|
| 2                | WY2008                              | 50.8                    | 60.4     | 73.0             | 70.1       | 65.9                   | 66.0           | 68.6     | 19.6                                   | 35.7       | 45.7            | 50.3           | 11.1     |
| a                | 1000                                | 30.0                    | 00.4     | 10.0             | 73.1       | 00.5                   | 70.0           | 70.0     | 43.0                                   | 00.7       | 40.7            | 50.5           | 44.4     |
| b                | WY2009                              | 44.3                    | 49.8     | 48.4             | 61.7       | 62.5                   | 72.0           | 70.6     | 44.5                                   | 36.3       | 50.8            | 55.1           | 45.9     |
| С                | WY2010                              | 58.4                    | 61.6     | 71.5             |            | 56.9                   |                |          | 46.6                                   |            |                 | 61.1           |          |
| Ь                | WY2011                              |                         | 38.8     |                  |            | 69.5                   |                |          | 44 9                                   |            |                 | 63.2           |          |
| ŭ                | W/V2042                             |                         | 64.0     |                  |            | 60.0                   |                |          | 64.4                                   |            |                 | 40.0           |          |
| e                | WT2012                              |                         | 64.2     |                  |            | 63.5                   |                |          | 01.1                                   |            |                 | 49.8           |          |
| f                | WY2013                              |                         | 74.9     |                  |            | 64.8                   |                |          | 48.0                                   |            |                 | 73.5           |          |
|                  | n                                   | 3                       | 6        | 3                | 2          | 6                      | 2              | 2        | 6                                      | 2          | 2               | 6              | 2        |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | t <sub>1</sub>                      | 3                       | 6        | 3                | 2          | 6                      | 2              | 2        | 6                                      | 2          | 2               | 6              | 2        |
|                  | t,                                  | 0                       | 0        | 0                | 0          | 0                      | 0              | 0        | 0                                      | 0          | 0               | 0              | 0        |
|                  | +                                   | 0                       | 0        | 0                | 0          | 0                      | 0              | 0        | 0                                      | 0          | 0               | 0              | 0        |
|                  | <b>L</b> 3                          | 0                       | 0        | 0                | 0          | 0                      | 0              | 0        | 0                                      | 0          | 0               | 0              | 0        |
|                  | t <sub>4</sub>                      | 0                       | 0        | 0                | 0          | 0                      | 0              | 0        | 0                                      | 0          | 0               | 0              | 0        |
|                  | t <sub>5</sub>                      | 0                       | 0        | 0                | 0          | 0                      | 0              | 0        | 0                                      | 0          | 0               | 0              | 0        |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | b-a                                 | -1                      | -1       | -1               | -1         | -1                     | 1              | 1        | -1                                     | 1          | 1               | 1              | 1        |
|                  | c-a                                 | 1                       | 1        | -1               |            | -1                     |                |          | -1                                     |            |                 | 1              |          |
|                  | d-a                                 |                         | -1       |                  |            | 1                      |                |          | -1                                     |            |                 | 1              |          |
|                  | 0.0                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | 1              |          |
|                  | e-a                                 |                         |          |                  |            | -1                     |                |          |                                        |            |                 | -1             |          |
|                  | t-a                                 |                         | 1        |                  |            | -1                     |                |          | -1                                     |            |                 | 1              |          |
|                  | c-b                                 | 1                       | 1        | 1                |            | -1                     |                |          | 1                                      |            |                 | 1              |          |
|                  | d-b                                 |                         | _1       |                  |            | 1                      |                |          | 1                                      |            |                 | 1              |          |
|                  | u-b                                 |                         | -1       |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | e-b                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | -1             |          |
|                  | f-b                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | 1              |          |
|                  | dic                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | 1              |          |
|                  | u-c                                 |                         | -1       |                  |            |                        |                |          | -1                                     |            |                 | 1              |          |
|                  | e-c                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | -1             |          |
|                  | f-c                                 |                         | 1        |                  |            | 1                      |                |          | 1                                      |            |                 | 1              |          |
|                  | e-d                                 |                         | 1        |                  |            | -1                     |                |          | 1                                      |            |                 | -1             |          |
|                  | 64                                  |                         | 1        |                  |            | 1                      |                |          |                                        |            |                 | 1              |          |
|                  | t-d                                 |                         | 1        |                  |            | -1                     |                |          | 1                                      |            |                 | 1              |          |
|                  | f-e                                 |                         | 1        |                  |            | 1                      |                |          | -1                                     |            |                 | 1              |          |
|                  | S <sub>k</sub>                      | 1                       | 7        | -1               | -1         | 1                      | 1              | 1        | 3                                      | 1          | 1               | 7              | 1        |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | 2                                   | 2.67                    | 20.22    | 2.67             | 1.00       | 20.22                  | 1.00           | 1.00     | 20.22                                  | 1.00       | 1.00            | 20.22          | 1.00     |
| 0                | s=                                  | 3.67                    | 28.33    | 3.67             | 1.00       | 28.33                  | 1.00           | 1.00     | 28.33                                  | 1.00       | 1.00            | 28.33          | 1.00     |
| Z <sub>k</sub> = | S <sub>k</sub> /\sigma <sub>S</sub> | 0.52                    | 1.32     | -0.52            | -1.00      | 0.19                   | 1.00           | 1.00     | 0.56                                   | 1.00       | 1.00            | 1.32           | 1.00     |
| -                | 72                                  | 0.07                    | 4 70     | 0.07             | 1 00       | 0.04                   | 4 00           | 4.00     | 0.00                                   | 4 00       | 4 00            | 4 70           | 4 00     |
| 2                | k k                                 | 0.27                    | 1.73     | 0.27             | 1.00       | 0.04                   | 1.00           | 1.00     | 0.32                                   | 1.00       | 1.00            | 1.73           | 1.00     |
|                  |                                     |                         | _        |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | $\Sigma Z_k =$                      | 7.38                    |          | Tie Extent       | t,         | t <sub>2</sub>         | t <sub>3</sub> | t4       | t <sub>5</sub>                         |            |                 | Σn             | 42       |
|                  | <b>57</b> <sup>2</sup>              | 40.00                   |          | 0                | 10         | 0                      | 0              | 0        | 0                                      |            |                 | 20             | 00       |
|                  | ∠∠ <sub>k</sub> =                   | 10.36                   |          | Count            | 42         | 0                      | 0              | 0        | 0                                      |            |                 | 20k            | 22       |
| Z                | -bar=ΣZ <sub>k</sub> /K=            | 0.62                    |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  | $\chi^2_h = \Sigma Z^2_k$ -         | K(Z-bar) <sup>2</sup> = | 5.82     |                  | @α=5%      | $6 \chi^{2}_{(K-1)} =$ | 19.68          | Т        | est for sta                            | tion homog | eneity          |                |          |
|                  |                                     | n                       | 0.885    | <u>н</u>         |            |                        |                | 3        | $\gamma^{2} < \gamma^{2} < \gamma^{2}$ |            | ACCEPT          |                |          |
|                  |                                     | 4                       | 0.000    |                  | -          |                        |                | /        | C II 7 (K-I)                           |            | NOOEI T         |                |          |
|                  | $\Sigma VAR(S_k)$                   | L <sub>calc</sub>       | 1.87     |                  | @α/2=      | 2.5% <b>Z</b> =        | 1.96           |          | H₀ (No                                 | trend)     | ACCEPT          |                |          |
|                  | 126.67                              | р                       | 0.969    |                  |            |                        |                |          | H <sub>A</sub> (±                      | trend)     | REJECT          |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 90 T             | -                                   |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 80 -             |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 70               | A                                   |                         | <b>P</b> | A                |            |                        |                |          |                                        |            |                 |                |          |
|                  |                                     |                         |          |                  |            |                        |                |          | к I-                                   | Seasona    | al-Kendall Slop | e Confidence I | ntervals |
| € 60 I           |                                     |                         | *        |                  |            | <u> </u>               |                | /        |                                        |            | Lower           | Sen's          | Upper    |
| - Bu             |                                     |                         |          | <b>*</b>         |            | $\rightarrow$          | < >            |          | -                                      | α          | Limit           | Slope          | Limit    |
| <b>-</b> 50 +    |                                     |                         |          |                  | $\searrow$ |                        |                |          | •                                      | 0.010      | -0.35           |                | 4.15     |
| ¥.               | ×                                   |                         |          |                  |            |                        |                |          |                                        | 0.050      | 0.30            | 1.40           | 3.35     |
| ≤ 40 †           | •                                   |                         | •        |                  | <u> </u>   |                        |                |          |                                        | 0.100      | 0.55            |                | 2.88     |
| 20 ga            |                                     |                         | -        |                  |            |                        |                |          |                                        | 0.200      | 0.67            |                | 2.10     |
|                  |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 20               |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 20               |                                     |                         |          |                  |            |                        |                |          |                                        |            |                 |                |          |
| 10               |                                     |                         |          |                  | 1          |                        |                |          |                                        |            |                 |                |          |
|                  | WY2008                              | wy                      | 2009     | WY2010           | WY2        | 011                    | WY2012         | WY2      | 2013                                   |            |                 |                |          |
|                  | ** 12000                            |                         |          |                  | vv 1 Z     |                        | 1112012        | VV I 2   |                                        |            |                 |                |          |
|                  | 0                                   | . –                     | Neri     | ۰ Dr-            | ~          | lon                    | у <b>Г</b> ан  | <u> </u> | Mor                                    |            |                 |                |          |
|                  | <u> </u>                            | ι <del>−⊔</del>         |          | – <u></u> ⊿– Dec | -0-        | Jan                    | -*- Feb        | ,        | - war                                  |            |                 |                |          |
|                  | —+— Ар                              | r —                     | -May     | ● Jun            | -X-        | Jul                    | ––– Aug        | g —      | -Sep                                   |            |                 |                |          |

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| Row label        | Water Year                     | Oct  | Nov   | Dec          | Jan            | Feb            | Mar            | Apr            | May            | Jun  | Jul  | Aug          | Sep  |
|------------------|--------------------------------|------|-------|--------------|----------------|----------------|----------------|----------------|----------------|------|------|--------------|------|
| а                | WY2008                         | 10.0 | 8.3   | 12.6         | 17.7           | 19.2           | 16.9           | 17.8           | 7.7            | 4.8  | 7.9  | 7.6          | 6.0  |
| b                | WY2009                         | 6.4  | 12.5  | 12.1         | 13.3           | 14.3           | 18.9           | 21.2           | 7.5            | 5.9  | 11.9 | 12.7         | 7.5  |
| С                | WY2010                         | 11.7 | 13.3  | 14.7         |                | 16.2           |                |                | 7.8            |      |      | 12.4         |      |
| d                | WY2011                         |      | 7.8   |              |                | 15.1           |                |                | 7.2            |      |      | 12.1         |      |
| е                | WY2012                         |      | 12.3  |              |                | 16.3           |                |                | 9.8            |      |      | 8.1          |      |
| f                | WY2013                         |      | 14.3  |              |                | 11.7           |                |                | 7.3            |      |      | 16.1         |      |
|                  | n                              | 3    | 6     | 3            | 2              | 6              | 2              | 2              | 6              | 2    | 2    | 6            | 2    |
|                  | t,                             | 3    | 6     | 3            | 2              | 6              | 2              | 2              | 6              | 2    | 2    | 6            | 2    |
|                  | t <sub>2</sub>                 | 0    | 0     | 0            | 0              | 0              | 0              | 0              | 0              | 0    | 0    | 0            | 0    |
|                  | t <sub>3</sub>                 | 0    | 0     | 0            | 0              | 0              | 0              | 0              | 0              | 0    | 0    | 0            | 0    |
|                  | t <sub>4</sub>                 | 0    | 0     | 0            | 0              | 0              | 0              | 0              | 0              | 0    | 0    | 0            | 0    |
|                  | τ <sub>5</sub>                 | 0    | 0     | 0            | 0              | 0              | 0              | 0              | 0              | 0    | 0    | 0            | 0    |
|                  | b-a                            | -1   | 1     | -1           | -1             | -1             | 1              | 1              | -1             | 1    | 1    | 1            | 1    |
|                  | c-a                            | 1    | 1     | 1            |                | -1             |                |                | 1              |      |      | 1            |      |
|                  | d-a                            |      | -1    |              |                | -1             |                |                | -1             |      |      | 1            |      |
|                  | e-a                            |      | 1     |              |                | -1             |                |                | 1              |      |      | 1            |      |
|                  | f-a                            |      | 1     |              |                | -1             |                |                | -1             |      |      | 1            |      |
|                  | c-b                            | 1    | 1     | 1            |                | 1              |                |                | 1              |      |      | -1           |      |
|                  | d-b                            |      | -1    |              |                | 1              |                |                | -1             |      |      | -1           |      |
|                  | e-b                            |      | -1    |              |                | 1              |                |                | 1              |      |      | -1           |      |
|                  | f-b                            |      | 1     |              |                | -1             |                |                | -1             |      |      | 1            |      |
|                  | d-c                            |      | -1    |              |                | -1             |                |                | -1             |      |      | -1           |      |
|                  | e-c                            |      | -1    |              |                | 1              |                |                | 1              |      |      | -1           |      |
|                  | f-c                            |      | 1     |              |                | -1             |                |                | -1             |      |      | 1            |      |
|                  | e-d                            |      | 1     |              |                | 1              |                |                | 1              |      |      | -1           |      |
|                  | t-d                            |      | 1     |              |                | -1             |                |                | 1              |      |      | 1            |      |
|                  | t-e                            | 1    | 1     | 1            | -1             | -1             | 1              | 1              | -1             | 1    | 1    | 3            | 1    |
|                  | U <sub>k</sub>                 | 1    | 5     | 1            | -1             | -0             | 1              | 1              | -1             | 1    | '    | 5            |      |
| a                | <sup>2</sup> s=                | 3.67 | 28.33 | 3.67         | 1.00           | 28.33          | 1.00           | 1.00           | 28.33          | 1.00 | 1.00 | 28.33        | 1.00 |
| Z <sub>k</sub> = | S <sub>k</sub> /σ <sub>S</sub> | 0.52 | 0.94  | 0.52         | -1.00          | -0.94          | 1.00           | 1.00           | -0.19          | 1.00 | 1.00 | 0.56         | 1.00 |
|                  | $Z^{2}_{k}$                    | 0.27 | 0.88  | 0.27         | 1.00           | 0.88           | 1.00           | 1.00           | 0.04           | 1.00 | 1.00 | 0.32         | 1.00 |
|                  | 57                             | 5.40 | г     | The Frate of | +              | t              | ŧ              | ŧ              | +              |      |      | Σn           | 10   |
|                  | $\Sigma \mathbb{Z}_{k} =$      | 5.42 |       | TIE Extent   | ι <sub>1</sub> | ι <sub>2</sub> | ι <sub>3</sub> | L <sub>4</sub> | L <sub>5</sub> |      |      | 211          | 42   |
|                  | $\Sigma Z_{k}^{2}$             | 8.66 |       | Count        | 42             | 0              | 0              | 0              | 0              |      |      | $\Sigma S_k$ | 8    |
| Z                | -bar=ΣZ <sub>ν</sub> /K=       | 0.45 | -     |              |                |                |                |                |                |      |      |              |      |

| $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 6.$ |                     | 6.21  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station home       | ogeneity |
|-------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------|----------|
|                                                 | р                   | 0.859 |                                         |       | $\chi^2_h < \chi^2_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$                               | $\mathbf{Z}_{calc}$ | 0.62  | @α=2.5% <b>Z</b> =                      | 1.96  | H <sub>0</sub> (No trend)   | ACCEPT   |
| 126.67                                          | р                   | 0.733 |                                         |       | H <sub>A</sub> (± trend)    | REJECT   |



| Site #4 | 19 |
|---------|----|
|---------|----|

Seasonal Kendall analysis for Zinc, Dissolved (ug/l)

| Row label               | Water Year                          | Oct   | Nov   | Dec        | Jan  | Feb            | Mar            | Apr  | May   | Jun  | Jul   | Aug          | Sep   |
|-------------------------|-------------------------------------|-------|-------|------------|------|----------------|----------------|------|-------|------|-------|--------------|-------|
| а                       | WY2008                              | 3.1   | 4.4   | 2.9        | 1.7  | 2.0            | 4.4            | 1.8  | 3.0   | 1.9  | 2.1   | 2.9          | 4.0   |
| b                       | WY2009                              | 5.4   | 3.1   | 4.1        | 2.2  | 2.3            | 2.2            | 2.9  | 2.6   | 2.1  | 1.7   | 2.7          | 3.9   |
| С                       | WY2010                              | 2.2   | 2.6   | 2.2        |      | 2.5            |                |      | 2.0   |      |       | 1.8          |       |
| d                       | WY2011                              |       | 4.6   |            |      | 2.1            |                |      | 2.2   |      |       | 1.9          |       |
| е                       | WY2012                              |       | 3.1   |            |      | 2.1            |                |      | 3.1   |      |       | 3.4          |       |
| f                       | WY2013                              |       | 2.2   |            |      | 2.1            |                |      | 2.8   |      |       | 9.2          |       |
|                         | n                                   | 3     | 6     | 3          | 2    | 6              | 2              | 2    | 6     | 2    | 2     | 6            | 2     |
|                         | t,                                  | 3     | 6     | 3          | 2    | 4              | 2              | 2    | 6     | 2    | 2     | 6            | 2     |
|                         | t <sub>2</sub>                      | 0     | 0     | 0          | 0    | 1              | 0              | 0    | 0     | 0    | 0     | 0            | 0     |
|                         | t <sub>3</sub>                      | 0     | 0     | 0          | 0    | 0              | 0              | 0    | 0     | 0    | 0     | 0            | 0     |
|                         | t <sub>4</sub>                      | 0     | 0     | 0          | 0    | 0              | 0              | 0    | 0     | 0    | 0     | 0            | 0     |
| •                       | t <sub>5</sub>                      | 0     | 0     | 0          | 0    | 0              | 0              | 0    | 0     | 0    | 0     | 0            | 0     |
|                         | ha                                  | 1     | 1     | 1          | 1    | 1              | 1              | 1    | 1     | 1    | 1     | 1            | 1     |
|                         | D-a                                 | -1    | -1    | -1         | I    | 1              | -1             |      | -1    |      | -1    | -1           | -1    |
|                         | d-a                                 | -1    | 1     | -1         |      | 1              |                |      | -1    |      |       | -1           |       |
|                         | e-a                                 |       | -1    |            |      | 1              |                |      | 1     |      |       | 1            |       |
|                         | f-a                                 |       | -1    |            |      | 1              |                |      | -1    |      |       | 1            |       |
|                         | c-b                                 | -1    | -1    | -1         |      | 1              |                |      | -1    |      |       | -1           |       |
|                         | d-b                                 |       | 1     |            |      | -1             |                |      | -1    |      |       | -1           |       |
|                         | e-b                                 |       | 1     |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | f-b                                 |       | -1    |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | d-c                                 |       | 1     |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | e-c                                 |       | 1     |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | f-c                                 |       | -1    |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | e-d                                 |       | -1    |            |      | -1             |                |      | 1     |      |       | 1            |       |
|                         | f-d                                 |       | -1    |            |      | -1             |                |      | 1     |      |       | 1            |       |
| =                       | t-e                                 |       | -1    |            |      | 0              |                |      | -1    |      |       | 1            |       |
| -                       | Sk                                  | -1    | -5    | -1         | 1    | -2             | -1             | 1    | 1     | 1    | -1    | 5            | -1    |
|                         | <sup>2</sup> s=                     | 3.67  | 28.33 | 3.67       | 1.00 | 27.33          | 1.00           | 1.00 | 28.33 | 1.00 | 1.00  | 28.33        | 1.00  |
| <b>Z</b> <sub>k</sub> = | s<br>S <sub>k</sub> /σ <sub>s</sub> | -0.52 | -0.94 | -0.52      | 1.00 | -0.38          | -1.00          | 1.00 | 0.19  | 1.00 | -1.00 | 0.94         | -1.00 |
| Z                       | 7 <sup>2</sup>                      | 0.27  | 0.88  | 0.27       | 1.00 | 0.15           | 1.00           | 1.00 | 0.04  | 1.00 | 1.00  | 0.88         | 1.00  |
|                         |                                     |       | _     |            |      |                |                |      |       |      |       |              |       |
|                         | $\Sigma Z_k =$                      | -1.24 | ſ     | Tie Extent | t1   | t <sub>2</sub> | t <sub>3</sub> | t₄   | t₅    |      |       | Σn           | 42    |
|                         | $\Sigma Z_{k}^{2}$                  | 8.49  |       | Count      | 40   | 1              | 0              | 0    | 0     |      |       | $\Sigma S_k$ | -3    |
| Z                       | -bar=2Zk/K=                         | -0.10 | -     |            |      |                |                |      | -     |      |       |              |       |
|                         |                                     |       |       |            |      |                |                |      |       |      |       |              |       |
|                         |                                     |       |       |            |      |                |                |      |       |      |       |              |       |

| $\chi^2_h = \Sigma Z^2_k$ - | K(Z-bar) <sup>2</sup> = | 8.36  |   | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 19.68 | Test for station homo             | ogeneity |
|-----------------------------|-------------------------|-------|---|-----------------------------------------|-------|-----------------------------------|----------|
|                             | р                       | 0.680 | _ |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$           | $\mathbf{Z}_{calc}$     | -0.18 |   | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT   |
| 125.67                      | р                       | 0.429 |   |                                         |       | H <sub>A</sub> (± trend)          | REJECT   |



## **INTERPRETIVE REPORT SITE 46**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date        | Parameter             | Value            | Qualifier    | Notes                           |
|--------------------|-----------------------|------------------|--------------|---------------------------------|
| No outliers have l | been identified by HG | CMC for the peri | od of Octobe | er 2007 through September 2013. |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|                                                                                                     |           | Limits |       |       |          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------|--------|-------|-------|----------|--|--|--|--|
| Sample Date                                                                                         | Parameter | Value  | Lower | Upper | Hardness |  |  |  |  |
| No exceedances have been identified by HGCMC for the period of October 2012 through September 2013. |           |        |       |       |          |  |  |  |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No visually obvious trends are apparent.

A non-parametric statistical analysis for trend was performed for field conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013). Datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. There were no statistically significant trends detected during the current water year.

|                    | Mann-Ker | ndall test st | Sen's slope estimate |   |      |  |
|--------------------|----------|---------------|----------------------|---|------|--|
| Parameter          | n*       | <b>p</b> **   | Trend                | Q | Q(%) |  |
| Conductivity Field | 6        | 0.15          |                      |   |      |  |
| pH Field           | 6        | 0.28          |                      |   |      |  |
| Alkalinity, Total  | 6        | 0.05          |                      |   |      |  |
| Sulfate, Total     | 6        | 0.12          |                      |   |      |  |
| Zinc, Dissolved    | 6        | 0.50          |                      |   |      |  |

**Table of Summary Statistics for Trend Analysis** 

\* Number of Years \*\* Significance level

In previous years a comparison of median values for alkalinity, laboratory pH, field conductivity, sulfate, and dissolved zinc between Site 49 and Site 46 has been conducted as specified in the Statistical Information Goals for Site 46. With the change in the sampling frequency at Site 46 and Site 49 the resulting small sample size (N=4) eliminates the possibility of using the Wilcoxon Signed Ranks test as a methodology for comparing median values. This is the same reason this technique has not been used previously with the wells at the tailings facility and that new methodologies are being investigated for intra-site comparison.

Analytical results from Site 46 were analyzed using combined Shewhart-CUSUM charts. The Shewhart-CUSUM is a sequential analysis technique to determine changes in a variable. The methodology involves the calculation of a standardized difference  $z_i$  for each measurement at time  $t_i$  as  $x_i$ :

$$Z_i = (x_i - x) / s$$

At each time t<sub>i</sub>, the cumulative sum is computed as:

$$S_0 = 0$$
  
 $S_i = \max[0, (z_i - d) + (S_i - 1)]$ 

Setting  $S_0 = 0$  ensures that only cumulative changes from background are monitored. When the value of *S* exceeds a certain threshold value, a change in value has been found. The above formula only detects changes in the positive direction. Plot the values  $S_i$  (y-axis) versus  $t_i$  (x-axis) on time plot for visual purposes. A process (analyte) is considered 'out of control' when the cumulative increase in the parameter over background  $S_i >= h$  (e.g. h=5) or a standardized increase  $z_i >= SCL$  (e.g. SCL = 4.5 standard deviations units over background).

For this year's FWMP report the combined Shewhart-CUSUM control chart statistical analysis was carried out on the specific conductance, dissolved zinc, and total sulfate data from Site 46. In order to use the analysis background values were calculated for each of the analytes. Without a true background record the first year of sampling was chosen for this calculation. Results of these calculations are summarized in the Table 1.

The visual representations of these calculations are graphed in Figure 1. All three of the analytes reached the lowest control limit (SCL=2) and only total sulfate reached the control limit of SCL=4. Each of the sites were below the EPA recommend control limit of SCL=4.5. Values for

the CUSUM statistic ranged from a low of 0, observed in each analysis to a high of 3.4 recorded for dissolved zinc. None of the analyses exceed the established limit of h=5. In order for a process to be considered 'out of control' both metrics (Shewhart & CUSUM) need to be 'out of control'. With these analyses the only analyte that neared both these limits was total sulfate.

Once a background value is established the proceeding years are not 'out of control' the data for those years can be used to recalculate the background values. It is suggested that these calculations be carried out every two years. In order to prevent the incorporation of a gradual trend into the background data, it is important to test for background trends on a routine basis. Currently, HGCMC is using the Mann-Kendall test for seasonal trends for trend analysis. Of the three analytes used, for the combined Shewhart-CUSUM control charts, none of them had a significant seasonal trend. Therefore, it should be possible to incorporate more of the measurements into the calculation of the baseline statistics.

To use these charts an average value and standard deviation first needs to be calculated for the each analyte of interest. These could be calculated from the historical process data or the background data collected prior to disturbance. Tables 1 and 2 summarize the baseline statistics for Site 46, differing in the number of samples (N) used in the calculation. From previous FWMP reports it is known that Site 46 is similar in chemistry as the background Site 49. Furthermore, it then can be inferred that changes in chemistry at Site 46 are a result of natural variation and not from HGCMC activities in the area. Therefore Site 46 is an ideal dataset for testing the effects of incorporating a larger set of values into the baseline statistics.

When comparing the baseline statistics for the two sample periods it is noted that the mean values are similar and the standard deviation increased for two of the three analytes. The increase in the standard deviation shows that with an increase in the number of samples the range also increased (greater variability). Also, the corollary decrease in standard deviation would mean a decreased range (less variability). The similarity in the mean values with a change in the standard deviation signifies that the additional values were equally distributed about the previous calculated mean. A longer baseline period would incorporate greater natural variation. Regardless of the length of the baseline period each analyte that goes out of control needs to be evaluated on an individual basis. Figures 1 is the combined Shewhart-CUSUM charts for field conductivity, dissolved zinc, and total sulfate; using the baseline statistics from Tables 1.

| Table 1. | Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br>Summary Statistics and Various Control Limits |
|----------|----------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                            |

|                               | Site 46<br>Conductivity<br>(μS/cm) | Site 46<br>Diss. Zinc<br>(µg/L) | Site 46<br>Total Sulfate<br>(mg/L) |
|-------------------------------|------------------------------------|---------------------------------|------------------------------------|
| Baseline Statistics           |                                    |                                 |                                    |
| Baseline Period               | 01/12/00-11/15/01                  | 01/12/00-11/15/01               | 11/12/02-10/09/03                  |
| Number of Samples             | 19                                 | 19                              | 9                                  |
| Mean (x)                      | 136.4                              | 1.9                             | 9.39                               |
| Standard Deviation            | 24.5                               | 0.8                             | 2.20                               |
| Shewhart-CUSUM Control Limits | (SCL)                              |                                 |                                    |
| Control Limit (mean x+ 2s)    | 185.3                              | 3.5                             | 13.8                               |
| Control Limit (mean x + 3s)   | 209.8                              | 4.3                             | 16.0                               |
| Control Limit (mean x + 4s)   | 234.3                              | 5.2                             | 18.2                               |
| Control Limit (mean x + 4.5s) | 246.5                              | 5.6                             | 19.3                               |
| CUSUM Control Limits          |                                    |                                 |                                    |
| Cumulative increase – h       | 5                                  | 5                               | 5                                  |

# Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br/>Summary Statistics and Various Control Limits

|                               | Site 46<br>Conductivity | Site 46<br>Diss Zinc | Site 46              |
|-------------------------------|-------------------------|----------------------|----------------------|
|                               | (µS/cm)                 | (µg/L)               | Total Sulfate (mg/L) |
| Baseline Statistics           |                         |                      |                      |
| Baseline Period               | 12/1/00-12/14/05        | 12/1/00-12/14/05     | 11/12/02-12/14/05    |
| Number of Samples             | 58                      | 58                   | 33                   |
| Mean (x)                      | 135.5                   | 2.3                  | 10.0                 |
| Standard Deviation            | 22.9                    | 1.6                  | 2.86                 |
| Shewhart-CUSUM Control Limits | (SCL)                   |                      |                      |
| Control Limit (mean x+ 2s)    | 181.4                   | 5.6                  | 15.7                 |
| Control Limit (mean x + 3s)   | 204.4                   | 7.3                  | 18.6                 |
| Control Limit (mean x + 4s)   | 227.3                   | 8.9                  | 21.5                 |
| Control Limit (mean x + 4.5s) | 238.8                   | 9.7                  | 22.9                 |
| CUSUM Control Limits          |                         |                      |                      |
| Cumulative increase – h       | 5                       | 5                    | 5                    |

-1

From figure 1 it can be seen that specific conductance remained in control while dissolved zinc and total sulfate went of control multiple times and one time respectively. A value is out of control when it exceeds the CUSUM control limit (h) value of five. Also, based on the Shewhart-CUSUM control limit (SCL) for total sulfate the process was out of control twice when the total sulfate concentration exceeded 19.3  $\mu$ g/L. It is important to remember that the corresponding upgradient background site Site 49 exhibited the same variation in concentration, which is natural variation. If CUSUM technique was being used during water year 2003 it would have been concluded that the total sulfate was going out of control and an evaluation of each out of control data point would have been undertaken. This evaluation would have involved an analysis of the background sites to establish whether this was occurring naturally. Furthermore, a larger suite of analytes would be analyzed to determine if the shift is in a single analyte or multiple analytes and whether the shift in analytes matches known signatures from the various mineralogies that HGCMC encounters.

It is recommended that every couple years a revaluation of the baseline statistics is made. This will allow for the incorporation of data points that appeared out of control, but were a greater part of the variability. Figure 2 are the control charts after the data was recalculated using a greater baseline period. Notice that during the 2003 water year that total sulfate remained in control when the longer baseline dataset was used. With these charts it is noted that none of the analytes went out of control during the monitoring period. This supports the conclusion drawn in the previous FWMP reports that HGCMC activities in the Site23 / D Pile area are not having a measurable affect on Bruin Creek.



Figure 1.Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate<br/>from Site 46 Compared to the Shewhart-CUSUM Control Limits From Table 1



Figure 2.Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate<br/>from Site 46 Compared to the Shewhart-CUSUM Control Limits From Table 2

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           |          | 0.9      |          |          | 1.1      |          |          | 2.1      |          |          | 10.9     |          | 1.6      |
| Conductivity-Field(µmho)  |          | 167      |          |          | 169      |          |          | 122      |          |          | 179      |          | 168.0    |
| Conductivity-Lab (µmho)   |          | 168      |          |          | 148      |          |          | 115      |          |          | 175      |          | 158      |
| pH Lab (standard units)   |          | 7.79     |          |          | 7.55     |          |          | 7.75     |          |          | 7.64     |          | 7.70     |
| pH Field (standard units) |          | 7.83     |          |          | 7.52     |          |          | 7.88     |          |          | 7.6      |          | 7.72     |
| Total Alkalinity (mg/L)   |          | 74.4     |          |          | 64.1     |          |          | 46.5     |          |          | 66       |          | 65.1     |
| Total Sulfate (mg/L)      |          | 13.7     |          |          | 11.3     |          |          | 7.3      |          |          | 14.4     |          | 12.5     |
| Hardness (mg/L)           |          | 85.9     |          |          | 76.2     |          |          | 50.9     |          |          | 83.6     |          | 79.9     |
| Dissolved As (ug/L)       |          | 0.226    |          |          | 0.23     |          |          | 0.22     |          |          | 0.216    |          | 0.223    |
| Dissolved Ba (ug/L)       |          | 13       |          |          | 12.2     |          |          |          |          |          |          |          | 12.6     |
| Dissolved Cd (ug/L)       |          | 0.0255   |          |          | 0.0234   |          |          | 0.0184   |          |          | 0.0357   |          | 0.0245   |
| Dissolved Cr (ug/L)       |          | 0.257    |          |          | 0.399    |          |          |          |          |          |          |          | 0.328    |
| Dissolved Cu (ug/L)       |          | 0.495    |          |          | 0.473    |          |          | 0.584    |          |          | 0.497    |          | 0.496    |
| Dissolved Pb (ug/L)       |          | 0.0203   |          |          | 0.0047   |          |          | 0.0234   |          |          | 0.0073   |          | 0.0138   |
| Dissolved Ni (ug/L)       |          | 0.989    |          |          | 0.978    |          |          |          |          |          |          |          | 0.984    |
| Dissolved Ag (ug/L)       |          | 0.002    |          |          | 0.002    |          |          |          |          |          |          |          | 0.002    |
| Dissolved Zn (ug/L)       |          | 2.09     |          |          | 1.72     |          |          | 2.62     |          |          | 3.4      |          | 2.36     |
| Dissolved Se (ug/L)       |          | 0.891    |          |          | 0.741    |          |          |          |          |          |          |          | 0.816    |
| Dissolved Hg (ug/L)       |          | 0.00129  |          |          | 0.00161  |          |          | 0.00229  |          |          | 0.00151  |          | 0.001560 |

#### Site 046FMS - 'Lower Bruin Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|---------|-----------|----------------------------|
|          |             |             |               |         |           |                            |
| 46       | 11/13/2012  | 12:00 AM    | pH Lab, su    | 7.79    | J         | Hold Time Violation        |
|          |             |             | Zn diss, µg/l | 2.09    | U         | Field Blank Contamination  |
|          |             |             | Se diss, µg/l | 0.89    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 46       | 2/20/2013   | 12:00 AM    | Pb diss, µg/l | 0.00467 | J         | Below Quantitative Range   |
|          |             |             |               |         |           |                            |
| 46       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.75    | J         | Hold Time Violation        |
|          |             |             |               |         |           |                            |
| 46       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 175     | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 66      | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 14.4    | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.00734 | U         | Field Blank Contamination  |

| ation     |
|-----------|
| ication   |
| ntration  |
|           |
|           |
| ion Limit |
|           |





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Site 46 – Arsenic Dissolved



Site 46 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 46 – Nickel Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 46 – Selenium Dissolved



Site 46 – Mercury Dissolved

| Site             | #46                            |       | Seasonal Kendall analysis for Specific Conductance, Field (µS/cm) |                           |                |                |            |                |                |       |       |              |       |  |  |  |
|------------------|--------------------------------|-------|-------------------------------------------------------------------|---------------------------|----------------|----------------|------------|----------------|----------------|-------|-------|--------------|-------|--|--|--|
| Row label        | Water Year                     | Oct   | Nov                                                               | Dec                       | Jan            | Feb            | Mar        | Apr            | Мау            | Jun   | Jul   | Aug          | Sep   |  |  |  |
| а                | WY2008                         | 134   | 153.8                                                             |                           |                |                | 207        | 151.8          | 125.5          | 93.7  | 117.2 | 121.9        | 113.4 |  |  |  |
| b                | WY2009                         | 118   | 161.9                                                             | 136.1                     |                | 156.2          |            |                | 113.5          | 91.7  | 129.5 | 125.6        | 89    |  |  |  |
| С                | WY2010                         | 157.4 | 133.6                                                             | 173.5                     |                | 176.2          |            |                | 124            |       |       | 147.2        |       |  |  |  |
| d                | WY2011                         |       | 105.6                                                             |                           |                | 164            |            |                | 114.3          |       |       | 125          |       |  |  |  |
| e                | WY2012                         |       | 140                                                               |                           |                | 147            |            |                | 147            |       |       | 133          |       |  |  |  |
| t                | WY2013                         |       | 167                                                               | 0                         |                | 169            |            | 4              | 122            |       |       | 179          |       |  |  |  |
|                  | n                              | 3     | 6                                                                 | 2                         | 0              | 5              | 1          | 1              | б              | 2     | 2     | 6            | 2     |  |  |  |
|                  | t1                             | 3     | 6                                                                 | 2                         | 0              | 5              | 1          | 1              | 6              | 2     | 2     | 6            | 2     |  |  |  |
|                  | t <sub>2</sub>                 | 0     | 0                                                                 | 0                         | 0              | 0              | 0          | 0              | 0              | 0     | 0     | 0            | 0     |  |  |  |
|                  | t <sub>3</sub>                 | 0     | 0                                                                 | 0                         | 0              | 0              | 0          | 0              | 0              | 0     | 0     | 0            | 0     |  |  |  |
|                  | t <sub>4</sub>                 | 0     | 0                                                                 | 0                         | 0              | 0              | 0          | 0              | 0              | 0     | 0     | 0            | 0     |  |  |  |
|                  | t <sub>5</sub>                 | 0     | 0                                                                 | 0                         | 0              | 0              | 0          | 0              | 0              | 0     | 0     | 0            | 0     |  |  |  |
|                  | b-a                            | -1    | 1                                                                 |                           |                |                |            |                | -1             | -1    | 1     | 1            | -1    |  |  |  |
|                  | c-a                            | 1     | -1                                                                |                           |                |                |            |                | -1             |       |       | 1            |       |  |  |  |
|                  | d-a                            |       | -1                                                                |                           |                |                |            |                | -1             |       |       | 1            |       |  |  |  |
|                  | e-a                            |       | -1                                                                |                           |                |                |            |                | 1              |       |       | 1            |       |  |  |  |
|                  | f-a                            |       | 1                                                                 |                           |                |                |            |                | -1             |       |       | 1            |       |  |  |  |
|                  | c-b                            | 1     | -1                                                                | 1                         |                | 1              |            |                | 1              |       |       | 1            |       |  |  |  |
|                  | d-b                            |       | -1                                                                |                           |                | 1              |            |                | 1              |       |       | -1           |       |  |  |  |
|                  | e-b                            |       | -1                                                                |                           |                | -1             |            |                | 1              |       |       | 1            |       |  |  |  |
|                  | t-b                            |       | 1                                                                 |                           |                | 1              |            |                | 1              |       |       | 1            |       |  |  |  |
|                  | d-c                            |       | -1                                                                |                           |                | -1             |            |                | -1             |       |       | -1           |       |  |  |  |
|                  | e-c                            |       | 1                                                                 |                           |                | -1             |            |                | 1              |       |       | -1           |       |  |  |  |
|                  | 1-C                            |       | 1                                                                 |                           |                | -1             |            |                | -1             |       |       | 1            |       |  |  |  |
|                  | f-d                            |       | 1                                                                 |                           |                | -1             |            |                | 1              |       |       | 1            |       |  |  |  |
|                  | f-e                            |       | 1                                                                 |                           |                | 1              |            |                | -1             |       |       | 1            |       |  |  |  |
|                  | S <sub>k</sub>                 | 1     | 1                                                                 | 1                         | 0              | 0              | 0          | 0              | 1              | -1    | 1     | 9            | -1    |  |  |  |
| σ                | <sup>2</sup> s=                | 3.67  | 28.33                                                             | 1.00                      |                | 16.67          |            |                | 28.33          | 1.00  | 1.00  | 28.33        | 1.00  |  |  |  |
| Z <sub>k</sub> = | S <sub>k</sub> /σ <sub>S</sub> | 0.52  | 0.19                                                              | 1.00                      |                | 0.00           |            |                | 0.19           | -1.00 | 1.00  | 1.69         | -1.00 |  |  |  |
|                  | Z <sup>2</sup> <sub>k</sub>    | 0.27  | 0.04                                                              | 1.00                      |                | 0.00           |            |                | 0.04           | 1.00  | 1.00  | 2.86         | 1.00  |  |  |  |
|                  | 57                             | 0.50  | Г                                                                 | <b>T</b> = <b>F</b> + - + |                |                |            |                |                |       |       | Σn           |       |  |  |  |
|                  | $\Sigma Z_k =$                 | 2.59  |                                                                   | i le Extent               | L <sub>1</sub> | ι <sub>2</sub> | <b>L</b> 3 | L <sub>4</sub> | ι <sub>5</sub> |       |       | 211          | 36    |  |  |  |
|                  | $\Sigma Z_{k}^{2} =$           | 7.20  |                                                                   | Count                     | 36             | 0              | 0          | 0              | 0              |       |       | $\Sigma S_k$ | 12    |  |  |  |
| Z                | Z-bar=ΣZ <sub>k</sub> /K=      | 0.29  |                                                                   |                           |                |                |            |                |                |       |       |              |       |  |  |  |

| $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 6.46$ |                     |       |   | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 15.51 | Test for station homogeneity      |        |
|---------------------------------------------------------|---------------------|-------|---|-----------------------------------------|-------|-----------------------------------|--------|
|                                                         | р                   | 0.596 | _ |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$                                       | $\mathbf{Z}_{calc}$ | 1.05  |   | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT |
| 109.33                                                  | р                   | 0.854 |   |                                         |       | H <sub>A</sub> (± trend)          | REJECT |



| Season | Seasonal-Kendall Slope Confidence Intervals |                |                |  |  |  |  |  |  |  |  |  |
|--------|---------------------------------------------|----------------|----------------|--|--|--|--|--|--|--|--|--|
| α      | Lower<br>Limit                              | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |  |  |  |  |
| 0.010  | -3.13                                       |                | 10.69          |  |  |  |  |  |  |  |  |  |
| 0.050  | -0.73                                       | 2 57           | 6.95           |  |  |  |  |  |  |  |  |  |
| 0.100  | -0.56                                       | 2.57           | 3.89           |  |  |  |  |  |  |  |  |  |
| 0.200  | 0.78                                        |                | 3.40           |  |  |  |  |  |  |  |  |  |

| Site #46 Seasonal Kendall analysis for pH, Field, Standard Units |                                |       |       |            |            |                |                |     |                |       | its   |                |       |
|------------------------------------------------------------------|--------------------------------|-------|-------|------------|------------|----------------|----------------|-----|----------------|-------|-------|----------------|-------|
| Row label                                                        | Water Year                     | Oct   | Nov   | Dec        | Jan        | Feb            | Mar            | Apr | May            | Jun   | Jul   | Aug            | Sep   |
| а                                                                | WY2008                         | 8.1   | 7.9   |            |            |                | 7.5            | 7.5 | 7.9            | 8.0   | 7.7   | 7.3            | 7.6   |
| b                                                                | WY2009                         | 8.0   | 8.0   | 7.9        |            | 7.5            |                |     | 7.3            | 7.1   | 7.2   | 7.2            | 7.4   |
| С                                                                | WY2010                         | 7.9   | 7.4   | 7.2        |            | 7.0            |                |     | 7.7            |       |       | 6.9            |       |
| d                                                                | WY2011                         |       | 7.9   |            |            | 7.4            |                |     | 7.8            |       |       | 7.9            |       |
| e                                                                | WY2012                         |       | 8.1   |            |            | 7.4            |                |     | 8.0            |       |       | 7.9            |       |
| t                                                                | WY2013                         | -     | 7.8   |            |            | 7.5            |                |     | 7.9            |       | -     | 7.6            |       |
|                                                                  | n                              | 3     | 6     | 2          | 0          | 5              | 1              | 1   | 6              | 2     | 2     | 6              | 2     |
|                                                                  | t,                             | 3     | 4     | 2          | 0          | 5              | 1              | 1   | 6              | 2     | 2     | 6              | 2     |
|                                                                  | t <sub>2</sub>                 | 0     | 1     | 0          | 0          | 0              | 0              | 0   | 0              | 0     | 0     | 0              | 0     |
|                                                                  | t <sub>3</sub>                 | 0     | 0     | 0          | 0          | 0              | 0              | 0   | 0              | 0     | 0     | 0              | 0     |
|                                                                  | t <sub>4</sub>                 | 0     | 0     | 0          | 0          | 0              | 0              | 0   | 0              | 0     | 0     | 0              | 0     |
|                                                                  | l <sub>5</sub>                 | 0     | 0     | 0          | 0          | 0              | 0              | 0   | 0              | 0     | 0     | 0              | 0     |
|                                                                  | b-a                            | -1    | 1     |            |            |                |                |     | -1             | -1    | -1    | -1             | -1    |
|                                                                  | c-a                            | -1    | -1    |            |            |                |                |     | -1             |       |       | -1             |       |
|                                                                  | d-a                            |       | 0     |            |            |                |                |     | -1             |       |       | 1              |       |
|                                                                  | e-a                            |       | 1     |            |            |                |                |     | 1              |       |       | 1              |       |
|                                                                  | f-a                            |       | -1    |            |            |                |                |     | -1             |       |       | 1              |       |
|                                                                  | c-b                            | -1    | -1    | -1         |            | -1             |                |     | 1              |       |       | -1             |       |
|                                                                  | d-b                            |       | -1    |            |            | -1             |                |     | 1              |       |       | 1              |       |
|                                                                  | e-b                            |       | 1     |            |            | -1             |                |     | 1              |       |       | 1              |       |
|                                                                  | f-b                            |       | -1    |            |            | 1              |                |     | 1              |       |       | 1              |       |
|                                                                  | d-c                            |       | 1     |            |            | 1              |                |     | 1              |       |       | 1              |       |
|                                                                  | e-c                            |       | 1     |            |            | 1              |                |     | 1              |       |       | 1              |       |
|                                                                  | T-C                            |       | 1     |            |            | 1              |                |     | 1              |       |       | 1              |       |
|                                                                  | e-u<br>f d                     |       | 1     |            |            | 1              |                |     | 1              |       |       | 1              |       |
|                                                                  | f-e                            |       | -1    |            |            | 1              |                |     | -1             |       |       | -1             |       |
|                                                                  | S <sub>k</sub>                 | -3    | 0     | -1         | 0          | 4              | 0              | 0   | 5              | -1    | -1    | 5              | -1    |
|                                                                  | 2                              |       |       |            |            |                |                |     |                |       |       |                |       |
| a                                                                | 5 <sup>-</sup> s=              | 3.67  | 27.33 | 1.00       |            | 16.67          |                |     | 28.33          | 1.00  | 1.00  | 28.33          | 1.00  |
| <b>Z</b> <sub>k</sub> =                                          | S <sub>k</sub> /σ <sub>S</sub> | -1.57 | 0.00  | -1.00      |            | 0.98           |                |     | 0.94           | -1.00 | -1.00 | 0.94           | -1.00 |
|                                                                  | $Z_{k}^{2}$                    | 2.45  | 0.00  | 1.00       |            | 0.96           |                |     | 0.88           | 1.00  | 1.00  | 0.88           | 1.00  |
|                                                                  | $\Sigma Z_{k} =$               | -2.71 | Γ     | Tie Extent | t,         | t <sub>2</sub> | t <sub>3</sub> | t4  | t <sub>5</sub> |       |       | Σn             | 36    |
|                                                                  | $\Sigma Z^{2} =$               | 9.18  |       | Count      | 34         | 1              | 0              | 0   | 0              |       |       | $\Sigma S_{k}$ | 7     |
|                                                                  | —— к                           | 00    |       | 500        | <b>v</b> . |                | ~              | ~   | v              |       |       | n              | •     |

Z-bar= $\Sigma Z_k/K$ = -0.30

| $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 8.36$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 15.51 | Test for station homo             | ogeneity |
|---------------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------------|----------|
|                                                         | р                   | 0.399 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$                                       | $\mathbf{Z}_{calc}$ | 0.58  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT   |
| 108.33                                                  | р                   | 0.718 |                                         |       | H <sub>A</sub> (± trend)          | REJECT   |



| Seasona                                | al-Kendall Slop | e Confidence | Intervals |  |  |  |  |  |  |  |
|----------------------------------------|-----------------|--------------|-----------|--|--|--|--|--|--|--|
| Lower Sen's Uppe<br>α Limit Slope Limi |                 |              |           |  |  |  |  |  |  |  |
| α                                      | Limit           | Slope        | Limit     |  |  |  |  |  |  |  |
| 0.010                                  | -0.08           |              | 0.13      |  |  |  |  |  |  |  |
| 0.050                                  | -0.04           | 0.02         | 0.11      |  |  |  |  |  |  |  |
| 0.100                                  | -0.03           | 0.02         | 0.08      |  |  |  |  |  |  |  |
| 0.200                                  | -0.01           |              | 0.05      |  |  |  |  |  |  |  |
|                                        |                 |              |           |  |  |  |  |  |  |  |

| Sito | #1 |
|------|----|
| Site | #4 |

|                              |                                          | -                           |                             |                            |                      |                                     |                     |                    |                                              |                         |                       |                             |                            |
|------------------------------|------------------------------------------|-----------------------------|-----------------------------|----------------------------|----------------------|-------------------------------------|---------------------|--------------------|----------------------------------------------|-------------------------|-----------------------|-----------------------------|----------------------------|
| bel                          | Water Year<br>WY2008<br>WY2009<br>WY2010 | Oct<br>52.4<br>42.9<br>59.5 | Nov<br>61.0<br>66.4<br>62.7 | <b>Dec</b><br>51.6<br>68.7 | Jan                  | <b>Feb</b><br>62.5<br>61.4          | <u>Mar</u><br>71.7  | <b>Apr</b><br>75.2 | May<br>48.7<br>46.3<br>47.4                  | Jun<br>34.8<br>38.9     | Jul<br>46.5<br>56.0   | Aug<br>53.1<br>59.8<br>61.3 | <b>Sep</b><br>45.6<br>47.7 |
|                              | WY2011<br>WY2012<br>WY2013               |                             | 36.9<br>65.7<br>74.4        |                            |                      | 61.3<br>67.0<br>64.1                |                     |                    | 42.7<br>62.1<br>46.5                         |                         |                       | 65.5<br>51.7<br>66.0        |                            |
|                              | n                                        | 3                           | 6                           | 2                          | 0                    | 5                                   | 1                   | 1                  | 6                                            | 2                       | 2                     | 6                           | 2                          |
|                              | t <sub>1</sub><br>t <sub>2</sub>         | 3<br>0                      | 6<br>0                      | 2<br>0                     | 0<br>0               | 5<br>0                              | 1<br>0              | 1<br>0             | 6<br>0                                       | 2<br>0                  | 2<br>0                | 6<br>0                      | 2<br>0                     |
|                              | t₃<br>t₄<br>t₅                           | 0<br>0<br>0                 | 0<br>0<br>0                 | 0<br>0<br>0                | 0<br>0<br>0          | 0<br>0<br>0                         | 0<br>0<br>0         | 0<br>0<br>0        | 0<br>0<br>0                                  | 0<br>0<br>0             | 0<br>0<br>0           | 0<br>0<br>0                 | 0<br>0<br>0                |
|                              | b-a<br>c-a                               | -1<br>1                     | 1                           |                            |                      |                                     |                     |                    | -1<br>-1                                     | 1                       | 1                     | 1<br>1                      | 1                          |
|                              | d-a<br>e-a                               |                             | -1                          |                            |                      |                                     |                     |                    | -1<br>1                                      |                         |                       | 1<br>-1                     |                            |
|                              | c-b<br>d-b                               | 1                           | ا<br>1-1                    | 1                          |                      | -1<br>-1                            |                     |                    | -1<br>1<br>-1                                |                         |                       | 1<br>1                      |                            |
|                              | e-b<br>f-b                               |                             | -1<br>1                     |                            |                      | 1<br>1                              |                     |                    | 1<br>1                                       |                         |                       | -1<br>1                     |                            |
|                              | d-c<br>e-c                               |                             | -1<br>1                     |                            |                      | -1<br>1                             |                     |                    | -1<br>1                                      |                         |                       | 1<br>-1                     |                            |
|                              | e-d<br>f-d                               |                             | 1<br>1                      |                            |                      | 1<br>1                              |                     |                    | -1<br>1<br>1                                 |                         |                       | -1<br>1                     |                            |
| :                            | f-e<br>S <sub>k</sub>                    | 1                           | 1<br>5                      | 1                          | 0                    | -1<br>2                             | 0                   | 0                  | -1<br>-1                                     | 1                       | 1                     | 1<br>7                      | 1                          |
| σ                            | 2 <sub>s</sub> =                         | 3.67                        | 28.33                       | 1.00                       |                      | 16.67                               |                     |                    | 28.33                                        | 1.00                    | 1.00                  | 28.33                       | 1.00                       |
| <b>Z</b> <sub>k</sub> =<br>Z | S <sub>k</sub> /σ <sub>S</sub>           | 0.52<br>0.27                | 0.94<br>0.88                | 1.00<br>1.00               |                      | 0.49<br>0.24                        |                     |                    | -0.19<br>0.04                                | 1.00<br>1.00            | 1.00<br>1.00          | 1.32<br>1.73                | 1.00<br>1.00               |
|                              | $\Sigma Z_{k} = \Sigma Z_{k}^{2} =$      | 7.08<br>7.16                |                             | Tie Extent<br>Count        | t <sub>1</sub><br>36 | t <sub>2</sub><br>0                 | t <sub>3</sub><br>0 | t₄<br>0            | t₅<br>0                                      |                         |                       | Σn<br>ΣS <sub>k</sub>       | 36<br>18                   |
| Z                            | ·bar=ΣZ <sub>k</sub> /K=                 | 0.79                        |                             |                            |                      |                                     |                     |                    |                                              |                         |                       |                             |                            |
|                              | χ² <sub>h</sub> =ΣΖ² <sub>k</sub> -k     | K(Z-bar) <sup>2</sup> =     | 1.59<br><b>0.991</b>        |                            | @α=5%                | % χ <sup>2</sup> <sub>(K-1)</sub> = | 15.51               | ۲<br>د             | Test for stati                               | ion homoge              | neity                 |                             |                            |
|                              | ΣVAR(S <sub>k</sub> )<br>109.33          | Z <sub>calc</sub>           | 1.63<br>0.948               |                            | @α/2=                | 2.5% <b>Z</b> =                     | 1.96                | ,                  | H <sub>0</sub> (No t<br>H <sub>4</sub> (± ti | rend) A                 | CCEPT                 |                             |                            |
| ו<br>ד <sup>80</sup> ד       |                                          | P                           | 01010                       |                            |                      |                                     |                     |                    |                                              |                         |                       |                             |                            |
| 70 -                         | + 0                                      |                             |                             | Δ                          |                      |                                     | *                   |                    | -                                            |                         |                       |                             |                            |
| 50 -                         |                                          |                             |                             |                            | *                    | $\leq$                              | $\langle \rangle$   | $\overline{}$      | =                                            | Seasonal-               | Kendall Slope         | Confidence Ir               | utervals                   |
| ;0 -                         |                                          |                             |                             |                            | $\sum$               | $\square$                           | <b>_</b>            |                    |                                              | <u>α</u><br>0.010       | Limit<br>-0.36        | Slope                       | Limit<br>3.38              |
| .0<br>30                     | •                                        |                             | •                           |                            |                      |                                     |                     |                    |                                              | 0.050<br>0.100<br>0.200 | -0.04<br>0.29<br>0.88 | 1.50                        | 2.64<br>2.07<br>1.70       |
| 20<br>10                     | WY2008                                   | WY2                         | 2009                        | WY2010                     | WY2                  | .011                                | WY2012              | WY2                | 2013                                         |                         |                       |                             |                            |
|                              | Oct                                      | t — 🗗                       | – Nov                       | - <u>A</u> Dec             | -0-                  | -Jan                                | <del></del>         | 0-                 | - Mar                                        |                         |                       |                             |                            |
|                              | —+— Apr                                  | r                           | -May                        | • Jun                      | — <del>X</del> —     | - Jul                               |                     |                    | -Sep                                         |                         |                       |                             |                            |

| Site | #46 |
|------|-----|
| 0.00 |     |

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| Row label | Water Year                      | Oct                     | Nov        | Dec                | Jan            | Feb               | Mar            | Apr            | Мау                                         | Jun         | Jul             | Aug              | Sep    |
|-----------|---------------------------------|-------------------------|------------|--------------------|----------------|-------------------|----------------|----------------|---------------------------------------------|-------------|-----------------|------------------|--------|
| а         | WY2008                          | 10.0                    | 8.2        |                    |                |                   | 15.6           | 16.8           | 7.7                                         | 4.8         | 7.9             | 7.7              | 5.9    |
| b         | WY2009                          | 6.3                     | 12.2       | 12.0               |                | 13.3              |                |                | 7.5                                         | 6.0         | 11.8            | 13.7             | 7.2    |
| c<br>d    | WY2010                          | 11.6                    | 13.0       | 14.1               |                | 15.1              |                |                | 7.8                                         |             |                 | 12.2             |        |
| e         | WY2012                          |                         | 11.8       |                    |                | 15.5              |                |                | 9.9                                         |             |                 | 8.1              |        |
| f         | WY2013                          |                         | 13.7       |                    |                | 11.3              |                |                | 7.3                                         |             |                 | 14.4             |        |
|           | n                               | 3                       | 6          | 2                  | 0              | 5                 | 1              | 1              | 6                                           | 2           | 2               | 6                | 2      |
|           | t <sub>1</sub>                  | 3                       | 6          | 2                  | 0              | 5                 | 1              | 1              | 6                                           | 2           | 2               | 4                | 2      |
|           | t <sub>2</sub>                  | 0                       | 0          | 0                  | 0              | 0                 | 0              | 0              | 0                                           | 0           | 0               | 1                | 0      |
|           | t <sub>3</sub>                  | 0                       | 0          | 0                  | 0              | 0                 | 0              | 0              | 0                                           | 0           | 0               | 0                | 0      |
|           | t <sub>4</sub>                  | 0                       | 0          | 0                  | 0              | 0                 | 0              | 0              | 0                                           | 0           | 0               | 0                | 0      |
|           | L <sub>5</sub>                  | 0                       | 0          | 0                  | 0              | 0                 | 0              | 0              | 0                                           | 0           | 0               | 0                | 0      |
|           | b-a                             | -1                      | 1          |                    |                |                   |                |                | -1                                          | 1           | 1               | 1                | 1      |
|           | c-a                             | 1                       | 1          |                    |                |                   |                |                | 1                                           |             |                 | 1                |        |
|           | d-a                             |                         | -1         |                    |                |                   |                |                | -1                                          |             |                 | 1                |        |
|           | e-a                             |                         | 1          |                    |                |                   |                |                | 1                                           |             |                 | 1                |        |
|           | r-a                             | 1                       | 1          | 1                  |                | 1                 |                |                | -1                                          |             |                 | -1               |        |
|           | d-b                             | 1                       | -1         |                    |                | 1                 |                |                | -1                                          |             |                 | -1               |        |
|           | e-b                             |                         | -1         |                    |                | 1                 |                |                | 1                                           |             |                 | -1               |        |
|           | f-b                             |                         | 1          |                    |                | -1                |                |                | -1                                          |             |                 | 1                |        |
|           | d-c                             |                         | -1         |                    |                | -1                |                |                | -1                                          |             |                 | 0                |        |
|           | e-c                             |                         | -1         |                    |                | 1                 |                |                | 1                                           |             |                 | -1               |        |
|           | t-c                             |                         | 1          |                    |                | -1                |                |                | -1                                          |             |                 | 1                |        |
|           | e-a<br>f-d                      |                         | 1          |                    |                | ا<br>1-           |                |                | 1                                           |             |                 | -1               |        |
|           | f-e                             |                         | 1          |                    |                | -1                |                |                | -1                                          |             |                 | 1                |        |
|           | S <sub>k</sub>                  | 1                       | 5          | 1                  | 0              | 0                 | 0              | 0              | -1                                          | 1           | 1               | 4                | 1      |
|           | <sup>2</sup> c=                 | 3.67                    | 28.33      | 1 00               |                | 16.67             |                |                | 28.33                                       | 1.00        | 1 00            | 27.33            | 1 00   |
| 7. =      | s-<br>S./m                      | 0.52                    | 0.94       | 1.00               |                | 0.00              |                |                | -0.19                                       | 1.00        | 1.00            | 0.77             | 1.00   |
| -к-       | <b>0</b> <sub>k</sub> /05       | 0.02                    | 0.01       | 1.00               |                | 0.00              |                |                | 0.10                                        | 1.00        | 1.00            | 0.50             | 1.00   |
| 4         | - k                             | 0.21                    | 0.00       | 1.00               |                | 0.00              |                |                | 0.04                                        | 1.00        | 1.00            | 0.00             | 1.00   |
|           | $\Sigma Z_k =$                  | 6.04                    | Γ          | Tie Extent         | t <sub>1</sub> | t <sub>2</sub>    | t <sub>3</sub> | t <sub>4</sub> | t <sub>5</sub>                              |             |                 | Σn               | 36     |
|           | $\Sigma Z_{k}^{2} =$            | 5.78                    |            | Count              | 34             | 1                 | 0              | 0              | 0                                           |             |                 | ΣS <sub>k</sub>  | 13     |
| Z         | -bar=ΣZ <sub>k</sub> /K=        | 0.67                    | E          |                    |                |                   |                |                |                                             |             |                 |                  |        |
|           |                                 |                         |            |                    |                |                   |                |                |                                             |             |                 |                  |        |
|           | $\gamma^2_{k} = \Sigma Z^2_{k}$ | K(Z-bar) <sup>2</sup> = | 1.72       |                    | @α=5°          | $\sqrt{\gamma^2}$ | 15.51          | -              | Test for sta                                | tion homoge | eneity          |                  |        |
|           | λ п к                           | n (_ 2007)              | 0.988      |                    | 04 0           | ν (K-1)           | 10101          |                | $\gamma^2 < \gamma^2 < \gamma^2 < \gamma^2$ |             |                 |                  |        |
|           | SVAR(S)                         | 7                       | 1 15       |                    | <b>@</b> ~-    | 2.5% 7_           | 1.06           |                |                                             | trond)      |                 |                  |        |
|           | 108.33                          | L <sub>calc</sub>       | 0.876      |                    | eu=            | 2.3 /0 2=         | 1.90           |                | H. (+ 1                                     | rend) F     |                 |                  |        |
| l         | 100100                          | ٢                       | 0.0.0      |                    |                |                   |                |                | · A (= ·                                    |             |                 |                  |        |
|           | 10                              |                         |            |                    |                |                   |                |                |                                             |             |                 |                  |        |
|           | 18                              | +                       |            |                    |                |                   |                |                |                                             | 1           |                 |                  |        |
| Ē         | 16                              | 0                       |            | *                  |                |                   | *              |                |                                             |             |                 |                  |        |
| ĥ         | 14                              |                         |            | A                  |                | *                 |                |                | Æ                                           | Seasona     | al-Kendall Slop | e Confidence Int | ervals |
| Ξ         | 12                              |                         |            |                    |                |                   |                | $\nearrow$     |                                             |             | Lower           | Sione            | Upper  |
| ta        |                                 |                         |            |                    |                |                   |                |                | *                                           | 0.010       | -0.20           | olope            | 1.10   |
| ř         | 10 E                            | $\checkmark$            |            |                    | $\overline{}$  | /                 | X              |                |                                             | 0.050       | -0.11           |                  | 0.80   |
| ف         | 8 [                             |                         |            | /                  |                |                   |                |                |                                             | 0.100       | -0.03           | 0.20             | 0.78   |
| at        | 6 E                             |                         | $\searrow$ |                    |                |                   |                |                |                                             | 0.200       | 0.05            |                  | 0.58   |
| ulf       | ĭ⊧ ¯                            | •                       |            |                    |                |                   |                |                |                                             |             |                 |                  |        |
| Š         | 4                               |                         |            |                    |                |                   |                |                |                                             | 1           |                 |                  |        |
|           | 2                               |                         |            |                    |                |                   |                |                |                                             | 4           |                 |                  |        |
|           | <u> </u>                        |                         |            |                    |                |                   |                |                |                                             |             |                 |                  |        |
|           | U - ₩/∨                         | 2008                    | W/Y2000    | ₩/∨ว∩4             | 10 \/          | Y2011             | \\\/∨ว∩        | 12 \^          | /Y2013                                      | -           |                 |                  |        |
|           | VV I                            |                         |            | , , D-             |                |                   | Each a         |                | .12010                                      |             |                 |                  |        |
|           |                                 |                         |            |                    | U — → – Ja     | an <del>*</del>   | тер —<br>Анс — | - iviar        |                                             |             |                 |                  |        |
|           |                                 | - Abi                   | ivia       | y <del>v</del> Jur | I - J          | ui 🗕              | ruy —          | - Seh          |                                             |             |                 |                  |        |

| Site                    | #46                                      |       |       | S          | easonal        | Kendall        | analysis       | for Zinc | , Dissolv | ed (ug/l) |       |       |      |
|-------------------------|------------------------------------------|-------|-------|------------|----------------|----------------|----------------|----------|-----------|-----------|-------|-------|------|
| Row label               | Water Year                               | Oct   | Nov   | Dec        | Jan            | Feb            | Mar            | Apr      | May       | Jun       | Jul   | Aug   | Sep  |
| а                       | WY2008                                   | 2.4   | 3.2   |            |                |                | 2.5            | 3.0      | 2.2       | 1.6       | 1.6   | 2.4   | 3.8  |
| b                       | WY2009                                   | 4.4   | 2.2   | 3.1        |                | 2.1            |                |          | 2.6       | 1.7       | 1.5   | 2.1   | 4.6  |
| С                       | WY2010                                   | 2.3   | 2.2   | 1.8        |                | 2.2            |                |          | 1.6       |           |       | 1.8   |      |
| d                       | WY2011                                   |       | 7.8   |            |                | 2.3            |                |          | 2.0       |           |       | 1.6   |      |
| е                       | WY2012                                   |       | 3.9   |            |                | 2.1            |                |          | 3.0       |           |       | 3.0   |      |
| f                       | WY2013                                   |       | 2.1   |            |                | 1.7            |                |          | 2.6       |           |       | 3.4   |      |
|                         | n                                        | 3     | 6     | 2          | 0              | 5              | 1              | 1        | 6         | 2         | 2     | 6     | 2    |
|                         | t,                                       | 3     | 6     | 2          | 0              | 5              | 1              | 1        | 6         | 2         | 2     | 6     | 2    |
|                         | t <sub>2</sub>                           | 0     | 0     | 0          | 0              | 0              | 0              | 0        | 0         | 0         | 0     | 0     | 0    |
|                         | t <sub>3</sub>                           | 0     | 0     | 0          | 0              | 0              | 0              | 0        | 0         | 0         | 0     | 0     | 0    |
|                         | t4                                       | 0     | 0     | 0          | 0              | 0              | 0              | 0        | 0         | 0         | 0     | 0     | 0    |
|                         | t <sub>5</sub>                           | 0     | 0     | 0          | 0              | 0              | 0              | 0        | 0         | 0         | 0     | 0     | 0    |
|                         | b-a                                      | 1     | -1    |            |                |                |                |          | 1         | 1         | -1    | -1    | 1    |
|                         | c-a                                      | -1    | -1    |            |                |                |                |          | -1        |           |       | -1    |      |
|                         | d-a                                      |       | 1     |            |                |                |                |          | -1        |           |       | -1    |      |
|                         | e-a                                      |       | 1     |            |                |                |                |          | 1         |           |       | 1     |      |
|                         | f-a                                      |       | -1    |            |                |                |                |          | 1         |           |       | 1     |      |
|                         | c-b                                      | -1    | -1    | -1         |                | 1              |                |          | -1        |           |       | -1    |      |
|                         | d-b                                      |       | 1     |            |                | 1              |                |          | -1        |           |       | -1    |      |
|                         | e-b                                      |       | 1     |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | f-b                                      |       | -1    |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | d-c                                      |       | 1     |            |                | 1              |                |          | 1         |           |       | -1    |      |
|                         | e-c                                      |       | 1     |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | f-c                                      |       | -1    |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | e-d                                      |       | -1    |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | f-d                                      |       | -1    |            |                | -1             |                |          | 1         |           |       | 1     |      |
|                         | I-e<br>S <sub>k</sub>                    | -1    | -1    | -1         | 0              | -1             | 0              | 0        | -1        | 1         | -1    | 3     | 1    |
|                         |                                          |       | -     |            | -              |                | -              | -        | -         |           |       | -     |      |
| σ                       | ²s=                                      | 3.67  | 28.33 | 1.00       |                | 16.67          |                |          | 28.33     | 1.00      | 1.00  | 28.33 | 1.00 |
| <b>Z</b> <sub>k</sub> = | $S_k/\sigma_S$                           | -0.52 | -0.56 | -1.00      |                | -0.98          |                |          | 0.94      | 1.00      | -1.00 | 0.56  | 1.00 |
| 2                       | Z <sup>2</sup> <sub>k</sub>              | 0.27  | 0.32  | 1.00       |                | 0.96           |                |          | 0.88      | 1.00      | 1.00  | 0.32  | 1.00 |
|                         | $\Sigma Z_{\nu} =$                       | -0.56 | Г     | Tie Extent | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t₄       | t₅        |           |       | Σn    | 36   |
|                         | $\Sigma Z^2 =$                           | 6 75  |       | Count      | 36             | 0              | 0              | 0        | 0         |           |       | ΣSμ   | 0    |
| 7                       | $- k = k^{-}$                            | 0.75  | Ŀ     | Jount      | 00             | U              | U              | v        | U         |           |       | 20K   | U    |
| 2                       | $\Delta \omega = \Delta z_{k}/\Lambda =$ | -0.00 |       |            |                |                |                |          |           |           |       |       |      |

| χ <sup>2</sup> h=Σ | $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 6.72$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 15.51 | Test for station hom              | ogeneity |
|--------------------|---------------------------------------------------|---------------------|-------|-----------------------------------------|-------|-----------------------------------|----------|
| р                  |                                                   |                     | 0.568 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| ΣVAR(              | S <sub>k</sub> )                                  | $\mathbf{Z}_{calc}$ | 0.00  | @α/2=2.5% <b>Z</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | ACCEPT   |
| 109.3              | 3                                                 | р                   | 0.500 |                                         |       | H <sub>A</sub> (± trend)          | REJECT   |



HGCMC 2013 Water Year FWMP Annual Report

## INTERPRETIVE REPORT SITE 57

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date      | Parameter             | Value            | Qualifier     | Notes                          |  |
|------------------|-----------------------|------------------|---------------|--------------------------------|--|
| No outliers have | been identified by HG | CMC for the peri | od of October | r 2007 through September 2013. |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|             |                             | Limits              |                 |              |                 |  |
|-------------|-----------------------------|---------------------|-----------------|--------------|-----------------|--|
| Sample Date | Parameter                   | Value               | Lower           | Upper        | Hardness        |  |
| No exceedan | ces have been identified by | y HGCMC for the per | riod of October | 2012 through | September 2013. |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Though values for dissolved cadmium, dissolved lead, and dissolved zinc had shown a large variation in the past, the current water year's data continues the trend from water year 2009 of these analytes leveling out. Also, there appears to be a gradual increase in dissolved nickel over the past few years, however the values are within the historical range,

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13 (WY2008-WY2013). Datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. There were no statistically significant trends calculated for these parameters this water year.

|                    | Mann-Ker | ndall test sta | Sen's slope estimate |        |        |  |
|--------------------|----------|----------------|----------------------|--------|--------|--|
| Parameter          | n*       | <b>p</b> **    | Trend                | Q      | Q(%)   |  |
| Conductivity Field | 6        | < 0.01         | -                    | -8.767 | -2.072 |  |
| pH Field           | 6        | 0.02           | +                    | 0.024  | 0.32   |  |
| Alkalinity, Total  | 6        | 0.02           | +                    | 2.75   | 2.0    |  |
| Sulfate, Total     | 6        | 0.50           |                      |        |        |  |
| Zinc, Dissolved    | 6        | 0.30           |                      |        |        |  |

### Table of Summary Statistics for Trend Analysis

\* Number of Years \*\* Significance level



Figure 1. Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate from Site 57 Compared to the Shewhart-CUSUM Control Limits From Table 1

| Site US/FING - Monitoring Well -23-00-03 |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter                    | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)                          |          | 4.5      |          |          |          |          |          | 5.1      |          |          | 6.5      |          | 5.1      |
| Conductivity-Field(µmho)                 |          | 375      |          |          |          |          |          | 429      |          |          | 380      |          | 380.0    |
| Conductivity-Lab (µmho)                  |          | 384      |          |          |          |          |          | 411      |          |          | 359      |          | 384      |
| pH Lab (standard units)                  |          | 7.57     |          |          |          |          |          | 7.54     |          |          | 7.69     |          | 7.57     |
| pH Field (standard units)                |          | 7.73     |          |          |          |          |          | 7.54     |          |          | 7.78     |          | 7.73     |
| Total Alkalinity (mg/L)                  |          | 161      |          |          |          |          |          | 149      |          |          | 135      |          | 149.0    |
| Total Sulfate (mg/L)                     |          | 51.3     |          |          |          |          |          | 57.8     |          |          | 45       |          | 51.3     |
| Hardness (mg/L)                          |          | 196      |          |          |          |          |          | 202      |          |          | 184      |          | 196.0    |
| Dissolved As (ug/L)                      |          | 0.363    |          |          |          |          |          | 0.529    |          |          | 0.586    |          | 0.529    |
| Dissolved Ba (ug/L)                      |          | 31.4     |          |          |          |          |          | 31.5     |          |          | 29.3     |          | 31.4     |
| Dissolved Cd (ug/L)                      |          | 0.187    |          |          |          |          |          | 0.192    |          |          | 0.167    |          | 0.1870   |
| Dissolved Cr (ug/L)                      |          | 0.364    |          |          |          |          |          | 0.509    |          |          | 0.524    |          | 0.509    |
| Dissolved Cu (ug/L)                      |          | 0.318    |          |          |          |          |          | 1.49     |          |          | 0.78     |          | 0.780    |
| Dissolved Pb (ug/L)                      |          | 0.0353   |          |          |          |          |          | 1.11     |          |          | 0.185    |          | 0.1850   |
| Dissolved Ni (ug/L)                      |          | 1.86     |          |          |          |          |          | 2.34     |          |          | 2.85     |          | 2.340    |
| Dissolved Ag (ug/L)                      |          | 0.002    |          |          |          |          |          | 0.002    |          |          | 0        |          | 0.002    |
| Dissolved Zn (ug/L)                      |          | 6.92     |          |          |          |          |          | 19       |          |          | 19.6     |          | 19.00    |
| Dissolved Se (ug/L)                      |          | 0.965    |          |          |          |          |          | 0.544    |          |          | 0.77     |          | 0.770    |
| Dissolved Hg (ug/L)                      |          | 0.000187 |          |          |          |          |          | 0.000278 |          |          | 0.00028  |          | 0.000278 |

#### Olto OEZEMO IManitarina Mall 00.00.001

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

## Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
|          |             |             |               |          |           |                            |
| 57       | 11/13/2012  | 12:00 AM    | pH Lab, su    | 7.57     | J         | Hold Time Violation        |
|          |             |             | Hg diss, µg/l | 0.000187 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 57       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 7.54     | J         | Hold Time Violation        |
|          |             |             | Hg diss, µg/l | 0.000278 | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 57       | 8/13/2013   | 12:00 AM    | Cond, µmhos   | 359      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 135      | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 45       | J         | Sample receipt temperature |
|          |             |             | Hg diss, µg/l | 0.00028  | U         | Field Blank Contamination  |

| Qualifier          | Description                                                                                                                                                                                                                                                                                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J<br>NJ<br>R<br>UJ | PositivelyIdentified - Approximate concentration<br>Presumptive Evidence For Tentative Identification<br>TentativelyIdentified - Approximate Concentration<br>Rejected - Cannot be Verified<br>HGCMC 2013 Water Year FWMP Annuar Report<br>Not Detected Above Approximate Quantitation Limit |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis









Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 57 – Cadmium Dissolved


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 57 – Silver Dissolved







Site 57 – Mercury Dissolved

| Site             | #57                                   |                         |        | Seasonal     | Kendall        | analysis                            | for Spec          | cific Cond | luctance, F                       | ield (µS/ | /cm)           |               |          |
|------------------|---------------------------------------|-------------------------|--------|--------------|----------------|-------------------------------------|-------------------|------------|-----------------------------------|-----------|----------------|---------------|----------|
| Row label        | Water Year                            | Oct                     | Nov    | Dec          | Jan            | Feb                                 | Mar               | Apr        | Мау                               | Jun       | Jul            | Aug           | Sep      |
| а                | WY2008                                | 420                     | 438    |              |                |                                     |                   | 472        | 450                               | 408       | 420            | 421           | 440      |
| b                | WY2009                                | 393                     | 400    |              |                |                                     |                   | 397        | 433                               | 436       | 451            | 436           | 437      |
| d                | WY2011                                | 440                     | 423    |              |                |                                     |                   |            | 431                               |           |                | 475           |          |
| e                | WY2012                                |                         | 366    |              |                |                                     |                   |            | 405                               |           |                | 397           |          |
| f                | WY2013                                | 2                       | 375    | 0            | 0              | 0                                   | 0                 | 2          | 429                               | 2         | 2              | 380           | 2        |
|                  | п                                     | 3                       | 0      | 0            | 0              | 0                                   | U                 | 2          | 0                                 | 2         | 2              | 0             | 2        |
|                  | t,                                    | 3                       | 6      | 0            | 0              | 0                                   | 0                 | 2          | 6                                 | 2         | 2              | 6             | 2        |
|                  | t <sub>2</sub>                        | 0                       | 0      | 0            | 0              | 0                                   | 0                 | 0          | 0                                 | 0         | 0              | 0             | 0        |
|                  | l <sub>3</sub>                        | 0                       | 0      | 0            | 0              | 0                                   | 0                 | 0          | 0                                 | 0         | 0              | 0             | 0        |
|                  | t <sub>5</sub>                        | 0                       | 0      | 0            | 0              | 0                                   | 0                 | 0          | 0                                 | Ő         | Ő              | Ő             | ů<br>0   |
|                  | h-a                                   | -1                      | -1     |              |                |                                     |                   | -1         | -1                                | 1         | 1              | 1             | _1       |
|                  | c-a                                   | -1                      | -1     |              |                |                                     |                   | -1         | -1                                | 1         | i              | 1             | -1       |
|                  | d-a                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | e-a                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | f-a                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | C-D                                   | 1                       | 1      |              |                |                                     |                   |            | -1                                |           |                | 1             |          |
|                  | а-b<br>e-b                            |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1<br>-1      |          |
|                  | f-b                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | d-c                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | e-c                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | f-c                                   |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1            |          |
|                  | e-d<br>f-d                            |                         | -1     |              |                |                                     |                   |            | -1                                |           |                | -1<br>-1      |          |
|                  | f-e                                   |                         | 1      |              |                |                                     |                   |            | 1                                 |           |                | -1            |          |
| :                | S <sub>k</sub>                        | 1                       | -11    | 0            | 0              | 0                                   | 0                 | -1         | -11                               | 1         | 1              | -9            | -1       |
| σ                | <sup>2</sup> s=                       | 3.67                    | 28.33  |              |                |                                     |                   | 1.00       | 28.33                             | 1.00      | 1.00           | 28.33         | 1.00     |
| Z <sub>k</sub> = | S <sub>k</sub> /σ <sub>S</sub>        | 0.52                    | -2.07  |              |                |                                     |                   | -1.00      | -2.07                             | 1.00      | 1.00           | -1.69         | -1.00    |
| 2                | <u>z<sup>2</sup></u> k                | 0.27                    | 4.27   |              |                |                                     |                   | 1.00       | 4.27                              | 1.00      | 1.00           | 2.86          | 1.00     |
|                  | -7                                    |                         | Г      |              |                |                                     |                   |            | . 1                               |           |                | Σ.a.          |          |
|                  | $\Sigma Z_k =$                        | -5.30                   |        | Tie Extent   | t <sub>1</sub> | t <sub>2</sub>                      | t <sub>3</sub>    | t₄         | t <sub>5</sub>                    |           |                | 2n            | 29       |
| -                | ـــــــــــــــــــــــــــــــــــــ | 15.67                   | L      | Count        | 29             | 0                                   | 0                 | 0          | 0                                 |           |                | 23k           | -30      |
| 2                | Dai=22k/K=                            | -0.66                   |        |              |                |                                     |                   |            |                                   |           |                |               |          |
|                  |                                       |                         |        |              |                |                                     |                   |            |                                   |           |                |               |          |
|                  | $\chi^2_h = \Sigma Z^2_k$             | K(Z-bar) <sup>2</sup> = | 12.16  |              | @α=5°          | % χ <sup>2</sup> <sub>(K-1)</sub> = | 14.07             | Te         | est for station ho                | mogeneity |                |               |          |
|                  |                                       | р                       | 0.095  |              |                |                                     |                   |            | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ |           | ACCEPT         |               |          |
|                  | ΣVAR(S <sub>k</sub> )<br>92.67        | Z <sub>calc</sub>       | -3.01  | L            | @α/2=          | =2.5% <b>Z</b> =                    | 1.96              |            | H₀ (No trei                       | nd)       | REJECT         |               |          |
| I                | 32.07                                 | þ                       | 0.001  |              |                |                                     |                   |            | Π <sub>Α</sub> (± tien            | iu)       | ACCLIT         |               |          |
| σ                | -00                                   |                         |        |              |                |                                     |                   |            |                                   |           |                |               |          |
| , Tiel           | 470                                   | +                       |        |              |                |                                     |                   |            |                                   |           |                |               |          |
| é .              | 420                                   |                         |        |              |                |                                     |                   |            | •                                 | Seasona   | -Kendall Slope | Confidence li | ntervals |
| ů (              | 370 🖣 —                               | -                       |        |              |                | 8                                   |                   |            | •                                 |           | Lower          | Sen's         | Upper    |
| D ita            | 320                                   |                         |        |              |                |                                     |                   |            |                                   | α         | Limit          | Slope         | Limit    |
| <u><u> </u></u>  | 270 -                                 |                         |        |              |                |                                     |                   |            |                                   | 0.050     | -13.46         |               | -4.51    |
| pr Sr            | 220                                   |                         |        |              |                |                                     |                   |            |                                   | 0.100     | -13.00         | -8.77         | -5.78    |
| ुल 🔿 🖯           | 170                                   |                         |        |              |                |                                     |                   |            |                                   | 0.200     | -11.40         |               | -7.44    |
| о<br>0           | 120                                   |                         |        |              |                |                                     |                   |            |                                   |           |                | <b>.</b>      |          |
| cifi             | 70                                    |                         |        |              |                |                                     |                   |            |                                   |           |                | -2.1%         |          |
| Spe              | 20                                    |                         |        |              | ,              |                                     |                   |            |                                   |           |                |               |          |
|                  | W                                     | (2008                   | WY2009 | WY2010       | WY             | (2011                               | WY2012            | 2 WY2      | 2013                              |           |                |               |          |
|                  |                                       | -Oct                    |        | <u>⊸</u> Deo | ; ⊸            | -Jan                                | <del>_∗_</del> Fe | b —•       | -Mar                              |           |                |               |          |
|                  | -+                                    | – Apr                   | May    | • Jun        | —×             | – Jul                               | ––– Au            | ıg —       | -Sep                              |           |                |               |          |

| Site             | #57                                    | Seasonal Kendall analysis for pH, Field, Standard Units |          |            |         |                |     |       |       |       |       |                 |      |
|------------------|----------------------------------------|---------------------------------------------------------|----------|------------|---------|----------------|-----|-------|-------|-------|-------|-----------------|------|
| Row label        | Water Year                             | Oct                                                     | Nov      | Dec        | Jan     | Feb            | Mar | Apr   | May   | Jun   | Jul   | Aug             | Sep  |
| а                | WY2008                                 | 7.6                                                     | 7.6      |            |         |                |     | 7.8   | 7.7   | 7.7   | 7.5   | 6.9             | 7.3  |
| b                | WY2009                                 | 7.7                                                     | 7.7      |            |         |                |     | 7.2   | 7.3   | 7.6   | 7.2   | 7.4             | 7.5  |
| С                | WY2010                                 | 7.6                                                     | 7.3      |            |         |                |     |       | 7.5   |       |       | 7.2             |      |
| d                | WY2011                                 |                                                         | 7.7      |            |         |                |     |       | 7.6   |       |       | 7.7             |      |
| e                | WY2012                                 |                                                         | 7.7      |            |         |                |     |       | 7.5   |       |       | 7.8             |      |
| I                | n n                                    | 3                                                       | <u> </u> | 0          | 0       | 0              | 0   | 2     | 7.5   | 2     | 2     | 7.8             | 2    |
|                  |                                        | 0                                                       | Ū        | •          | Ū       | Ū.             |     | -     | °,    | -     | -     | U U             | -    |
|                  | t <sub>1</sub>                         | 3                                                       | 4        | 0          | 0       | 0              | 0   | 2     | 6     | 2     | 2     | 6               | 2    |
|                  | t <sub>2</sub>                         | 0                                                       | 1        | 0          | 0       | 0              | 0   | 0     | 0     | 0     | 0     | 0               | 0    |
|                  | t <sub>3</sub>                         | 0                                                       | 0        | 0          | 0       | 0              | 0   | 0     | 0     | 0     | 0     | 0               | 0    |
|                  | t <sub>4</sub>                         | 0                                                       | 0        | 0          | 0       | 0              | 0   | 0     | 0     | 0     | 0     | 0               | 0    |
|                  | t <sub>5</sub>                         | 0                                                       | 0        | 0          | 0       | 0              | 0   | 0     | 0     | 0     | 0     | 0               | 0    |
|                  | b-a                                    | 1                                                       | 1        |            |         |                |     | -1    | -1    | -1    | -1    | 1               | 1    |
|                  | c-a                                    | -1                                                      | -1       |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | d-a                                    |                                                         | 1        |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | e-a                                    |                                                         | 1        |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | f-a                                    |                                                         | 1        |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | c-b                                    | -1                                                      | -1       |            |         |                |     |       | 1     |       |       | -1              |      |
|                  | d-b                                    |                                                         | 1        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | e-b                                    |                                                         | 1        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | T-D                                    |                                                         | 1        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | 0-C                                    |                                                         | 1        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | e-c                                    |                                                         | 1        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | e-d                                    |                                                         | 1        |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | f-d                                    |                                                         | 1        |            |         |                |     |       | -1    |       |       | 1               |      |
|                  | f-e                                    |                                                         | 0        |            |         |                |     |       | 1     |       |       | 1               |      |
|                  | S <sub>k</sub>                         | -1                                                      | 10       | 0          | 0       | 0              | 0   | -1    | 1     | -1    | -1    | 13              | 1    |
| σ                | <sup>2</sup> s=                        | 3.67                                                    | 27.33    |            |         |                |     | 1.00  | 28.33 | 1.00  | 1.00  | 28.33           | 1.00 |
| Z <sub>k</sub> = | $S_k/\sigma_S$                         | -0.52                                                   | 1.91     |            |         |                |     | -1.00 | 0.19  | -1.00 | -1.00 | 2.44            | 1.00 |
| -                | Z <sup>2</sup> <sub>k</sub>            | 0.27                                                    | 3.66     |            |         |                |     | 1.00  | 0.04  | 1.00  | 1.00  | 5.96            | 1.00 |
|                  | Σ7.=                                   | 2.02                                                    |          | Tie Extent | t       | t <sub>a</sub> | ta  | t     | te    |       |       | Σn              | 29   |
|                  | $\Sigma Z^2 - K^2$                     | 13 93                                                   |          | Count      | -<br>27 | ~<br>1         | 0   | ~     | 0     |       |       | Σ.S.            | 20   |
| 7                |                                        | 0.25                                                    |          | Count      | 21      | I              | 0   | U     | U     |       |       | 20 <sub>K</sub> | 21   |
| 2                | $- \omega u - \omega z_{k'} \Lambda =$ | 0.25                                                    |          |            |         |                |     |       |       |       |       |                 |      |

| $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 13.42$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | = 14.07              | Test for station homo | geneity                           |        |
|----------------------------------------------------|---------------------|-------|-----------------------------------------|----------------------|-----------------------|-----------------------------------|--------|
|                                                    | р                   | 0.062 |                                         |                      |                       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$                                  | $\mathbf{Z}_{calc}$ | 2.09  |                                         | @α/2=2.5% <b>Ζ</b> = | = 1.96                | H <sub>0</sub> (No trend)         | REJECT |
| 91.67                                              | р                   | 0.982 | -                                       |                      |                       | H <sub>A</sub> (± trend)          | ACCEPT |



| Seasonal-Kendall Slope Confidence Intervals |       |       |       |  |  |  |  |  |  |  |  |
|---------------------------------------------|-------|-------|-------|--|--|--|--|--|--|--|--|
|                                             | Lower | Sen's | Upper |  |  |  |  |  |  |  |  |
| α                                           | Limit | Slope | Limit |  |  |  |  |  |  |  |  |
| 0.010                                       | -0.01 |       | 0.13  |  |  |  |  |  |  |  |  |
| 0.050                                       | 0.01  | 0.02  | 0.12  |  |  |  |  |  |  |  |  |
| 0.100                                       | 0.01  | 0.02  | 0.08  |  |  |  |  |  |  |  |  |
| 0.200                                       | 0.02  |       | 0.05  |  |  |  |  |  |  |  |  |

0.3%

| Row label               | Water Year                                     | Oct                 | Nov   | Dec        | Jan   | Feb                   | Mar            | Apr    | May                       | Jun                  | Jul           | Aug            | Sep      |
|-------------------------|------------------------------------------------|---------------------|-------|------------|-------|-----------------------|----------------|--------|---------------------------|----------------------|---------------|----------------|----------|
| а                       | WY2008                                         | 145.0               | 132.0 |            |       |                       |                | 129.0  | 137.0                     | 128.0                | 141.0         | 134.0          | 13       |
| h                       | WY2000                                         | 124.0               | 140.0 |            |       |                       |                | 120.0  | 129.0                     | 124.0                | 127.0         | 126.0          | 12       |
| D                       | W12009                                         | 104.0               | 140.0 |            |       |                       |                | 129.0  | 130.0                     | 134.0                | 137.0         | 130.0          | 12       |
| С                       | WY2010                                         | 137.0               | 140.0 |            |       |                       |                |        | 133.0                     |                      |               | 143.0          |          |
| d                       | WY2011                                         |                     | 135.0 |            |       |                       |                |        | 157.0                     |                      |               | 142.0          |          |
| е                       | WY2012                                         |                     | 143.0 |            |       |                       |                |        | 164.0                     |                      |               | 165.0          |          |
| f                       | WY2013                                         |                     | 161.0 |            |       |                       |                |        | 149.0                     |                      |               | 135.0          |          |
|                         | n                                              | 3                   | 6     | 0          | 0     | 0                     | 0              | 2      | 6                         | 2                    | 2             | 6              |          |
|                         |                                                |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
|                         | t,                                             | 3                   | 4     | 0          | 0     | 0                     | 0              | 0      | 6                         | 2                    | 2             | 6              |          |
|                         | L <sub>2</sub>                                 | 0                   | 1     | 0          | 0     | 0                     | 0              | 1      | 0                         | 0                    | 0             | 0              |          |
|                         | t <sub>3</sub>                                 | 0                   | 0     | 0          | 0     | 0                     | 0              | 0      | 0                         | 0                    | 0             | 0              |          |
|                         | t <sub>4</sub>                                 | 0                   | 0     | 0          | 0     | 0                     | 0              | 0      | 0                         | 0                    | 0             | 0              |          |
|                         | t₅                                             | 0                   | 0     | 0          | 0     | 0                     | 0              | 0      | 0                         | 0                    | 0             | 0              |          |
|                         | ha                                             | 1                   | 1     |            |       |                       |                | 0      | 1                         | 1                    | 1             | 1              |          |
|                         | D-a                                            | - I<br>-1           | 1     |            |       |                       |                | 0      | -1                        | 1                    | -1            | 1              |          |
|                         | d a                                            | -1                  | 1     |            |       |                       |                |        | -1                        |                      |               | 1              |          |
|                         | u-a                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               |                |          |
|                         | e-a                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | f-a                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | c-b                                            | 1                   | 0     |            |       |                       |                |        | -1                        |                      |               | 1              |          |
|                         | d-b                                            |                     | -1    |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | u-b                                            |                     | -1    |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | е-р                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | f-b                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | -1             |          |
|                         | d-c                                            |                     | -1    |            |       |                       |                |        | 1                         |                      |               | -1             |          |
|                         | e-c                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | f-c                                            |                     | 1     |            |       |                       |                |        | 1                         |                      |               | -1             |          |
|                         | 01                                             |                     | 1     |            |       |                       |                |        | 1                         |                      |               | 1              |          |
|                         | e-u                                            |                     | 1     |            |       |                       |                |        |                           |                      |               |                |          |
|                         | t-d                                            |                     | 1     |            |       |                       |                |        | -1                        |                      |               | -1             |          |
|                         | f-e                                            |                     | 1     |            |       |                       |                |        | -1                        |                      |               | -1             |          |
|                         | S <sub>k</sub>                                 | -1                  | 10    | 0          | 0     | 0                     | 0              | 0      | 7                         | 1                    | -1            | 5              |          |
|                         | 2                                              |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
| a                       | ofs=                                           | 3.67                | 27.33 |            |       |                       |                |        | 28.33                     | 1.00                 | 1.00          | 28.33          | 1.       |
| Z <sub>2</sub> =        | S⊧/σs                                          | -0.52               | 1.91  |            |       |                       |                |        | 1.32                      | 1.00                 | -1.00         | 0.94           | -1       |
| - <u>-</u> -            | <b>7</b> <sup>2</sup>                          | 0.07                | 0.00  |            |       |                       |                |        | 4 70                      | 1.00                 | 4.00          | 0.00           |          |
|                         | Z k                                            | 0.27                | 3.00  |            |       |                       |                |        | 1.73                      | 1.00                 | 1.00          | 0.88           | 1        |
|                         | $\Sigma Z =$                                   | 2 64                |       | Tie Extent | t     | t <sub>a</sub>        | t <sub>a</sub> | t      | tr                        |                      |               | Σn             | 29       |
|                         | K                                              | 2.04                |       |            | •     | •2                    | •3             | -4     | -5                        |                      |               |                | 20       |
|                         | $\Sigma Z_{k}^{2}$                             | 9.54                |       | Count      | 25    | 2                     | 0              | 0      | 0                         |                      |               | $\Sigma S_k$   | 20       |
| Z                       | Z-bar=ΣZ <sub>k</sub> /K=                      | 0.38                |       |            |       |                       |                |        |                           |                      |               |                |          |
|                         | ĸ                                              |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
|                         |                                                |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
|                         | $\gamma^2_{\mu} = \Sigma \overline{7}^2_{\mu}$ | $K(7-har)^2 =$      | 8 40  |            | @a=5º | $\sqrt{\gamma^2} = 1$ | 14 07          |        | Test for stat             | ion homoge           | eneity        |                |          |
|                         | λ 11 22 κ                                      | ( <b>2</b> 20.)     | 0.10  | ι L        | 04 0, | ν (κ-1)               |                |        | 2 10 <sup>2</sup>         |                      |               |                |          |
|                         |                                                | р                   | 0.299 |            |       |                       |                |        | λh <sup>&lt;</sup> λ(K-1) | 1                    | ACCEPT        |                |          |
|                         | $\Sigma VAR(S_k)$                              | $\mathbf{Z}_{calc}$ | 2.00  |            | @α/2= | 2.5% <b>Z</b> =       | 1.96           |        | H₀ (No                    | trend) F             | REJECT        |                |          |
|                         | 90.67                                          | р                   | 0.977 |            |       |                       |                |        | H <sub>A</sub> (± t       | rend) <mark>/</mark> | ACCEPT        |                |          |
|                         |                                                |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
| 190 -                   | -                                              |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
| 170 -                   |                                                |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
|                         |                                                |                     |       |            |       |                       |                |        | 8                         |                      |               |                |          |
| 150 -                   |                                                | _                   | -     |            |       |                       |                | $\sim$ | -                         | - ·                  |               |                |          |
| -130 -                  |                                                |                     |       |            |       |                       |                |        |                           | Seasonal             | Kendall Slope | e Confidence I | ntervals |
| l/b                     | •                                              |                     | -     |            |       |                       |                |        |                           | ~                    | Lower         | Slope          | Uppe     |
| <b>E</b> <sup>110</sup> | -                                              |                     |       |            |       |                       |                |        |                           | 0.010                | -0.31         | olope          | 6 77     |
| <b>x</b> 90 -           |                                                |                     |       |            |       |                       |                |        |                           | 0.050                | 0.34          | o ==           | 5.72     |
| A C                     | ŧ                                              |                     |       |            |       |                       |                |        |                           | 0 100                | 1.00          | 2.75           | 5 26     |
| 70                      | -                                              |                     |       |            |       |                       |                |        |                           | 0.100                | 1.00          |                | 0.20     |
| <b>š</b> t              | E                                              |                     |       |            |       |                       |                |        |                           | 0.200                | 1.50          |                | 4.00     |
| <b>Ĕ</b> 50 -           |                                                |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
| 20                      |                                                |                     |       |            |       |                       |                |        |                           |                      |               | 2.0%           |          |
| - 50                    | -                                              |                     |       |            |       |                       |                |        |                           |                      |               |                |          |
| 10 -                    | <u> </u>                                       |                     |       |            |       |                       |                |        |                           |                      |               |                |          |

WY2009

—– May

WY2010

---- Dec

---• Jun

WY2011

— → Jan

 $\rightarrow$  Jul

WY2012

<del>— \* –</del> Feb

WY2013

— Mar

-Sep

WY2008

----Oct

-+- Apr

Site

#57

**Sep** 131.0

127.0

2

2 0

0 0 0

-1

-1

1.00

-1.00

1.00

Upper Limit

6.77 5.72

5.26 4.00

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site           | #57                                                        |                         |                      | S          | easonal    | Kendall                             | analysis       | s for Sulfa    | ate, Tota                         | al (mg/l)        |                          |                          |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|-------------------------|----------------------|------------|------------|-------------------------------------|----------------|----------------|-----------------------------------|------------------|--------------------------|--------------------------|------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row label      | Water Year                                                 | <b>Oct</b>              | Nov<br>47.1          | Dec        | Jan        | Feb                                 | Mar            | <b>Apr</b>     | May 57.1                          | Jun<br>47 3      | Jul<br>48.7              | Aug                      | Sep              |
| $ \frac{1}{p} 1$      | b<br>C         | WY2009<br>WY2010                                           | 38.8<br>51.7            | 43.4<br>57.5         |            |            |                                     |                | 44.2           | 54.8<br>44.3                      | 60.1             | 63.5                     | 58.8<br>60.5             | 62.1             |
| $ \frac{1}{1000} + $                                                                                                                                                                                                                                                                                                                                                                                                              | e              | WY2012                                                     |                         | 44.9<br>49.5         |            |            |                                     |                |                | 59.6<br>53.2                      |                  |                          | 49.4                     |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I              | n                                                          | 3                       | 51.3                 | 0          | 0          | 0                                   | 0              | 2              | 57.8                              | 2                | 2                        | 45.0                     | 2                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | t,                                                         | 3                       | 6                    | 0          | 0          | 0                                   | 0              | 2              | 6                                 | 2                | 2                        | 4                        | 2                |
| $ \frac{\dot{L}}{0} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | t <sub>2</sub><br>t3                                       | 0<br>0                  | 0<br>0               | 0<br>0     | 0<br>0     | 0<br>0                              | 0<br>0         | 0<br>0         | 0<br>0                            | 0                | 0<br>0                   | 1<br>0                   | 0<br>0           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | t <sub>4</sub>                                             | 0                       | 0                    | 0          | 0          | 0                                   | 0              | 0              | 0                                 | 0                | 0                        | 0                        | 0                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                            | 0                       |                      | 0          | Ū          | 0                                   | 0              | 0              |                                   | 0                | 0                        | 0                        |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | b-a<br>c-a                                                 | -1<br>-1                | -1<br>1              |            |            |                                     |                | -1             | -1<br>-1                          | 1                | 1                        | 1                        | 1                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | d-a<br>e-a                                                 |                         | -1<br>1              |            |            |                                     |                |                | 1<br>-1                           |                  |                          | 1                        |                  |
| $\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \frac{1}{2$ |                | f-a                                                        | 4                       | 1                    |            |            |                                     |                |                | 1                                 |                  |                          | -1                       |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | с-b<br>d-b                                                 | 1                       | 1                    |            |            |                                     |                |                | -1                                |                  |                          | -1                       |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | e-b<br>f-b                                                 |                         | 1                    |            |            |                                     |                |                | -1<br>1                           |                  |                          | -1<br>-1                 |                  |
| $\frac{c_{c}}{e-d} + \frac{1}{1} $                                                                                                                                                                                                                |                | d-c                                                        |                         | -1                   |            |            |                                     |                |                | 1                                 |                  |                          | -1                       |                  |
| $\frac{e^{-d}}{16} - \frac{1}{1} $                                                                                                                                                                                                                |                | f-c                                                        |                         | -1                   |            |            |                                     |                |                | 1                                 |                  |                          | -1                       |                  |
| $\frac{1}{S_{k}} - \frac{1}{1} + \frac{1}{S_{k}} - \frac{1}{S_{k}} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | e-d<br>f-d                                                 |                         | 1                    |            |            |                                     |                |                | -1<br>-1                          |                  |                          | -1<br>-1                 |                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | f-e<br>S <sub>k</sub>                                      | -1                      | 1                    | 0          | 0          | 0                                   | 0              | -1             | 1                                 | 1                | 1                        | -1                       | 1                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 2                                                          |                         |                      |            | -          |                                     | -              |                |                                   |                  |                          |                          |                  |
| $\frac{Z_{k}^{2}}{2Z_{k}^{2}} = \frac{1.46}{0.27} = \frac{1.46}{0.88} \qquad \frac{1.00}{2} = \frac{1.00}{0} = \frac{1.00}{0$                                                                                                                                                                                                                                                                                                                                                                                                           | Z              | <b>σ-<sub>s</sub>=</b><br>= S <sub>t</sub> /σ <sub>s</sub> | 3.67<br>-0.52           | 28.33<br>0.94        |            |            |                                     |                | 1.00<br>-1.00  | 28.33<br>0.19                     | 1.00<br>1.00     | 1.00<br>1.00             | 27.33<br>-1.15           | 1.00<br>1.00     |
| $\sum_{\substack{\Sigma Z_k = \\ K = \\ Count 27 1 0 0 0}} \frac{\Sigma_k t_k}{L^2} = \frac{1.46}{Count 27 1 0 0 0}$ $\sum_{\substack{\Sigma Z_k = \\ Count 27 1 0 0 0}} \frac{\Sigma_k t_k}{L^2} = \frac{1.46}{Count 27 1 0 0 0}$ $\sum_{\Sigma Z_k = \\ S =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Z <sup>2</sup> <sub>k</sub>                                | 0.27                    | 0.88                 |            |            |                                     |                | 1.00           | 0.04                              | 1.00             | 1.00                     | 1.32                     | 1.00             |
| $\sum Z_{k}^{2} = 6.51$ Z-bar= $\Sigma Z_{k}/K = 0.18$ $\sum \sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$ $\sum \frac{1}{2 \cdot bar = \Sigma Z_{k}/K = 0.18}$                                                                                                                                                     |                | $\Sigma Z_k =$                                             | 1.46                    |                      | Tie Extent | t,         | t <sub>2</sub>                      | t <sub>3</sub> | t <sub>4</sub> | t <sub>5</sub>                    |                  |                          | Σn                       | 29               |
| $\frac{\chi^{2}_{h} = \Sigma Z_{k}^{2} - K(Z-bar)^{2}}{p} \frac{6.24}{0.512} \underbrace{@\alpha = 5\% \ \chi^{2}_{(K-1)} = 14.07}_{X_{h}^{2} - K(Z-bar)} \underbrace{Test for station homogeneity}{\chi^{2}_{h} < \chi^{2}_{(K-1)}} \underbrace{ACCEPT}_{X_{h}^{2} - K(Z-bar)} \underbrace{ACCEPT}_{W_{h}^{2} - K(Z-bar)} \underbrace{ACCEPT}_{W_{h}^{2$                                                                                                                                                                                                                                                                                                                                                                                                                   |                | $\Sigma Z_{k}^{2} =$                                       | 6.51                    |                      | Count      | 27         | 1                                   | 0              | 0              | 0                                 |                  |                          | $\Sigma S_k$             | 1                |
| $\frac{\chi_{h}^{2}=\Sigma Z_{k}^{2} \cdot K(Z-bar)^{2}=-6.24}{p-0.512}$ $\frac{(\alpha = 5\% \chi_{(K-1)}^{2}=-14.07)}{\chi_{h}^{2} \cdot K(Z-bar)}$ $\frac{(K-1)^{2}}{\chi_{h}^{2} \cdot K(Z-bar)^{2}}$ $($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ∠-bar=ΣZ <sub>k</sub> /K=                                  | 0.18                    |                      |            |            |                                     |                |                |                                   |                  |                          |                          |                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | $\chi^2_h = \Sigma Z^2_k - k$                              | K(Z-bar) <sup>2</sup> = | 6.24                 |            | @α=5       | % χ <sup>2</sup> <sub>(K-1)</sub> = | 14.07          | ٦              | est for sta                       | tion homog       | eneity                   |                          |                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                            | p                       | 0.512                |            |            |                                     |                | 2              | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ |                  | ACCEPT                   |                          |                  |
| Contract         Seasonal-Kendall Slope Confidence Intervals           Seasonal-Kendall Slope Confidence Intervals           Seasonal-Kendall Slope Confidence Intervals           Contract         Seasonal-Kendall Slope Confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | ΣVAR(S <sub>k</sub> )<br>91.67                             | Z <sub>calc</sub><br>p  | 0.00<br><b>0.500</b> |            | @α:        | =2.5% <b>Z</b> =                    | 1.96           |                | H₀ (No<br>H₄ (±1                  | trend)<br>trend) | ACCEPT<br>REJECT         |                          |                  |
| $\begin{array}{c} 70\\ 60\\ 50\\ 40\\ 30\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                            | - F                     |                      |            |            |                                     |                |                | <u> </u>                          |                  |                          |                          |                  |
| Seasonal-Kendall Slope Confidence Intervals           Seasonal-Kendall Slope Confidence Intervals           Seasonal-Kendall Slope Confidence Intervals           Control         Seasonal-Kendall Slope           Seasonal-Kendall Slope         Upper           Control         Slope         Limit           Solution         Slope         Limit           Outloo         -1.84         0.07           Outloo         -1.84         0.83           O.200         -0.90         0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 70 E                                                       |                         |                      |            |            |                                     |                |                |                                   | ٦                |                          |                          |                  |
| Solution         Seasonal-Kendall Slope Confidence Intervals           Lower         Sen's         Upper           α         Limit         Slope         Limit           30         0         0.010         -3.48         2.08           0.050         -2.27         0.07         1.59           0.100         -1.84         0.083         0.200           0.200         -0.90         0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (              | 60                                                         |                         | Ă-                   |            |            |                                     |                |                | -                                 |                  |                          |                          |                  |
| α         Limit         Slope         Limit           40         0.010         -3.48         2.08           0.050         -2.27         0.07         1.59           0.100         -1.84         0.03         0.83           0.200         -0.90         0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĴШĴ            | 50                                                         |                         |                      |            | $\searrow$ |                                     |                |                |                                   | Season           | al-Kendall Slop<br>Lower | e Confidence In<br>Sen's | tervals<br>Upper |
| P     40     0.010     0.100     1.59       9     30     0.000     -1.84     0.83       0.200     -0.90     0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tal            | 40                                                         |                         |                      |            |            | 9                                   |                |                | ~                                 | α                | Limit                    | Slope                    | Limit            |
| <b>9</b> 30 0.83 0.200 -0.90 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , <del>1</del> | 40                                                         |                         | ~                    |            |            |                                     |                |                |                                   | 0.050            | -2.27                    | 0.07                     | 1.59             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate            | 30                                                         |                         |                      |            |            |                                     |                |                |                                   | _ 0.100<br>0.200 | -1.84<br>-0.90           |                          | 0.83<br>0.75     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sulf           | 20                                                         |                         |                      |            |            |                                     |                |                |                                   | _                |                          |                          |                  |

WY2009

WY2010

----Oct ----Nov -▲- Dec -→- Jan -\*- Feb -→- Mar -+- Apr ---- May ---→-- Jun -×- Jul -■- Aug ---- Sep

WY2011

WY2012

WY2013

10 0

WY2008

|                  | <b>#J</b> 1                                                  | Seasonal Kendall analysis for Zinc, Dissolved (ug/l) |       |            |                |                                      |                |       |                             |            |       |       |       |
|------------------|--------------------------------------------------------------|------------------------------------------------------|-------|------------|----------------|--------------------------------------|----------------|-------|-----------------------------|------------|-------|-------|-------|
| ow label         | Water Year                                                   | Oct                                                  | Nov   | Dec        | Jan            | Feb                                  | Mar            | Apr   | Мау                         | Jun        | Jul   | Aug   | Sep   |
| а                | WY2008                                                       | 6.0                                                  | 13.7  |            |                |                                      |                | 11.5  | 11.6                        | 5.7        | 8.4   | 14.3  | 17.6  |
| b                | WY2009                                                       | 56.2                                                 | 9.8   |            |                |                                      |                | 8.1   | 6.5                         | 4.9        | 3.5   | 7.1   | 10.0  |
| c                | WY2010                                                       | 4.9                                                  | 5.8   |            |                |                                      |                |       | 23.5                        |            |       | 6.9   |       |
| d                | WY2011                                                       |                                                      | 14.0  |            |                |                                      |                |       | 14.2                        |            |       | 17.6  |       |
| e<br>f           | WY2012                                                       |                                                      | 19.1  |            |                |                                      |                |       | 20.3                        |            |       | 9.0   |       |
|                  | n n                                                          | 3                                                    | 6.9   | 0          | 0              | 0                                    | 0              | 2     | 19.0<br>6                   | 2          | 2     | 19.6  | 2     |
| -                |                                                              |                                                      |       |            |                |                                      |                |       |                             |            |       |       |       |
|                  | t,                                                           | 3                                                    | 6     | 0          | 0              | 0                                    | 0              | 2     | 6                           | 2          | 2     | 6     | 2     |
|                  | t <sub>2</sub>                                               | 0                                                    | 0     | 0          | 0              | 0                                    | 0              | 0     | 0                           | 0          | 0     | 0     | 0     |
|                  | t <sub>3</sub>                                               | 0                                                    | 0     | 0          | 0              | 0                                    | 0              | 0     | 0                           | 0          | 0     | 0     | 0     |
|                  | t <sub>4</sub><br>+                                          | 0                                                    | 0     | 0          | 0              | 0                                    | 0              | 0     | 0                           | 0          | 0     | 0     | 0     |
| •                | <b>L</b> 5                                                   | 0                                                    | 0     | 0          | 0              | 0                                    | 0              | 0     | 0                           | 0          | 0     | 0     | 0     |
| -                | b-a                                                          | 1                                                    | -1    |            |                |                                      |                | -1    | -1                          | -1         | -1    | -1    | -1    |
|                  | c-a                                                          | -1                                                   | -1    |            |                |                                      |                |       | 1                           |            |       | -1    |       |
|                  | d-a                                                          |                                                      | 1     |            |                |                                      |                |       | 1                           |            |       | 1     |       |
|                  | e-a                                                          |                                                      | 1     |            |                |                                      |                |       | 1                           |            |       | -1    |       |
|                  | f-a                                                          |                                                      | -1    |            |                |                                      |                |       | 1                           |            |       | 1     |       |
|                  | c-b                                                          | -1                                                   | -1    |            |                |                                      |                |       | 1                           |            |       | -1    |       |
|                  | a-b                                                          |                                                      | 1     |            |                |                                      |                |       | 1                           |            |       | 1     |       |
|                  | e-b<br>f b                                                   |                                                      | 1     |            |                |                                      |                |       | 1                           |            |       | 1     |       |
|                  | d-c                                                          |                                                      | -1    |            |                |                                      |                |       | -1                          |            |       | 1     |       |
|                  | e-c                                                          |                                                      | 1     |            |                |                                      |                |       | -1                          |            |       | 1     |       |
|                  | f-c                                                          |                                                      | 1     |            |                |                                      |                |       | -1                          |            |       | 1     |       |
|                  | e-d                                                          |                                                      | 1     |            |                |                                      |                |       | 1                           |            |       | -1    |       |
|                  | f-d                                                          |                                                      | -1    |            |                |                                      |                |       | 1                           |            |       | 1     |       |
| -                | f-e                                                          |                                                      | -1    |            |                |                                      |                |       | -1                          |            |       | 1     |       |
| -                | S <sub>k</sub>                                               | -1                                                   | 1     | 0          | 0              | 0                                    | 0              | -1    | 5                           | -1         | -1    | 5     | -1    |
| <u>م</u>         | <sup>2</sup> c=                                              | 3.67                                                 | 28.33 |            |                |                                      |                | 1.00  | 28.33                       | 1.00       | 1.00  | 28.33 | 1.00  |
| 7 -              | s-<br>S / (5)                                                | 0.52                                                 | 0.10  |            |                |                                      |                | 1.00  | 0.04                        | 1.00       | 1.00  | 0.04  | 1.00  |
| ∠ <sub>k</sub> = | 3k/0s                                                        | -0.52                                                | 0.19  |            |                |                                      |                | -1.00 | 0.94                        | -1.00      | -1.00 | 0.94  | -1.00 |
| Ζ                | - k                                                          | 0.27                                                 | 0.04  |            |                |                                      |                | 1.00  | 0.88                        | 1.00       | 1.00  | 0.88  | 1.00  |
|                  | $\Sigma Z_k =$                                               | -2.46                                                | Γ     | Tie Extent | t <sub>1</sub> | t <sub>2</sub>                       | t <sub>3</sub> | t4    | t₅                          |            |       | Σn    | 29    |
|                  | $\Sigma Z^{2}_{\mu} =$                                       | 6.07                                                 |       | Count      | 29             | 0                                    | 0              | 0     | 0                           |            |       | ΣSμ   | 6     |
| 7                | <u>~</u><br>-bar57./K-                                       | -0.31                                                | Ļ     | ooun       | 20             | •                                    | •              | Ū     | <u> </u>                    |            |       | K     | Ũ     |
| 2                | -bai=22 <sub>k</sub> /1(=                                    | -0.51                                                |       |            |                |                                      |                |       |                             |            |       |       |       |
|                  |                                                              |                                                      |       |            |                |                                      |                |       |                             |            |       |       |       |
|                  | χ <sup>2</sup> <sub>h</sub> =ΣΖ <sup>2</sup> <sub>k</sub> -ł | (Z-bar) <sup>2</sup> =                               | 5.32  |            | @α=5           | i% χ <sup>2</sup> <sub>(K-1)</sub> = | 14.07          | Т     | est for stati               | on homogei | neity |       |       |
|                  |                                                              | р                                                    | 0.621 | L          |                |                                      |                | 2     | $\chi^2_h < \chi^2_{(K-1)}$ | A          | CCEPT |       |       |
|                  | $\Sigma VAR(S_k)$                                            | $\mathbf{Z}_{calc}$                                  | 0.52  |            | @α/2           | =2.5% <b>Z</b> =                     | 1.96           |       | H <sub>0</sub> (No t        | rend) A    | CCEPT |       |       |
|                  | 92.67                                                        | n                                                    | 0.698 |            |                |                                      | •              |       | H₄ (± tr                    | end) R     | EJECT |       |       |



## **INTERPRETIVE REPORT SITE 13**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|--|--|--|--|
| No outliers have been identified by HGCMC for the period of October 2007 through September 2013. |           |       |           |       |  |  |  |  |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. No results exceeding these criteria have been identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|                                                                                                     |           | Limits |       |       |          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------|--------|-------|-------|----------|--|--|--|--|--|
| Sample Date                                                                                         | Parameter | Value  | Lower | Upper | Hardness |  |  |  |  |  |
| No exceedances have been identified by HGCMC for the period of October 2012 through September 2013. |           |        |       |       |          |  |  |  |  |  |

Over several years waste rock material has been removed from the 1350 Area. It was not until 2011 that any material was removed from the Eastern Lobe, the area that contributes to the Site 13 drainage; however the material removed was not in the direct drain path for Site 13. During 2012 no material was removed, and a limited amount was removed in 2013; however HGCMC is planning to remove the rest of the material in 2014, leaving only the material that is in the access road. This material will be removed during final reclamation.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. No visually obvious trends were apparent.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013). For datasets with a statistically significant trend a Seasonal-Sen's Slope estimate statistic has also been calculated.

|                    | Mann-Ker | dall test st | atistics | Sen's slope estimate |      |  |  |  |
|--------------------|----------|--------------|----------|----------------------|------|--|--|--|
| Parameter          | n*       | <b>p</b> **  | Trend    | Q                    | Q(%) |  |  |  |
| Conductivity Field | 6        | 0.28         |          |                      |      |  |  |  |
| pH Field           | 6        | 0.23         |          |                      |      |  |  |  |
| Alkalinity, Total  | 6        | 0.33         |          |                      |      |  |  |  |
| Sulfate, Total     | 6        | 0.38         |          |                      |      |  |  |  |
| Zinc, Dissolved    | 6        | 0.12         |          |                      |      |  |  |  |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

There were no statistically significant trends ( $\alpha/2=2.5\%$ ) for Site 13 during the 2012 water year. HGCMC feels the current FWMP program is sufficient to monitor any future changes at Site 13 before any water quality values are impaired.

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           |          |          |          |          |          |          |          |          |          |          | 11.2     |          | 11.2     |
| Conductivity-Field(µmho)  |          |          |          |          |          |          |          |          | 723      |          | 731      |          | 727.0    |
| Conductivity-Lab (µmho)   |          |          |          |          |          |          |          |          | 705      |          | 718      |          | 712      |
| pH Lab (standard units)   |          |          |          |          |          |          |          |          | 7.85     |          | 7.75     |          | 7.80     |
| pH Field (standard units) |          |          |          |          |          |          |          |          | 7.63     |          | 8.13     |          | 7.88     |
| Total Alkalinity (mg/L)   |          |          |          |          |          |          |          |          | 147      |          | 170      |          | 158.5    |
| Total Sulfate (mg/L)      |          |          |          |          |          |          |          |          | 227      |          | 216      |          | 221.5    |
| Hardness (mg/L)           |          |          |          |          |          |          |          |          | 401      |          | 391      |          | 396.0    |
| Dissolved As (ug/L)       |          |          |          |          |          |          |          |          | 0.096    |          | 0.127    |          | 0.112    |
| Dissolved Ba (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Cd (ug/L)       |          |          |          |          |          |          |          |          | 0.0116   |          | 0.0069   |          | 0.0093   |
| Dissolved Cr (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Cu (ug/L)       |          |          |          |          |          |          |          |          | 0.921    |          | 0.448    |          | 0.685    |
| Dissolved Pb (ug/L)       |          |          |          |          |          |          |          |          | 0.0189   |          | 0.0076   |          | 0.0133   |
| Dissolved Ni (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Ag (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Zn (ug/L)       |          |          |          |          |          |          |          |          | 8        |          | 19.2     |          | 13.60    |
| Dissolved Se (ug/L)       |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Dissolved Hg (ug/L)       |          |          |          |          |          |          |          |          | 0.00099  |          | 0.000867 |          | 0.000929 |

#### Site 013FMS - '1350 East Drainage'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
| 40       | 0/40/0040   | 10.00 111   |               | 0.00000  |           |                            |
| 13       | 8/13/2013   | 12:00 AM    | Ca aiss, µg/i | 0.00686  | J         | Below Quantitative Range   |
|          |             |             | Cond, µmhos   | 718      | J         | Sample receipt temperature |
|          |             |             | Alk, mg/L     | 170      | J         | Sample receipt temperature |
|          |             |             | SO4 Tot, mg/l | 216      | J         | Sample receipt temperature |
|          |             |             | Pb diss, µg/l | 0.00757  | U         | Field Blank Contamination  |
|          |             |             | Hg diss, µg/l | 0.000867 | U         | Field Blank Contamination  |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | LICON Not Detected Above Quantitation Limit        |
| UJ        | Not Detected Above Approximate Guantitation Limit  |









Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 13 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 13 – Silver Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 13 – Mercury Dissolved
| Site             | #13                                    |                          |                         | Seasonal     | Kendall | analysis                            | for Spe           | cific Cond            | luctance, F                 | ield (µS          | /cm)              |                   |                   |
|------------------|----------------------------------------|--------------------------|-------------------------|--------------|---------|-------------------------------------|-------------------|-----------------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|
| Row label        | Water Year<br>WY2008                   | Oct<br>645               | <b>Nov</b> 583          | Dec          | Jan     | Feb                                 | Mar               | Apr                   | May                         | <b>Jun</b><br>687 | <b>Jul</b><br>785 | <b>Aug</b><br>645 | <b>Sep</b><br>523 |
| b<br>c<br>d      | WY2009<br>WY2010<br>WY2011             | 330<br>842               | 611<br>357              |              |         |                                     |                   |                       | 812<br>744                  | 742               | 784               | 894<br>895<br>877 | 659               |
| e<br>f           | WY2012<br>WY2013                       |                          |                         |              |         |                                     |                   |                       | 703                         | 723               |                   | 731               |                   |
|                  | n                                      | 3                        | 3                       | 0            | 0       | 0                                   | 0                 | 0                     | 3                           | 3                 | 2                 | 6                 | 2                 |
|                  | t₁<br>t₂                               | 3<br>0                   | 3<br>0                  | 0<br>0       | 0<br>0  | 0                                   | 0                 | 0                     | 3<br>0                      | 3<br>0            | 2<br>0            | 6<br>0            | 2<br>0            |
|                  | t <sub>3</sub>                         | 0                        | 0                       | 0            | 0       | 0                                   | 0                 | 0                     | 0                           | 0                 | 0                 | 0                 | 0                 |
|                  | t₄<br>t₅                               | 0                        | 0                       | 0            | 0       | 0                                   | 0                 | 0                     | 0                           | 0<br>0            | 0                 | 0                 | 0                 |
|                  | b-a                                    | -1                       | 1                       |              |         |                                     |                   |                       |                             | 1                 | -1                | 1                 | 1                 |
|                  | c-a                                    | 1                        | 1                       |              |         |                                     |                   |                       |                             |                   |                   | 1                 |                   |
|                  | e-a                                    |                          | -1                      |              |         |                                     |                   |                       |                             |                   |                   | -1                |                   |
|                  | f-a<br>c-b                             | 1                        |                         |              |         |                                     |                   |                       |                             | 1                 |                   | 1                 |                   |
|                  | d-b                                    |                          | -1                      |              |         |                                     |                   |                       |                             |                   |                   | -1                |                   |
|                  | e-b<br>f-b                             |                          |                         |              |         |                                     |                   |                       |                             | -1                |                   | -1<br>-1          |                   |
|                  | d-c                                    |                          |                         |              |         |                                     |                   |                       | -1<br>-1                    |                   |                   | -1<br>-1          |                   |
|                  | f-c                                    |                          |                         |              |         |                                     |                   |                       |                             |                   |                   | -1                |                   |
|                  | e-d<br>f-d                             |                          |                         |              |         |                                     |                   |                       | -1                          |                   |                   | -1<br>-1          |                   |
|                  | f-e<br>S⊾                              | 1                        | -1                      | 0            | 0       | 0                                   | 0                 | 0                     | -3                          | 1                 | -1                | -3                | 1                 |
|                  |                                        | •                        | •                       |              | 0       | Ũ                                   | Ũ                 | 0                     | Ŭ                           |                   | •                 | Ū                 |                   |
| σ<br>7 -         | s=                                     | 3.67                     | 3.67                    |              |         |                                     |                   |                       | 3.67                        | 3.67              | 1.00              | 28.33             | 1.00              |
| ∠ <sub>k</sub> – | $Z_{k}^{2}$                            | 0.32                     | 0.27                    |              |         |                                     |                   |                       | 2.45                        | 0.32              | 1.00              | 0.32              | 1.00              |
|                  | Σ7                                     | -1.61                    | Г                       | Tie Extent   | t.      | t.                                  | t.                | t.                    | t.                          |                   |                   | Σn                | 22                |
|                  | $\Sigma Z_k^2 =$                       | 5.59                     |                         | Count        | 22      | 0                                   | 0                 | 0                     | 0                           |                   |                   | ΣS <sub>k</sub>   | -5                |
| Z                | Z-bar= <sub>2</sub> Z <sub>k</sub> /K= | -0.23                    | -                       |              |         |                                     |                   |                       |                             |                   |                   |                   |                   |
|                  |                                        |                          |                         |              |         |                                     |                   |                       |                             |                   |                   |                   |                   |
|                  | $\chi^2_h = \Sigma Z^2_k$              | -K(Z-bar) <sup>2</sup> = | 5.22                    |              | @α=5    | % χ <sup>2</sup> <sub>(K-1)</sub> = | 12.59             | Те                    | st for station ho           | mogeneity         |                   |                   |                   |
|                  |                                        | р                        | 0.516                   |              |         |                                     |                   |                       | $\chi^2_h < \chi^2_{(K-1)}$ |                   | ACCEPT            |                   |                   |
|                  | ΣVAR(S <sub>k</sub> )                  | Z <sub>calc</sub>        | -0.60<br>0 275          | L            | @α/2=   | =2.5% <b>Z</b> =                    | 1.96              |                       | H <sub>0</sub> (No trei     | nd)<br>d)         | ACCEPT            |                   |                   |
|                  | +0.00                                  | P                        | 0.275                   |              |         |                                     |                   |                       |                             |                   | RESECT            |                   |                   |
| ם ז              | 020                                    |                          |                         |              |         |                                     |                   |                       |                             |                   |                   |                   |                   |
| Liel             | 920                                    |                          | -                       | _            |         | _                                   |                   |                       |                             |                   |                   |                   |                   |
| , je             | 820                                    | ×                        | $\overline{\mathbf{x}}$ |              |         | •                                   |                   |                       |                             | Seasona           | I-Kendall Slope   | Confidence Ir     | itervals          |
| anc              | 720                                    |                          |                         |              |         |                                     |                   |                       | •                           | α                 | Lower<br>Limit    | Sen's<br>Slope    | Upper<br>Limit    |
| cuct             | 520                                    |                          |                         | $\checkmark$ |         |                                     |                   |                       |                             | 0.010             | -73.71            |                   | 61.76             |
| hSu<br>NSu       | 420                                    |                          | $\searrow$              |              |         |                                     |                   |                       |                             | 0.000             | -54.89            | -8.50             | 5.95              |
| ů 🗐              | 320                                    |                          | $\sim$                  |              |         | 1                                   |                   |                       |                             | 0.200             | -40.83            |                   | -0.35             |
| Sific            | 220                                    |                          |                         |              |         |                                     |                   |                       |                             |                   |                   |                   |                   |
| bec              | 20                                     |                          |                         |              |         |                                     |                   |                       |                             |                   |                   |                   |                   |
| S                | W                                      | Y2008                    | WY2009                  | WY2010       | ) WY    | /2011                               | WY201             | 2 WY2                 | 2013                        |                   |                   |                   |                   |
|                  |                                        | -Oct                     |                         | <u>⊸</u> De  | c →     | -Jan                                | <del>_∗_</del> Fe | eb — <mark>o</mark> — | - Mar                       |                   |                   |                   |                   |

#### HGCMC 2013 Water Year FWMP Annual Report

-May

---• Jun

-Sep

—+— Apr

Page 285 of 461

| Site <b>#13</b> Seasonal Kendall analysis for pH, Field, Standard Units |                                |       |       |            |     |     |                |     |                |       |       |       |      |
|-------------------------------------------------------------------------|--------------------------------|-------|-------|------------|-----|-----|----------------|-----|----------------|-------|-------|-------|------|
| Row label                                                               | Water Year                     | Oct   | Nov   | Dec        | Jan | Feb | Mar            | Apr | May            | Jun   | Jul   | Aug   | Sep  |
| а                                                                       | WY2008                         | 7.7   | 7.8   |            |     |     |                |     |                | 7.8   | 8.0   | 7.1   | 7.6  |
| b                                                                       | WY2009                         | 7.7   | 7.8   |            |     |     |                |     |                | 7.7   | 7.4   | 7.5   | 7.6  |
| С                                                                       | WY2010                         | 7.9   |       |            |     |     |                |     | 8.0            |       |       | 7.5   |      |
| d                                                                       | WY2011                         |       | 7.7   |            |     |     |                |     | 7.7            |       |       | 7.8   |      |
| e                                                                       | WY2012                         |       |       |            |     |     |                |     | 7.4            | 7.0   |       | 7.7   |      |
| T                                                                       | WY2013                         | 0     | 2     | 0          | 0   | 0   | 0              | 0   | 0              | 7.6   | 0     | 8.1   | 0    |
|                                                                         | n                              | 3     | 3     | 0          | 0   | 0   | 0              | 0   | 3              | 3     | 2     | 0     | 2    |
|                                                                         | t,                             | 1     | 3     | 0          | 0   | 0   | 0              | 0   | 3              | 3     | 2     | 6     | 2    |
|                                                                         | t <sub>2</sub>                 | 1     | 0     | 0          | 0   | 0   | 0              | 0   | 0              | 0     | 0     | 0     | 0    |
|                                                                         | t <sub>3</sub>                 | 0     | 0     | 0          | 0   | 0   | 0              | 0   | 0              | 0     | 0     | 0     | 0    |
|                                                                         | t <sub>4</sub>                 | 0     | 0     | 0          | 0   | 0   | 0              | 0   | 0              | 0     | 0     | 0     | 0    |
|                                                                         | l <sub>5</sub>                 | 0     | 0     | 0          | 0   | 0   | 0              | 0   | 0              | 0     | 0     | 0     | 0    |
|                                                                         | b-a                            | 0     | 1     |            |     |     |                |     |                | -1    | -1    | 1     | 1    |
|                                                                         | c-a                            | 1     |       |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | d-a                            |       | -1    |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | e-a                            |       |       |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | f-a                            |       |       |            |     |     |                |     |                | -1    |       | 1     |      |
|                                                                         | C-D                            | 1     |       |            |     |     |                |     |                |       |       | -1    |      |
|                                                                         | a-b                            |       | -1    |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | e-b<br>f-b                     |       |       |            |     |     |                |     |                | _1    |       | 1     |      |
|                                                                         | d-c                            |       |       |            |     |     |                |     | -1             | •     |       | 1     |      |
|                                                                         | e-c                            |       |       |            |     |     |                |     | -1             |       |       | 1     |      |
|                                                                         | f-c                            |       |       |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | e-d                            |       |       |            |     |     |                |     | -1             |       |       | -1    |      |
|                                                                         | f-d                            |       |       |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | f-e                            |       |       |            |     |     |                |     |                |       |       | 1     |      |
|                                                                         | S <sub>k</sub>                 | 2     | -1    | 0          | 0   | 0   | 0              | 0   | -3             | -3    | -1    | 11    | 1    |
|                                                                         | Qm                             |       |       |            |     |     |                |     |                |       |       | 0.19  |      |
| _ 0                                                                     | s=                             | 2.67  | 3.67  |            |     |     |                |     | 3.67           | 3.67  | 1.00  | 28.33 | 1.00 |
| $Z_k =$                                                                 | S <sub>k</sub> /σ <sub>S</sub> | 1.22  | -0.52 |            |     |     |                |     | -1.57          | -1.57 | -1.00 | 2.07  | 1.00 |
| 2                                                                       | $Z_{k}^{2}$                    | 1.50  | 0.27  |            |     |     |                |     | 2.45           | 2.45  | 1.00  | 4.27  | 1.00 |
|                                                                         | $\Sigma Z =$                   | -0.36 |       | Tie Extent | t,  | t,  | t <sub>3</sub> | t,  | t <sub>5</sub> |       |       | Σn    | 22   |
|                                                                         | $\Sigma Z^{2} =$               | 12.95 |       | Count      | 20  | 1   | 0              | 0   | 0              |       |       | ΣSμ   | 6    |
| 7                                                                       | $Z-bar=\Sigma Z_{\nu}/K=$      | -0.05 |       | 000        |     | •   | ÷              | v   | Ÿ              |       |       | n     | ÷    |
|                                                                         |                                | 2.50  |       |            |     |     |                |     |                |       |       |       |      |

|  | Seasonal k | Kendall anal | vsis for | pH. Field | . Standard | Units |
|--|------------|--------------|----------|-----------|------------|-------|
|--|------------|--------------|----------|-----------|------------|-------|

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 12.93 | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 12.59 | Test for station homog            | geneity |
|---------------------------|-------------------------|-------|-----------------------------------------|-------|-----------------------------------|---------|
|                           | р                       | 0.044 |                                         |       | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | REJECT  |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.75  | @α/2=2.5% <b>Ζ</b> =                    | 1.96  | H <sub>0</sub> (No trend)         | NA      |
| 44.00                     | р                       | 0.775 |                                         |       | H <sub>A</sub> (± trend)          | NA      |



| Seasona | Seasonal-Kendall Slope Confidence Intervals |       |       |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------|-------|-------|--|--|--|--|--|--|--|--|
|         | Lower                                       | Sen's | Upper |  |  |  |  |  |  |  |  |
| α       | Limit                                       | Slope | Limit |  |  |  |  |  |  |  |  |
| 0.010   | -0.07                                       |       | 0.19  |  |  |  |  |  |  |  |  |
| 0.050   | -0.04                                       | 0.06  | 0.15  |  |  |  |  |  |  |  |  |
| 0.100   | -0.02                                       | 0.00  | 0.12  |  |  |  |  |  |  |  |  |
| 0.200   | 0.00                                        |       | 0.10  |  |  |  |  |  |  |  |  |
|         |                                             |       |       |  |  |  |  |  |  |  |  |

| Site | #1 | 3 |
|------|----|---|
|------|----|---|

Seasonal Kendall analysis for Total Alk, (mg/l)

| Row label              | Water Year                          | Oct                     | Nov      | Dec            | Jan            | Feb                   | Mar            | Apr                  | May                                   | Jun        | Jul           | Aug           | Sep      |
|------------------------|-------------------------------------|-------------------------|----------|----------------|----------------|-----------------------|----------------|----------------------|---------------------------------------|------------|---------------|---------------|----------|
| a                      | WY2008                              | 109.0                   | 128.0    |                |                |                       |                |                      |                                       | 147.0      | 143.0         | 104.0         | 88.8     |
| b                      | WY2009                              | 70.9                    | 121.0    |                |                |                       |                |                      | 141.0                                 | 144.0      | 151.0         | 118.0         | 80.0     |
| c<br>d                 | WY2011                              | 134.0                   | 58.0     |                |                |                       |                |                      | 141.0                                 |            |               | 215.0         |          |
| e                      | WY2012                              |                         | 00.0     |                |                |                       |                |                      | 135.0                                 |            |               | 122.0         |          |
| f                      | WY2013                              |                         |          |                |                |                       |                |                      |                                       | 147.0      |               | 170.0         |          |
|                        | n                                   | 3                       | 3        | 0              | 0              | 0                     | 0              | 0                    | 3                                     | 3          | 2             | 6             | 2        |
|                        | t₁                                  | 3                       | 3        | 0              | 0              | 0                     | 0              | 0                    | 3                                     | 1          | 2             | 6             | 2        |
|                        | t <sub>2</sub>                      | 0                       | 0        | 0              | 0              | 0                     | 0              | 0                    | 0                                     | 1          | 0             | 0             | 0        |
|                        | t <sub>3</sub>                      | 0                       | 0        | 0              | 0              | 0                     | 0              | 0                    | 0                                     | 0          | 0             | 0             | 0        |
|                        | t₄                                  | 0                       | 0        | 0              | 0              | 0                     | 0              | 0                    | 0                                     | 0          | 0             | 0             | 0        |
|                        | l <sub>5</sub>                      | 0                       | 0        | 0              | 0              | 0                     | 0              | 0                    | 0                                     | 0          | 0             | 0             | 0        |
|                        | b-a                                 | -1                      | -1       |                |                |                       |                |                      |                                       | -1         | 1             | 1             | -1       |
|                        | c-a                                 | 1                       |          |                |                |                       |                |                      |                                       |            |               | 1             |          |
|                        | d-a                                 |                         | -1       |                |                |                       |                |                      |                                       |            |               | 1             |          |
|                        | e-a                                 |                         |          |                |                |                       |                |                      |                                       | 0          |               | 1             |          |
|                        | r-a                                 | 1                       |          |                |                |                       |                |                      |                                       | 0          |               | 1             |          |
|                        | d-b                                 | 1                       | -1       |                |                |                       |                |                      |                                       |            |               | 1             |          |
|                        | e-b                                 |                         |          |                |                |                       |                |                      |                                       |            |               | 1             |          |
|                        | f-b                                 |                         |          |                |                |                       |                |                      |                                       | 1          |               | 1             |          |
|                        | d-c                                 |                         |          |                |                |                       |                |                      | -1                                    |            |               | 1             |          |
|                        | e-c                                 |                         |          |                |                |                       |                |                      | -1                                    |            |               | -1            |          |
|                        | e-d                                 |                         |          |                |                |                       |                |                      | 1                                     |            |               | -1            |          |
|                        | f-d                                 |                         |          |                |                |                       |                |                      |                                       |            |               | -1            |          |
|                        | f-e                                 |                         |          |                |                |                       |                |                      |                                       |            |               | 1             |          |
|                        | S <sub>k</sub>                      | 1                       | -3       | 0              | 0              | 0                     | 0              | 0                    | -1                                    | 0          | 1             | 7             | -1       |
|                        | <sup>2</sup> =                      | 3.67                    | 3.67     |                |                |                       |                |                      | 3 67                                  | 2.67       | 1.00          | 28 33         | 1.00     |
| Z. =                   | s-<br>Sμ/σe                         | 0.52                    | -1 57    |                |                |                       |                |                      | -0.52                                 | 0.00       | 1.00          | 1 32          | -1.00    |
|                        | 7 <sup>2</sup> .                    | 0.27                    | 2 45     |                |                |                       |                |                      | 0.27                                  | 0.00       | 1 00          | 1 73          | 1.00     |
|                        | - к                                 | 0.27                    | 2.10     |                |                |                       |                |                      | 0.27                                  | 0.00       | 1.00          | 1.70          | 1.00     |
|                        | $\Sigma Z_k =$                      | -0.25                   |          | Tie Extent     | t1             | t <sub>2</sub>        | t <sub>3</sub> | t <sub>4</sub>       | t₅                                    |            |               | Σn            | 22       |
|                        | $\Sigma Z_{k}^{2}$ =                | 6.73                    |          | Count          | 20             | 1                     | 0              | 0                    | 0                                     |            |               | $\Sigma S_k$  | 4        |
| Z                      | -bar=ΣZ <sub>k</sub> /K=            | -0.04                   | -        |                |                |                       |                |                      |                                       |            |               |               |          |
|                        |                                     |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
| i                      | 0 0                                 | Ō                       | 1        |                |                | 0                     |                |                      |                                       |            |               |               |          |
|                        | χ <sup>2</sup> h=ΣΖ <sup>2</sup> k- | K(Z-bar) <sup>2</sup> = | 6.72     |                | @α <b>=</b> 5% | ν <sup>2</sup> (K-1)= | 12.59          | Ţ                    | Fest for stat                         | ion homoge | neity         |               |          |
|                        |                                     | р                       | 0.347    |                |                |                       |                | 2                    | χ <sup>2</sup> h<χ <sup>2</sup> (K-1) | A          | CCEPT         |               |          |
|                        | $\Sigma VAR(S_k)$                   | $\mathbf{Z}_{calc}$     | 0.45     |                | @α/2=          | 2.5% <b>Z</b> =       | 1.96           |                      | <b>H</b> ₀ (No                        | trend) A   | CCEPT         |               |          |
|                        | 44.00                               | р                       | 0.674    |                |                |                       |                |                      | H <sub>A</sub> (± t                   | rend) F    | REJECT        |               |          |
| 260 -                  |                                     |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
|                        | -                                   |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
| 210                    | -                                   |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
| 210                    | -                                   |                         |          |                |                | $\overline{\ }$       |                |                      |                                       | Seasonal-  | Kendall Slope | Confidence li | ntervals |
| <b>S</b> 160           | -                                   |                         |          |                |                |                       |                |                      | • -                                   |            | Lower         | Sen's         | Upper    |
|                        | <b>*</b>                            |                         | <b>.</b> |                |                |                       | <u> </u>       |                      | • -                                   | α          | Limit         | Slope         | Limit    |
| 、<br>、                 | - G                                 |                         |          |                |                |                       | $\sim$         |                      |                                       | 0.010      | -22.68        |               | 23.80    |
| ₹110                   |                                     |                         |          | $\langle$      |                |                       |                |                      |                                       | 0.100      | -3.50         | 1.33          | 12.88    |
| tal                    | _                                   |                         | . /      |                |                |                       |                |                      |                                       | 0.200      | -3.00         |               | 9.31     |
| <b>P</b> <sub>60</sub> | -                                   |                         |          |                | F              |                       |                |                      |                                       |            |               |               |          |
|                        | -                                   |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
| 10                     | -                                   |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |
|                        | WY2008                              | WY2                     | 2009     | WY2010         | WY2            | 011                   | WY2012         | WY                   | 2013                                  |            |               |               |          |
|                        |                                     |                         |          | -              |                |                       |                |                      |                                       |            |               |               |          |
|                        | —— Oc                               | t 🗕                     | – Nov    | <u>⊸</u> – Dec | -0             | Jan                   | <del></del>    | o — <mark>o</mark> - | - Mar                                 |            |               |               |          |
|                        | —+— Ар                              | r —                     | - May    | ● Jun          | -X-            | Jul                   |                | g <u> </u>           | – Sep                                 |            |               |               |          |
|                        |                                     |                         |          |                |                |                       |                |                      |                                       |            |               |               |          |

| Site                                  | #13                                                                                                                              | Seasonal Kendall analysis for Sulfate, Total (mg/l)                        |                                |                       |                      |                                                         |                     |                     |                                                                         |                                              |                                                                  |                                                          |                                                    |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|---------------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Row lab<br>a<br>b<br>c<br>d<br>e<br>f | el Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012<br>WY2013                                                        | Oct<br>250.0<br>90.6<br>265.0                                              | Nov<br>222.0<br>145.0<br>101.0 | Dec                   | Jan                  | Feb                                                     | Mar                 | Apr                 | <b>May</b><br>241.0<br>256.0<br>217.2                                   | Jun<br>208.0<br>221.0<br>227.0               | <b>Jul</b><br>258.0<br>277.0                                     | Aug<br>220.0<br>70.8<br>271.0<br>317.0<br>162.3<br>216.0 | <b>Sep</b><br>154.0<br>237.0                       |
|                                       | n                                                                                                                                | 3                                                                          | 3                              | 0                     | 0                    | 0                                                       | 0                   | 0                   | 3                                                                       | 3                                            | 2                                                                | 6                                                        | 2                                                  |
|                                       | t <sub>1</sub><br>t <sub>2</sub><br>t <sub>3</sub><br>t <sub>4</sub><br>t <sub>5</sub>                                           | 3<br>0<br>0<br>0<br>0                                                      | 3<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0     | 0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0    | 0<br>0<br>0<br>0    | 3<br>0<br>0<br>0<br>0                                                   | 3<br>0<br>0<br>0<br>0                        | 2<br>0<br>0<br>0<br>0                                            | 6<br>0<br>0<br>0                                         | 2<br>0<br>0<br>0<br>0                              |
|                                       | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b                                                                                           | -1<br>1                                                                    | -1<br>-1                       |                       |                      |                                                         |                     |                     |                                                                         | 1                                            | 1                                                                | -1<br>1<br>-1<br>-1<br>1                                 | 1                                                  |
|                                       | d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d                                                                             |                                                                            | -1                             |                       |                      |                                                         |                     |                     | 1<br>-1<br>-1                                                           | 1                                            |                                                                  | 1<br>1<br>-1<br>-1<br>-1<br>-1                           |                                                    |
|                                       | f-e<br>S <sub>k</sub>                                                                                                            | 1                                                                          | -3                             | 0                     | 0                    | 0                                                       | 0                   | 0                   | -1                                                                      | 3                                            | 1                                                                | 1                                                        | 1                                                  |
| z                                     | $ \begin{array}{c} \sigma^2 s = \\ s = S_k / \sigma_s \\ Z_k^2 \\ \Sigma Z_k^2 \\ \Sigma Z_k^2 = \\ \Sigma Z_k^2 = \end{array} $ | 3.67<br>0.52<br>0.27<br>2.19<br>7.49                                       | 3.67<br>-1.57<br>2.45          | Tie Extent<br>Count   | t <sub>1</sub><br>22 | t <sub>2</sub><br>0                                     | t <sub>3</sub><br>0 | t <sub>4</sub><br>0 | 3.67<br>-0.52<br>0.27<br>t <sub>5</sub><br>0                            | 3.67<br>1.57<br>2.45                         | 1.00<br>1.00<br>1.00                                             | 28.33<br>0.19<br>0.04<br>Σn<br>ΣS <sub>k</sub>           | 1.00<br>1.00<br>1.00<br>22<br>3                    |
|                                       | Z-bar= $\Sigma Z_k/K=$<br>$\chi^2_h=\Sigma Z_k^2-I$<br>$\Sigma VAR(S_k)$<br>45.00<br>350                                         | 0.31<br>$K(Z-bar)^2 =$<br><b>p</b><br><b>Z</b> <sub>calc</sub><br><b>p</b> | 6.81<br>0.339<br>0.30<br>0.617 |                       | @α=5<br>@α=          | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 12.59<br>1.96       |                     | Test for stat<br>$\chi^2_h < \chi^2_{(K-1)}$<br>$H_0$ (No<br>$H_A$ (± t | tion homoge<br>/<br>trend) /<br>rend) F      | neity<br>ACCEPT<br>ACCEPT<br>REJECT                              |                                                          |                                                    |
| Sulfate, Total (mg/l)                 | 300       250       200       150       100       50                                                                             |                                                                            |                                |                       |                      |                                                         |                     |                     | 1                                                                       | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | L-Kendall Slope<br>Lower<br>-43.41<br>-22.29<br>-17.55<br>-12.71 | e Confidence Inf<br>Sen's<br>Slope<br>3.80               | Upper<br>Limit<br>33.53<br>25.59<br>18.19<br>13.65 |

WY2009

WY2010

----Oct ----Nov ----Dec -->-Jan -\*--Feb -->-Mar -+-Apr ----May --->-Jun -×-Jul -■-Aug ----Sep

WY2011

WY2012

WY2013

WY2008

| Si     | te               | #13                                  |                         |                      | Se            | easonal        | Kendall                             | analysis       | s for Zir | nc, Dissol                  | ved (ug/l)   | )              |                            |              |
|--------|------------------|--------------------------------------|-------------------------|----------------------|---------------|----------------|-------------------------------------|----------------|-----------|-----------------------------|--------------|----------------|----------------------------|--------------|
| Row    | label            | Water Year                           | Oct                     | Nov                  | Dec           | Jan            | Feb                                 | Mar            | Apr       | Мау                         | Jun          | Jul            | Aug                        | Sep          |
|        | a<br>b<br>c<br>d | WY2008<br>WY2009<br>WY2010<br>WY2011 | 104.0<br>79.7<br>12.6   | 60.5<br>16.7<br>58.6 |               |                |                                     |                |           | 8.4<br>10.6                 | 12.2<br>8.5  | 19.7<br>8.1    | 50.5<br>33.6<br>5.9<br>6.2 | 71.1<br>60.7 |
|        | e<br>f           | WY2012<br>WY2013                     |                         |                      |               |                |                                     |                |           | 13.0                        | 8.0          |                | 16.7<br>19.2               |              |
|        |                  | n                                    | 3                       | 3                    | 0             | 0              | 0                                   | 0              | (         | 0 3                         | 3            | 2              | 6                          | 2            |
|        |                  | t,                                   | 3                       | 3                    | 0             | 0              | 0                                   | 0              | (         | 0 3                         | 3            | 2              | 6                          | 2            |
|        |                  | t <sub>2</sub>                       | 0                       | 0                    | 0             | 0              | 0                                   | 0              | (         | 0 0                         | 0            | 0              | 0                          | 0            |
|        |                  | t₃<br>t                              | 0                       | 0                    | 0             | 0              | 0                                   | 0              | (         | 0 0                         | 0            | 0              | 0                          | 0            |
|        |                  | t <sub>5</sub>                       | 0                       | 0                    | 0             | 0              | 0                                   | 0              | (         | 0 0                         | 0            | 0              | 0                          | 0            |
|        |                  | b-a                                  | -1                      | -1                   |               |                |                                     |                |           |                             | -1           | -1             | -1                         | -1           |
|        |                  | c-a<br>d-a                           | -1                      | -1                   |               |                |                                     |                |           |                             |              |                | -1<br>-1                   |              |
|        |                  | e-a                                  |                         |                      |               |                |                                     |                |           |                             |              |                | -1                         |              |
|        |                  | t-a<br>c-b                           | -1                      |                      |               |                |                                     |                |           |                             | -1           |                | -1<br>-1                   |              |
|        |                  | d-b                                  |                         | 1                    |               |                |                                     |                |           |                             |              |                | -1                         |              |
|        |                  | е-b<br>f-b                           |                         |                      |               |                |                                     |                |           |                             | -1           |                | -1<br>-1                   |              |
|        |                  | d-c                                  |                         |                      |               |                |                                     |                |           | 1                           |              |                | 1                          |              |
|        |                  | f-c                                  |                         |                      |               |                |                                     |                |           | 1                           |              |                | 1                          |              |
|        |                  | e-d<br>f-d                           |                         |                      |               |                |                                     |                |           | 1                           |              |                | 1                          |              |
|        |                  | f-e                                  |                         |                      |               |                |                                     |                |           |                             |              |                | 1                          |              |
|        |                  | S <sub>k</sub>                       | -3                      | -1                   | 0             | 0              | 0                                   | 0              | (         | 0 3                         | -3           | -1             | -3                         | -1           |
|        | σ                | ° <sub>s</sub> =                     | 3.67                    | 3.67                 |               |                |                                     |                |           | 3.67                        | 3.67         | 1.00           | 28.33                      | 1.00         |
|        | Z <sub>k</sub> = | $S_k\!/\!\sigma_S$                   | -1.57                   | -0.52                |               |                |                                     |                |           | 1.57                        | -1.57        | -1.00          | -0.56                      | -1.00        |
|        | 2                | Z <sup>2</sup> <sub>k</sub>          | 2.45                    | 0.27                 |               |                |                                     |                |           | 2.45                        | 2.45         | 1.00           | 0.32                       | 1.00         |
|        |                  | $\Sigma Z_k =$                       | -4.65                   |                      | Tie Extent    | t <sub>1</sub> | t <sub>2</sub>                      | t <sub>3</sub> | t4        | t <sub>5</sub>              |              |                | Σn                         | 22           |
|        |                  | $\Sigma Z_{k}^{2} =$                 | 9.95                    |                      | Count         | 22             | 0                                   | 0              | 0         | 0                           |              |                | $\Sigma S_k$               | -9           |
|        | Z                | Z-bar=ΣZ <sub>k</sub> /K=            | -0.66                   |                      |               |                |                                     |                |           |                             |              |                |                            |              |
|        |                  |                                      |                         |                      |               |                |                                     |                |           |                             |              |                |                            |              |
|        |                  | $\chi^2_h = \Sigma Z^2_k$ -          | K(Z-bar) <sup>2</sup> = | 6.86                 |               | @α=59          | % χ <sup>2</sup> <sub>(K-1)</sub> = | 12.59          |           | Test for sta                | ation homoge | eneity         |                            |              |
|        |                  |                                      | р                       | 0.334                | L             |                |                                     |                |           | $\chi^2_h < \chi^2_{(K-1)}$ |              | ACCEPT         |                            |              |
|        |                  | $\Sigma VAR(S_k)$                    | $\mathbf{Z}_{calc}$     | -1.19                |               | @α/2=          | 2.5% <b>Z</b> =                     | 1.96           |           | H <sub>0</sub> (No          | trend)       | ACCEPT         |                            |              |
|        |                  | 45.00                                | р                       | 0.117                |               |                |                                     |                |           | H <sub>A</sub> (±           | trend)       | REJECT         |                            |              |
|        | 120              |                                      |                         |                      |               |                |                                     |                |           |                             |              |                |                            |              |
| _      | -                |                                      |                         |                      |               |                |                                     |                |           |                             |              |                |                            |              |
| /br    | 100              | $\vdash$                             |                         |                      |               |                |                                     |                |           |                             | Seasonal     | -Kendall Slope | e Confidence la            | tervale      |
| с<br>q | 80               |                                      |                         | <u></u>              |               |                |                                     |                |           |                             | Seasonal     | Lower          | Sen's                      | Upper        |
| Ve     | 00               | ~                                    |                         | $\backslash$         |               |                |                                     |                |           |                             | α            | Limit          | Slope                      | Limit        |
| sol    | 60               |                                      |                         | - \                  |               |                | ]                                   |                |           |                             | 0.050        | -13.72         | -3 71                      | 2.34<br>0.29 |
| Dis    | 40               |                                      | $\checkmark$            |                      |               |                |                                     |                |           |                             | 0.100        | -11.36         | -5.71                      | -0.23        |
| ۔<br>ن | 40               |                                      |                         |                      | $\mathbf{X}$  |                |                                     |                |           |                             | 0.200        | -9.06          |                            | -0.77        |
| Zin    | 20               |                                      |                         | $\sim$               | $\rightarrow$ |                |                                     | _              |           |                             |              |                |                            |              |
|        | _                | •                                    |                         | _<br>¥               |               |                |                                     | <u> </u>       |           |                             |              |                |                            |              |
|        | 0                | +<br>₩Y200                           | 8 \\\/\/                | 2009                 | WY2010        | WVC            | 2011                                | WY2012         | · \//     | Y2013                       |              |                |                            |              |
|        |                  | vv12000                              | U VVI.                  | 2003                 | **12010       | V V I Z        |                                     | ****           | . v V     |                             |              |                |                            |              |

-+- Apr --- May ---•--- Jun -X- Jul --- Aug ----- Sep

## **INTERPRETIVE REPORT SITE 27**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date      | Parameter             | Value            | Qualifier    | Notes                          |
|------------------|-----------------------|------------------|--------------|--------------------------------|
| No outliers have | been identified by HG | CMC for the peri | od of Octobe | r 2007 through September 2013. |

The data for water year2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Three samples exceeding these criteria have been identified, as listed in the table below. The exceedances were for field pH values which are below the lower limit of 6.5 su listed in the AWQS. Values for field pH from other wells completed into organic rich peat sediments similar to Site 27 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 29, and 32). All of the other analytes were within AWQS for the current water year.

#### Table of Exceedance for Water Year 2013

|             |           | Limits  |       |       |          |  |  |  |
|-------------|-----------|---------|-------|-------|----------|--|--|--|
| Sample Date | Parameter | Value   | Lower | Upper | Hardness |  |  |  |
| 17-Jul-13   | pH Field  | 6.01 su | 6.5   | 8.5   |          |  |  |  |
| 9-Sep-13    | pH Field  | 5.86 su | 6.5   | 8.5   |          |  |  |  |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. Visually the increasing trend in total sulfate values, which started in 2008, has since 'leveled' off. The maximum value recorded was 34.8mg/L in October 2009, during the current water year the median value recorded was  $6.0\mu g/L$  which is slightly more than doubled from the 2006 through 2008 water years.

Non-parametric statistical analyses were performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The below table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013).

|                    | Mann-Ken | dall test st | Sen's slope estimate |        |       |
|--------------------|----------|--------------|----------------------|--------|-------|
| Parameter          | n*       | <b>p</b> **  | Trend                | Q      | Q(%)  |
| Conductivity Field | 6        | 0.32         |                      |        |       |
| pH Field           | 6        | 0.32         |                      |        |       |
| Alkalinity, Total  | 6        | 0.01         | +                    | 3.44   | 12.5  |
| Sulfate, Total     | 6        | 0.05         |                      |        |       |
| Zinc, Dissolved    | 6        | 0.02         | -                    | -0.577 | -24.8 |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

For datasets with a statistically significant trend ( $\alpha/2=2.5\%$ ) a Seasonal-Sen's Slope estimate statistic has also been calculated. The dataset for total alkalinity has a statistically significant (p = 0.01) trend with a slope estimate of 3.02mg/L/yr or a 12.52% increase over the last 6 years. With the changes that were made to the FWMP monitoring schedule (*i.e.* increase sampling frequency), HGCMC feels that the FWMP program is sufficient to monitor further changes, before the AWQS are exceeded.

Additional X-Y plots have been generated for total alkalinity, field pH, specific conductance, total sulfate, and dissolved zinc that co-plot data from Site 27 and Site 58, the upgradient control site, to aid in the comparison between those two sites. Total alkalinity and field pH are both approximately within the same range for both sites. Total sulfate and field conductivity are generally higher at the downgradient site. Dissolved zinc values typically have a similar range at both sites.

In general the waters for these two different sites are characterized by significantly different hydrological and geological conditions. Site 58 is located in close proximity to the large bedrock ridge, which defines the eastern geologic and hydrologic boundary of the tails area. The upslope portion of the ridge acts as the major recharge zone to the area aquifer. Along this ridge it is likely that groundwater flow is dominated by shallow or near surface flows due to the steep gradient and thin mineral soil. Thus, the groundwater at Site 58 is typically a mixture of surficial recharge from the immediate area with a component of relatively juvenile groundwater originating from the ridge to the east. In contrast, Site 27 is located in an area of gently sloping muskeg that forms part of the upper Tributary Creek drainage area. The area's groundwater is characterized by diffuse flow through the peat/sand strata that make up the upper portion of the unconsolidated sediment fill in the Tributary Creek valley. Additionally, Site 27 is located in an area identified as a groundwater discharge site into Tributary Creek. Thus, Site 27 samples groundwater that is relatively mature in comparison to Site 58 and may have a higher component of groundwater that has been in contact with a larger variety of strata for a longer period of time. Therefore, the groundwater would be expected to have a higher dissolved load. The lower pH would be due to the greater interaction with organic matter in the muskeg and would promote greater solubility for naturally occurring dissolved metals sampled at this site.

An intra-well analysis was performed using combined Shewhart-CUSUM charts for conductivity, dissolved zinc, and total sulfate. Table 1 contains a summary of the baseline statistics along with the control limits used.

|                               | Site 27<br>Conductivity<br>(µS/cm) | Site 27<br>Diss. Zinc<br>(μg/L) | Site 27<br>Total Sulfate<br>(mg/L) |
|-------------------------------|------------------------------------|---------------------------------|------------------------------------|
| Baseline Statistics           |                                    |                                 |                                    |
| Baseline Period               | 09/18/01-05/18/04                  | 09/18/01-05/18/04               | 09/17/02-09/21/04                  |
| Number of Samples             | 6                                  | 6                               | 5                                  |
| Mean (x)                      | 95.88                              | 2.78                            | 1.56                               |
| Standard Deviation            | 6.43                               | 1.42                            | 0.43                               |
| Shewhart-CUSUM Control Limits | (SCL)                              |                                 |                                    |
| Control Limit (mean x+ 2s)    | 108.6                              | 5.6                             | 2.4                                |
| Control Limit (mean x + 3s)   | 115.5                              | 7.0                             | 2.8                                |
| Control Limit (mean x + 4s)   | 122.3                              | 8.4                             | 3.3                                |
| Control Limit (mean x + 4.5s) | 125.7                              | 9.2                             | 3.5                                |
| CUSUM Control Limits          |                                    |                                 |                                    |
| Cumulative increase – h       | 5                                  | 5                               | 5                                  |

# Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br/>Summary Statistics and Various Control Limits

Figure 1 shows the three analytes examined eventually went out of control. Total sulfate went out of control during the water year 2008. This has been discussed in previous reports and is related to the material that was place to the east of Pond 7 to form a pad. The fill material originated from the North End expansion of the tailings facility and from the figure it appears that there was some easily weathered sulfide mineralogy in the freshly blasted material. Total sulfate concentration initially continued to rise, but now are trending downward. This is captured in the decreasing slope of the CUSUM values; as the values return to pre-disturbance conditions the CUSUM value will flatten off. As discussed with other sites it can take a long time to bring the value back below the limit. Specific conductance also went out of control in water 2008 as would be expected with the increase in total sulfate driving the increase in conductivity.

Dissolved zinc went out of control beginning in water year 2007. After the first increase in water year 2007 concentrations returned to near baseline levels resulting in the flattening of the CUSUM values. Then water years 2010 and 2011 each had dissolved zinc concentrations that further increased the CUSUM value. Since the fall of 2011 the CUSUM measurement has been trending downward indicating that the concentrations are around the baseline mean.



Figure 1. Observed Measurements for Specific Conductance, Dissolved Zinc, and Total Sulfate from Site 27 Compared to the Shewhart-CUSUM Control Limits From Table 1

|                           |          |          | -        |          |          |          |          |          |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          | 4.9      |          |          |          |          |          | 5.1      |          | 9.5      |          | 11       | 7.3      |
| Conductivity-Field(µmho)  |          | 117      |          |          |          |          |          | 126      |          | 104      |          | 101      | 110.5    |
| Conductivity-Lab (µmho)   |          | 119      |          |          |          |          |          | 104      |          | 89       |          | 83       | 97       |
| pH Lab (standard units)   |          | 6.19     |          |          |          |          |          | 5.84     |          | 5.98     |          | 5.95     | 5.97     |
| pH Field (standard units) |          | 6.75     |          |          |          |          |          | 6.67     |          | 6.01     |          | 5.86     | 6.34     |
| Total Alkalinity (mg/L)   |          | 46.2     |          |          |          |          |          | 28.6     |          | 34       |          | 39.5     | 36.8     |
| Total Sulfate (mg/L)      |          | 10.7     |          |          |          |          |          | 13.3     |          | 3.4      |          | 1.3      | 7.1      |
| Hardness (mg/L)           |          | 38.7     |          |          |          |          |          | 25.8     |          | 26.1     |          | 29.5     | 27.8     |
| Dissolved As (ug/L)       |          | 1.55     |          |          |          |          |          | 3.5      |          | 0.984    |          | 6.81     | 2.525    |
| Dissolved Ba (ug/L)       |          | 46.1     |          |          |          |          |          | 33.5     |          | 30.7     |          | 44.4     | 39.0     |
| Dissolved Cd (ug/L)       |          | 0.0013   |          |          |          |          |          | 0.0018   |          | 0.0018   |          | 0.0018   | 0.0018   |
| Dissolved Cr (ug/L)       |          | 0.626    |          |          |          |          |          | 0.467    |          | 0.552    |          | 1.48     | 0.589    |
| Dissolved Cu (ug/L)       |          | 0.106    |          |          |          |          |          | 0.05     |          | 0.184    |          | 0.15     | 0.128    |
| Dissolved Pb (ug/L)       |          | 0.0364   |          |          |          |          |          | 0.0196   |          | 0.108    |          | 0.0336   | 0.0350   |
| Dissolved Ni (ug/L)       |          | 0.571    |          |          |          |          |          | 0.682    |          | 0.58     |          | 0.917    | 0.631    |
| Dissolved Ag (ug/L)       |          | 0.002    |          |          |          |          |          | 0.002    |          | 0.002    |          | 0.002    | 0.002    |
| Dissolved Zn (ug/L)       |          | 1.6      |          |          |          |          |          | 0.93     |          | 0.95     |          | 0.16     | 0.94     |
| Dissolved Se (ug/L)       |          | 0.183    |          |          |          |          |          | 0.241    |          | 0.199    |          | 0.205    | 0.202    |
| Dissolved Hg (ug/L)       |          | 0.000938 |          |          |          |          |          | 0.000533 |          | 0.00653  |          | 0.000901 | 0.000920 |

#### Site 027FMG - 'Monitoring Well - 2S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

## Qualified Data by QA Reviewer

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value    | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|----------|-----------|----------------------------|
|          |             |             |               |          |           |                            |
| 27       | 11/14/2012  | 12:00 AM    | Ag diss, µg/l | 0.00206  | J         | Below Quantitative Range   |
|          |             |             | Cd diss, µg/l | 0.00132  | J         | Below Quantitative Range   |
|          |             |             | Cu diss, µg/l | 0.1      | U         | Field Blank Contamination  |
|          |             |             | Zn diss, µg/l | 1.6      | U         | Field Blank Contamination  |
|          |             |             | Se diss, µg/l | 0.18     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 27       | 5/6/2013    | 12:00 AM    | SO4 Tot, mg/l | 13.32    | J         | Sample Receipt Temperature |
|          |             |             | Se diss, µg/l | 0.24     | J         | Below Quantitative Range   |
|          |             |             | pH Lab, su    | 5.84     | J         | Hold Time Violation        |
|          |             |             | Hg diss, µg/l | 0.000533 | U         | Field Blank Contamination  |
|          |             |             | Alk, mg/L     | 28.6     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 27       | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 3.43     | J         | Sample Receipt Temperature |
|          |             |             | Se diss, µg/l | 0.19     | J         | Below Quantitative Range   |
|          |             |             | Zn diss, µg/l | 0.95     | U         | Field Blank Contamination  |
|          |             |             |               |          |           |                            |
| 27       | 9/9/2013    | 12:00 AM    | Se diss, µg/l | 0.2      | J         | Below Quantitative Range   |
|          |             |             | Zn diss, µg/l | 0.16     | U         | Method Blank Contamination |
|          |             |             | Hg diss, µg/l | 0.000901 | U         | Field Blank Contamination  |
|          |             |             | SO4 Tot, mg/l | -2.5     | UJ        | Sample receipt temperature |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | HCCMCNATAGREETER                                   |
| UJ        | Not Detected Above Approximate Guantitation Limit  |



Site 27 – Water Temperature



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 27 – Arsenic Dissolved



Site 27 – Barium Dissolved



Site 27 – Cadmium Dissolved





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 27 – Silver Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Site 27 – Mercury Dissolved

| Site                                    | #27                                                                                   |                                                        |                                 | Seasonal              | Kendall               | analysis                                                | for Spe             | cific Cond       | ductance, F                                                                         | Field (µS                                    | /cm)                                                   |                                            |                                                                              |
|-----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|-----------------------|-----------------------|---------------------------------------------------------|---------------------|------------------|-------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|
| Row label<br>a<br>b<br>c<br>d<br>e<br>f | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012<br>WY2013                | Oct                                                    | Nov<br>108.8<br>106<br>117      | Dec                   | Jan                   | Feb                                                     | Mar                 | Apr              | May<br>110.7<br>89.6<br>107.3<br>155<br>156.1<br>126                                | Jun                                          | Jul<br>110.4<br>186.8<br>129.3<br>104                  | Aug                                        | Sep<br>191.2<br>151.2<br>126.7<br>96<br>102<br>101                           |
|                                         | n                                                                                     | 0                                                      | 3                               | 0                     | 0                     | 0                                                       | 0                   | 0                | 6                                                                                   | 0                                            | 4                                                      | 0                                          | 6                                                                            |
|                                         | t₁<br>t₂<br>t₃<br>t₄<br>t₅                                                            | 0<br>0<br>0<br>0                                       | 3<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0    | 0<br>0<br>0<br>0 | 6<br>0<br>0<br>0                                                                    | 0<br>0<br>0<br>0                             | 4<br>0<br>0<br>0<br>0                                  | 0<br>0<br>0<br>0                           | 6<br>0<br>0<br>0                                                             |
|                                         | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>f-b<br>d-c<br>f-c<br>f-c<br>f-e<br>S | 0                                                      | -1<br>1<br>1                    | 0                     | 0                     | 0                                                       | 0                   | 0                | -1<br>-1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>-1<br>-1<br>-1        | 0                                            | 1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1                   | 0                                          | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>1<br>1<br>-1<br>1<br>1 |
|                                         | O <sub>k</sub>                                                                        | 0                                                      | I                               | 0                     | U                     | 0                                                       | U                   | 0                | 1                                                                                   | 0                                            | -2                                                     | U                                          | -11                                                                          |
| 0<br>Z <sub>k</sub> =                   | <sup>2</sup> s=<br>S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>      |                                                        | 3.67<br>0.52<br>0.27            |                       |                       |                                                         |                     |                  | 28.33<br>1.32<br>1.73                                                               |                                              | 8.67<br>-0.68<br>0.46                                  |                                            | 28.33<br>-2.07<br>4.27                                                       |
| Z                                       | $\Sigma Z_{k} = \Sigma Z_{k}^{2} = \Sigma Z_{k}/K =$                                  | -0.91<br>6.73<br>-0.23                                 |                                 | Tie Extent<br>Count   | t₁<br>19              | t <sub>2</sub><br>0                                     | t <sub>3</sub><br>0 | t4<br>0          | t <sub>5</sub><br>0                                                                 |                                              |                                                        | Σn<br>ΣS <sub>k</sub>                      | 19<br>-5                                                                     |
|                                         | $\frac{\chi^2_{h}=\Sigma Z^2_{k}}{\Sigma VAR(S_k)}$ 69.00                             | K(Z-bar) <sup>2</sup> =<br>p<br>Z <sub>calc</sub><br>p | 6.53<br>0.089<br>-0.48<br>0.315 |                       | @α=5<br>@α/2=         | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 7.81                | Te               | est for station h<br>$\chi^2_h < \chi^2_{(K-1)}$<br>$H_0$ (No tree<br>$H_A$ (± tree | omogeneity<br>end)<br>nd)                    | ACCEPT<br>ACCEPT<br>REJECT                             |                                            |                                                                              |
| Specific Conductance, Field<br>(µS/cm)  | 200<br>180<br>160<br>140<br>120<br>80<br>60<br>40<br>20<br>WY                         | /2008                                                  | WY2009                          | WY2010                |                       | ×                                                       | WY201               | 2 WY             | 2013                                                                                | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | Lower<br>Limit<br>-24.63<br>-19.05<br>-16.06<br>-12.55 | e Confidence Ir<br>Sen's<br>Slope<br>-2.13 | Upper<br>Limit<br>9.16<br>4.73<br>2.96<br>1.09                               |

---Oct ----Nov --▲-Dec -->-Jan ----Feb -->--Mar

-+- Apr ---- May ---+- Jun -≻- Jul

| Site             | #27                            |      |      | Sea        | sonal K | endall ar | nalysis f | or pH, F | ield, Star | ndard Un | its  |                 |       |
|------------------|--------------------------------|------|------|------------|---------|-----------|-----------|----------|------------|----------|------|-----------------|-------|
| Row label        | Water Year                     | Oct  | Nov  | Dec        | Jan     | Feb       | Mar       | Apr      | May        | Jun      | Jul  | Aug             | Sep   |
| а                | WY2008                         |      |      |            |         |           |           |          | 6.0        |          |      |                 | 6.3   |
| b                | WY2009                         |      |      |            |         |           |           |          | 6.0        |          |      |                 | 6.3   |
| с                | WY2010                         |      |      |            |         |           |           |          | 5.6        |          | 5.5  |                 | 6.2   |
| d                | WY2011                         |      | 6.2  |            |         |           |           |          | 6.2        |          | 5.3  |                 | 6.2   |
| e                | WY2012                         |      | 6.5  |            |         |           |           |          | 5.6        |          | 6.5  |                 | 6.3   |
| t                | WY2013                         | _    | 6.8  |            |         |           |           |          | 6.7        | -        | 6.0  |                 | 5.9   |
|                  | n                              | 0    | 3    | 0          | 0       | 0         | 0         | 0        | 6          | 0        | 4    | 0               | 6     |
|                  | t <sub>1</sub>                 | 0    | 3    | 0          | 0       | 0         | 0         | 0        | 6          | 0        | 4    | 0               | 6     |
|                  | t <sub>2</sub>                 | 0    | 0    | 0          | 0       | 0         | 0         | 0        | 0          | 0        | 0    | 0               | 0     |
|                  | t <sub>3</sub>                 | 0    | 0    | 0          | 0       | 0         | 0         | 0        | 0          | 0        | 0    | 0               | 0     |
|                  | t4                             | 0    | 0    | 0          | 0       | 0         | 0         | 0        | 0          | 0        | 0    | 0               | 0     |
|                  | t <sub>5</sub>                 | 0    | 0    | 0          | 0       | 0         | 0         | 0        | 0          | 0        | 0    | 0               | 0     |
|                  | b-a                            |      |      |            |         |           |           |          | 1          |          |      |                 | -1    |
|                  | c-a                            |      |      |            |         |           |           |          | -1         |          |      |                 | -1    |
|                  | d-a                            |      |      |            |         |           |           |          | 1          |          |      |                 | -1    |
|                  | e-a                            |      |      |            |         |           |           |          | -1         |          |      |                 | 1     |
|                  | f-a                            |      |      |            |         |           |           |          | 1          |          |      |                 | -1    |
|                  | c-b                            |      |      |            |         |           |           |          | -1         |          |      |                 | -1    |
|                  | d-b                            |      |      |            |         |           |           |          | 1          |          |      |                 | -1    |
|                  | e-b                            |      |      |            |         |           |           |          | -1         |          |      |                 | 1     |
|                  | f-b                            |      |      |            |         |           |           |          | 1          |          |      |                 | -1    |
|                  | d-c                            |      |      |            |         |           |           |          | 1          |          | -1   |                 | 1     |
|                  | e-c                            |      |      |            |         |           |           |          | 1          |          | 1    |                 | 1     |
|                  | f-c                            |      |      |            |         |           |           |          | 1          |          | 1    |                 | -1    |
|                  | e-d                            |      | 1    |            |         |           |           |          | -1         |          | 1    |                 | 1     |
|                  | f-d                            |      | 1    |            |         |           |           |          | 1          |          | 1    |                 | -1    |
|                  | T-e<br>S <sub>k</sub>          | 0    | 3    | 0          | 0       | 0         | 0         | 0        | 1          | 0        | -1   | 0               | -1    |
|                  | - K                            | 0    | 0    | Ŭ          | 0       | 0         | 0         | 0        | 0          | Ű        | -    | Ű               |       |
| a                | 5 <sup>2</sup> s=              |      | 3.67 |            |         |           |           |          | 28.33      |          | 8.67 |                 | 28.33 |
| Z <sub>k</sub> = | S <sub>k</sub> /σ <sub>S</sub> |      | 1.57 |            |         |           |           |          | 0.94       |          | 0.68 |                 | -0.94 |
|                  | Z <sup>2</sup> <sub>k</sub>    |      | 2.45 |            |         |           |           |          | 0.88       |          | 0.46 |                 | 0.88  |
|                  | Σ7 -                           | 2 25 | <br> | Tie Extent | t.      | t.        | to        | t.       | t.         |          |      | Σn              | 10    |
|                  | $\Sigma Z^2 =$                 | 1 60 |      | Count      | 10      | 0         | •3        | ب<br>م   | ·>         |          |      | 79              | 5     |
| -                | k=                             | 4.00 | ļ    | Count      | 19      | U         | U         | U        | U          |          |      | 20 <sub>k</sub> | Э     |
| 2                | ∠-bar=ΣZ <sub>k</sub> /K=      | 0.56 |      |            |         |           |           |          |            |          |      |                 |       |

|--|

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 3.42  |   | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81 | Test for station home       | ogeneity |
|---------------------------|-------------------------|-------|---|-----------------------------------------|------|-----------------------------|----------|
|                           | р                       | 0.331 | - |                                         |      | $\chi^2_h < \chi^2_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.48  |   | @α/2=2.5% <b>Z</b> =                    | 1.96 | H <sub>0</sub> (No trend)   | ACCEPT   |
| 69.00                     | р                       | 0.685 |   |                                         |      | H <sub>A</sub> (± trend)    | REJECT   |



| Seasona | al-Kendall Slop | e Confidence   | Intervals      |
|---------|-----------------|----------------|----------------|
| α       | Lower<br>Limit  | Sen's<br>Slope | Upper<br>Limit |
| 0.010   | -0.10           |                | 0.19           |
| 0.050   | -0.07           | 0.01           | 0.13           |
| 0.100   | -0.05           | 0.01           | 0.09           |
| 0.200   | -0.03           |                | 0.06           |

| Site                                                                                            | #27                                                                                                          |                                                        |                                              |                       | Season                | al Kenda                                   | all analys            | sis for To            | tal Alk,                                                                | (mg/l)                                                      |                                                                  |                                                    |                                                                  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------------------|-----------------------|--------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| Row label<br>a<br>b<br>c<br>d<br>e                                                              | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012                                                 | Oct                                                    | Nov<br>22.0<br>27.6                          | Dec                   | Jan                   | Feb                                        | Mar                   | Apr                   | May<br>22.3<br>18.5<br>22.0<br>22.0<br>30.6                             | Jun                                                         | Jul<br>22.6<br>34.8<br>48.8                                      | Aug                                                | Sep<br>22.3<br>26.5<br>31.7<br>26.1<br>48.5                      |
| T                                                                                               | n n                                                                                                          | 0                                                      | 46.2                                         | 0                     | 0                     | 0                                          | 0                     | 0                     | 28.6                                                                    | 0                                                           | 34.0                                                             | 0                                                  | <u>39.5</u><br>6                                                 |
|                                                                                                 | $\begin{matrix}t_1\\t_2\\t_3\\t_4\\t_5\end{matrix}$                                                          | 0<br>0<br>0<br>0<br>0                                  | 3<br>0<br>0<br>0<br>0                        | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 4<br>1<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0<br>0                                       | 4<br>0<br>0<br>0<br>0                                            | 0<br>0<br>0<br>0<br>0                              | 6<br>0<br>0<br>0<br>0                                            |
|                                                                                                 | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-e<br>S_k | 0                                                      | 1<br>1<br>1<br>3                             | 0                     | 0                     | 0                                          | 0                     | 0                     | -1<br>-1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>-1<br>6   | 0                                                           | 1<br>1<br>1<br>-1<br>-1<br>2                                     | 0                                                  | 1<br>1<br>1<br>-1<br>1<br>-1<br>1<br>1<br>1<br>1<br>1<br>-1<br>9 |
| Z <sub>k</sub>                                                                                  | <b>σ<sup>2</sup>s=</b><br>= S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>                    |                                                        | 3.67<br>1.57<br>2.45                         |                       |                       |                                            |                       |                       | 27.33<br>1.15<br>1.32                                                   |                                                             | 8.67<br>0.68<br>0.46                                             |                                                    | 28.33<br>1.69<br>2.86                                            |
|                                                                                                 | $\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$                                          | 5.08<br>7.09<br>1.27                                   | [                                            | Tie Extent<br>Count   | t₁<br>17              | t <sub>2</sub><br>1                        | t₃<br>0               | t₄<br>O               | t₅<br>0                                                                 |                                                             |                                                                  | $\Sigma$ n<br>$\Sigma$ S <sub>k</sub>              | 19<br>20                                                         |
| 55                                                                                              | $\frac{\chi^2_{h}=\Sigma Z^2_{k}}{\Sigma VAR(S_k)}$                                                          | K(Z-bar) <sup>2</sup> =<br>p<br>Z <sub>calc</sub><br>p | 0.63<br><b>0.890</b><br>2.30<br><b>0.989</b> |                       | @α=59<br>@α/2=        | $\% \chi^{2}_{(K-1)} =$<br>2.5% <b>Z</b> = | 7.81                  | ד<br>נ                | Fest for stat<br>$\chi^2_h < \chi^2_{(K-1)}$<br>$H_0$ (No<br>$H_A$ (± t | tion homoge<br><i>A</i><br>trend) F<br>rend) <mark>A</mark> | ACCEPT<br>REJECT                                                 |                                                    |                                                                  |
| <b>Total Alk</b> , ( <b>Ing/l</b> )<br>45<br>40<br>45<br>40<br>35<br>20<br>20<br>20<br>15<br>10 | WY2008                                                                                                       | 3 WY2                                                  | 2009                                         | ×<br>WY2010           | WY2                   | 011                                        | WY2012                | WY2                   | =<br>                                                                   | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200                | Kendall Slope<br>Lower<br>Limit<br>-0.01<br>1.61<br>2.10<br>2.53 | e Confidence Ir<br>Sen's<br>Slope<br>3.44<br>12.5% | Upper<br>Limit<br>6.56<br>4.84<br>4.28<br>4.03                   |
|                                                                                                 | —— Ос<br>—+— Ар                                                                                              | st — —<br>or — —                                       | - No∨<br>- May                               | <u> </u>              | ;<br>X                | - Jan<br>- Jul                             | —*— Feb<br>—∎— Aug    | ) <u>-</u>            | – Mar<br>– Sep                                                          |                                                             |                                                                  |                                                    |                                                                  |

| Site                | #27                                      |                         |                       | Se            | easonal       | Kendall                             | analysis          | for Sulf   | ate, Tota                                 | al (mg/l)           |                |           |                             |
|---------------------|------------------------------------------|-------------------------|-----------------------|---------------|---------------|-------------------------------------|-------------------|------------|-------------------------------------------|---------------------|----------------|-----------|-----------------------------|
| Row label<br>a<br>b | Water Year<br>WY2008<br>WY2009<br>WY2010 | Oct                     | Νον                   | Dec           | Jan           | Feb                                 | Mar               | Apr        | May<br>16.4<br>14.4                       | Jun                 | Jul            | Aug       | Sep<br>10.3<br>35.4<br>12.7 |
| d                   | WY2010<br>WY2011                         |                         | 16.4                  |               |               |                                     |                   |            | 25.0                                      |                     | 0.0            |           | 13.0                        |
| f                   | WY2012<br>WY2013                         |                         | 10.7                  | -             | _             |                                     | _                 | _          | 13.3                                      | _                   | 3.4            |           | 0.0                         |
|                     | n                                        | 0                       | 3                     | 0             | 0             | 0                                   | 0                 | 0          | 6                                         | 0                   | 4              | 0         | 6                           |
|                     | t,<br>t2                                 | 0<br>0                  | 3<br>0                | 0<br>0        | 0<br>0        | 0<br>0                              | 0<br>0            | 0<br>0     | 6<br>0                                    | 0<br>0              | 4<br>0         | 0<br>0    | 6<br>0                      |
|                     | t <sub>3</sub>                           | 0                       | 0                     | 0             | 0             | 0                                   | 0                 | 0          | 0                                         | 0                   | 0              | 0         | 0                           |
|                     | t <sub>5</sub>                           | 0                       | 0                     | 0             | 0             | 0                                   | 0                 | 0          | 0                                         | 0                   | 0              | 0         | 0                           |
|                     | b-a                                      |                         |                       |               |               |                                     |                   |            | -1                                        |                     |                |           | 1                           |
|                     | c-a<br>d-a                               |                         |                       |               |               |                                     |                   |            | 1                                         |                     |                |           | 1<br>1                      |
|                     | e-a<br>f-a                               |                         |                       |               |               |                                     |                   |            | -1<br>-1                                  |                     |                |           | -1<br>-1                    |
|                     | c-b<br>d-b                               |                         |                       |               |               |                                     |                   |            | 1<br>1                                    |                     |                |           | -1<br>-1                    |
|                     | e-b<br>f-b                               |                         |                       |               |               |                                     |                   |            | -1<br>-1                                  |                     |                |           | -1<br>-1                    |
|                     | d-c                                      |                         |                       |               |               |                                     |                   |            | 1<br>-1                                   |                     | -1<br>-1       |           | -1<br>-1                    |
|                     | f-c                                      |                         | 1                     |               |               |                                     |                   |            | -1<br>1                                   |                     | -1<br>1        |           | -1                          |
|                     | f-d                                      |                         | -1                    |               |               |                                     |                   |            | -1                                        |                     | 1              |           | -1                          |
|                     | r-e<br>S <sub>k</sub>                    | 0                       | -1                    | 0             | 0             | 0                                   | 0                 | 0          | -3                                        | 0                   | -1<br>-2       | 0         | -1<br>-9                    |
|                     | σ² <sub>s</sub> =                        |                         | 3.67                  |               |               |                                     |                   |            | 28.33                                     |                     | 8.67           |           | 28.33                       |
| Z <sub>k</sub>      | $= S_k / \sigma_S$                       |                         | -0.52                 |               |               |                                     |                   |            | -0.56                                     |                     | -0.68          |           | -1.69                       |
|                     | Z <sub>k</sub>                           |                         | 0.27                  |               |               |                                     |                   |            | 0.32                                      |                     | 0.46           |           | 2.86                        |
|                     | $\Sigma Z_k = \Sigma Z_k^2$              | -3.46<br>3.91           |                       | Tie Extent    | t₁<br>19      | t <sub>2</sub>                      | t₃<br>0           | t₄<br>O    | t₅<br>0                                   |                     |                | Σn<br>ΣSu | 19<br>-15                   |
|                     | Z-bar=ΣZ <sub>k</sub> /K=                | -0.86                   | <u>L</u>              | oount         | 10            | 0                                   | 0                 |            | <u> </u>                                  |                     |                | K         | 10                          |
|                     |                                          |                         |                       |               |               |                                     |                   |            |                                           |                     |                |           |                             |
|                     | $\chi^2_h = \Sigma Z^2_k - I$            | K(Z-bar) <sup>2</sup> = | 0.92                  |               | @α=5%         | % χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81              | ٦          | Fest for stat                             | ion homoge          | neity          |           |                             |
|                     |                                          | р                       | 0.819                 |               |               |                                     |                   |            | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$         | ł                   | ACCEPT         |           |                             |
|                     | ΣVAR(S <sub>k</sub> )<br>69.00           | L <sub>calc</sub>       | -1.69<br><b>0.046</b> |               | @α=           | 2.5% <b>Z</b> =                     | 1.96              |            | H <sub>0</sub> (NO<br>H <sub>A</sub> (± t | trend) A<br>rend) F | REJECT         |           |                             |
|                     | <u> </u>                                 |                         | ·                     |               |               |                                     |                   |            |                                           |                     |                |           |                             |
|                     | 40                                       |                         |                       |               |               |                                     |                   |            |                                           | 1                   |                |           |                             |
| (I)f                | 35                                       |                         | $\wedge$              |               |               |                                     |                   |            |                                           |                     |                |           |                             |
| ů<br>Ú              | 30                                       |                         | $/ \rightarrow$       |               |               |                                     |                   |            |                                           | Seasona             | Lower          | Sen's     | Upper                       |
| otal                | 25                                       | /                       |                       |               |               |                                     |                   |            |                                           | α<br>0.010          | Limit<br>-6.00 | Slope     | Limit<br>0.82               |
| Ĕ,                  | 20                                       | _/_                     |                       | <b>1</b>      |               |                                     | <u> </u>          |            |                                           | 0.050<br>0.100      | -4.12<br>-2.82 | -1.95     | -0.45<br>-0.63              |
| lfate               | 15                                       | 7                       |                       | $\sim$ $\sim$ |               |                                     | <u> </u>          |            |                                           | 0.200               | -2.60          |           | -0.90                       |
| Su                  | 10                                       | /                       |                       | ×             |               |                                     |                   | /          |                                           | -                   |                |           |                             |
|                     | 5                                        |                         |                       |               | $\overline{}$ |                                     | $\times$          | $\bigstar$ | ×                                         | -                   |                |           |                             |
|                     | 0 <del> </del> WY:                       | 2008                    | WY2009                | WY201         | 0 W           | Y2011                               | WY20 <sup>2</sup> | 12 W       | /Y2013                                    | 4                   |                |           |                             |
|                     |                                          | Oct                     | – <del>□</del> –Nov   | Deo           | c — Ja        | an —*—                              | Feb -             | Mar        | -                                         |                     |                |           |                             |
|                     | -                                        | -+-Apr                  | May                   | /●Jun         | ı ———→ Jı     | ul 🗕 🗕                              | Aug —             | —Sep       |                                           |                     |                |           |                             |

Seasonal Kendall analysis for Sulfate, Total (mg/l)

| ow label                              |                                                                                                                         |                                                                      |                                               | 0                     | ouconai                    |                                                         |                     | ,                | DIGGON                                                                                                                                                                               | o a (ag, .)                                                                                  |                                                                      |                                                     |                                                                                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| a<br>b<br>c<br>d<br>e<br>f            | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2011<br>WY2012<br>WY2013                                        | Oct                                                                  | Nov<br>1.1<br>2.3<br>1.6                      | Dec                   | Jan                        | Feb                                                     | Mar                 | Apr              | May<br>8.5<br>2.7<br>20.9<br>54.5<br>1.0<br>0.9                                                                                                                                      | Jun                                                                                          | Jul<br>7.7<br>4.3<br>1.4<br>1.0                                      | Aug                                                 | Sep<br>2.9<br>1.3<br>2.9<br>1.3<br>0.3                                                      |
|                                       | n                                                                                                                       | 0                                                                    | 3                                             | 0                     | 0                          | 0                                                       | 0                   | 0                | 6                                                                                                                                                                                    | 0                                                                                            | 4                                                                    | 0                                                   |                                                                                             |
|                                       | t₁<br>t₂<br>t₃<br>t₄<br>t₅                                                                                              | 0<br>0<br>0<br>0                                                     | 3<br>0<br>0<br>0<br>0                         | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0                                        | 0<br>0<br>0<br>0    | 0<br>0<br>0<br>0 | 6<br>0<br>0<br>0                                                                                                                                                                     | 0<br>0<br>0<br>0                                                                             | 4<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0                                    |                                                                                             |
|                                       | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-e<br>S <sub>k</sub> | 0                                                                    | 1<br>1<br>-1<br>1                             | 0                     | 0                          | 0                                                       | 0                   | 0                | -1<br>1<br>-1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1                                                                                                       | 0                                                                                            | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-6                   | 0                                                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| σ                                     | <sup>2</sup> <sub>s</sub> =                                                                                             |                                                                      | 3.67                                          |                       |                            |                                                         |                     |                  | 28.33                                                                                                                                                                                |                                                                                              | 8.67                                                                 |                                                     | 28.3                                                                                        |
| <b>Z</b> <sub>k</sub> =               | S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>                                                           |                                                                      | 0.52<br>0.27                                  |                       |                            |                                                         |                     |                  | -0.94<br>0.88                                                                                                                                                                        |                                                                                              | -2.04<br>4.15                                                        |                                                     | -1.6<br>2.8                                                                                 |
| Z                                     | $\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$                                                     | -4.15<br>8.17<br>-1.04                                               |                                               | Tie Extent<br>Count   | t₁<br>19                   | t <sub>2</sub><br>0                                     | t <sub>3</sub><br>0 | t₄<br>O          | t <sub>5</sub><br>0                                                                                                                                                                  |                                                                                              |                                                                      | Σn<br>ΣS <sub>k</sub>                               | 19<br>-19                                                                                   |
|                                       |                                                                                                                         |                                                                      |                                               |                       |                            |                                                         |                     |                  |                                                                                                                                                                                      |                                                                                              |                                                                      |                                                     |                                                                                             |
|                                       | $\chi^2_h = \Sigma Z^2_k - k$                                                                                           | K(Z-bar) <sup>2</sup> =                                              | 3.87                                          |                       | @α=59                      | % χ <sup>2</sup> <sub>(K-1)</sub> =                     | 7.81                | Т                | est for stat                                                                                                                                                                         | ion homoge                                                                                   | neity                                                                |                                                     |                                                                                             |
|                                       | $\chi^{2}_{h}=\Sigma Z^{2}_{k}-k$ $\Sigma VAR(S_{k})$ 69.00                                                             | <(Z-bar) <sup>2</sup> =<br>p<br>Z <sub>calc</sub><br>p               | 3.87<br><b>0.276</b><br>-2.17<br><b>0.015</b> |                       | @α=5°<br>@α/2=             | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 7.81                | ۲<br>ک           | est for stat<br>χ <sup>2</sup> <sub>h</sub> <χ <sup>2</sup> <sub>(K-1)</sub><br><b>H</b> <sub>0</sub> (No<br><b>H</b> <sub>A</sub> (± t                                              | ion homoge<br>A<br>trend) F<br>rend) <mark>A</mark>                                          | neity<br>ACCEPT<br>REJECT<br>ACCEPT                                  |                                                     |                                                                                             |
| 60<br>50                              | $\frac{\chi^2_{h}=\Sigma Z^2_{k}-k}{\Sigma VAR(S_k)}$ 69.00                                                             | $\frac{\langle (Z-bar)^2 =}{p}$<br>$Z_{calc}$<br>p                   | 3.87<br>0.276<br>-2.17<br>0.015               |                       | @α=5°<br>@α/2=             | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 7.81                | T<br>)           | $\frac{c}{c} \operatorname{est for stat}_{h < \chi^{2}(K-1)} H_{0} (No H_{A} (\pm t))$                                                                                               | ion homoge<br>A<br>trend) F<br>rend) A<br>Seasonal                                           | neity<br>CCEPT<br>REJECT<br>CCEPT                                    | a Confidence I                                      | ntervals                                                                                    |
| 60<br>50<br>40                        | $\frac{\chi^2_{h}=\Sigma Z^2_{k}-k}{\Sigma VAR(S_k)}$ 69.00                                                             | $\frac{\langle (Z-bar)^2 =}{p}$<br>$Z_{calc}$<br>p                   | 3.87<br>0.276<br>-2.17<br>0.015               |                       | @a=5°<br>@a/2=             | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 7.81                | T<br>)           | $\frac{c}{c} \operatorname{est} \operatorname{for staf}_{h < \chi^{2}(K-1)} \\ H_{0} (\operatorname{No} H_{A} (\pm t) \\ \end{array}$                                                | ion homoge<br>A<br>trend) F<br>rend) A<br>Seasonal-<br>α                                     | neity<br>CCEPT<br>REJECT<br>CCEPT<br>Kendall Slope<br>Lower<br>Limit | e Confidence I<br>Sen's<br>Slope                    | ntervals<br>Upper<br>Limit                                                                  |
| 60<br>50<br>40<br>30<br>20            | $\chi^{2}_{h} = \Sigma Z^{2}_{k} + K$ $\Sigma VAR(S_{k})$ $69.00$                                                       | (Z-bar) <sup>2</sup> =<br>p<br>Z <sub>calc</sub><br>p                | 3.87<br>0.276<br>-2.17<br>0.015               |                       | @α=5°<br>@α/2=             | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Z</b> = | 7.81                | т<br>)           | $\frac{\int_{c}^{c} \det \left\{ \int_{c}^{c} \left\{ h < \chi^{2} \left( K - 1 \right) \right\} \right\}}{H_{0} \left( \text{No} \right)}$ $H_{A} \left( \pm t \right)$ $=$ $=$ $=$ | ion homoge<br>A<br>trend) F<br>rend) A<br>Seasonal-<br>α<br>0.010<br>0.050<br>0.100<br>0.200 | Kendall Slope<br>Lower<br>Limit<br>-1.94<br>-1.56<br>-1.17<br>-1.11  | e Confidence I<br>Sen's<br>Slope<br>-0.58           | ntervals<br>Upper<br>Limit<br>-0.01<br>-0.27<br>-0.38<br>-0.45                              |
| 60<br>50<br>40<br>30<br>20<br>10<br>0 | χ <sup>2</sup> <sub>h</sub> =ΣZ <sup>2</sup> <sub>k</sub> -ν                                                            | <pre>&lt;(Z-bar)<sup>2</sup>=<br/>p<br/>Z<sub>calc</sub><br/>p</pre> | 3.87<br>0.276<br>-2.17<br>0.015               |                       | @α=5 <sup>c</sup><br>@α/2= | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> = | 7.81                | T<br>)           | $\frac{\int_{2}^{2} \text{for stal}}{H_{0} (\text{No} H_{A} (\pm t))}$                                                                                                               | ion homoge<br>A<br>trend) F<br>rend) A<br>Seasonal-<br>δ<br>0.010<br>0.050<br>0.100<br>0.200 | Kendall Slope<br>Lower<br>Limit<br>-1.94<br>-1.56<br>-1.17<br>-1.11  | e Confidence I<br>Sen's<br>Slope<br>-0.58<br>-24.7% | tervals<br>Upper<br>Limit<br>-0.01<br>-0.27<br>-0.38<br>-0.45                               |

## INTERPRETIVE REPORT SITE 29

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|--|--|--|
| No outliers have been identified by HGCMC for the period of October 2007 through September 2013. |           |       |           |       |  |  |  |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Several results exceeding these criteria have been identified, as listed in the table below.

|             |            | Limits    |       |       |          |  |  |
|-------------|------------|-----------|-------|-------|----------|--|--|
| Sample Date | Parameter  | Value     | Lower | Upper | Hardness |  |  |
| 14-Nov-12   | Alkalinity | 7.3 mg/L  | 20    |       |          |  |  |
| 6-May-13    | Alkalinity | 7.9 mg/L  | 20    |       |          |  |  |
| 17-Jul-13   | Alkalinity | 7.7 mg/L  | 20    |       |          |  |  |
| 9-Sep-13    | Alkalinity | 12.3 mg/L | 20    |       |          |  |  |
| 14-Nov-12   | pH Field   | 5.48 su   | 6.5   | 8.5   |          |  |  |
| 6-May-13    | pH Field   | 5.06 su   | 6.5   | 8.5   |          |  |  |
| 17-Jul-13   | pH Field   | 5.19 su   | 6.5   | 8.5   |          |  |  |
| 9-Sep-13    | pH Field   | 4.82 su   | 6.5   | 8.5   |          |  |  |

### Table of Exceedance for Water Year 2013

Four of these records are for field pH with values below the lower limit of 6.5 su listed in AWQS. Field pH from other wells completed in organic rich peat sediments similar to Site 29 have historically resulted in pH values ranging from 5 to 6 su (*e.g.* Sites 58, 27, and 32). Four other exceedances were for total alkalinity below the lower limit of 20 mg/L.

Though dissolved lead has routinely been in exceedance at Site 29 over the past several years there was a sharp increase in water year 2011 with values returning to below the AWQS limit by the middle of the Water Year 2012. Though zinc had been in exceedance during water year 2011 all samplings for the past couple water years were below the AWQS limit. The most probable
mechanism for dispersal of the lead, zinc, and potentially other metals away from the tailings pile would be as fugitive tailings dust transported during cold, descanting winds during winter or due to dust induced by truck traffic during dry summer conditions.

The changes in these analytes may reflect the changing topography of the tails dry stack facility. After the northeast expansion was completed in 2008 HGCMC commenced to place the majority of the tailings in the northeast region. For a couple of years the northeast was mostly bowl shaped and below the tree line. During the last couple of years this area stopped being a bowl and has been brought up in elevation. With the increase in elevation this area is not as protected from the winds that predominantly prevail from the northeast. Dispersal of fugitive dust from this region would be to the southwest towards Site 29 and Site 32.

In 2011 HGCMC implemented a biweekly dust monitoring program to support the snow monitoring program. This program has continued into 2013 and the results from this monitoring are summarized in the 2013 Tailings and Waste Rock Annual Report and will also be presented at the annual meeting in July 2014.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. There is a visually apparent downward trend in total alkalinity values across the last five water years. The same trend is apparent in the dissolved arsenic, dissolved barium, hardness, and conductivity data. Currently, HGCMC does not have an explanation for the mechanism that is in operation causing the visual decrease in these values.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013).

|                    | Mann-Ker | ndall test st | Sen's slope estimate          |       |       |  |  |  |  |
|--------------------|----------|---------------|-------------------------------|-------|-------|--|--|--|--|
| Parameter          | n*       | <b>p</b> **   | Trend                         | Q     | Q(%)  |  |  |  |  |
| Conductivity Field | 6        | 0.02          | -                             | -5.00 | -9.7  |  |  |  |  |
| pH Field           | 6        | 0.32          |                               |       |       |  |  |  |  |
| Alkalinity, Total  | 6        | 0.24          |                               |       |       |  |  |  |  |
| Sulfate, Total     | 6        | Ir            | Inconsistent detection limits |       |       |  |  |  |  |
| Zinc, Dissolved    | 6        | < 0.01        | -                             | -0.84 | -22.9 |  |  |  |  |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

A couple significant decreasing trends were identified with this analysis. Field conductivity (p=0.02) was negatively trending with an estimated slope of -5.00  $\mu$ s/cm/yr or a -9.7% decrease, this is similar in direction and magnitude calculated for the past couple water year. Dissolved zinc was trending with an estimated slope o f-0.84  $\mu$ g/l/yr or a -22.9% decrease.

Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by the analytical laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

With the discontinuation of sampling at Site 58 during water year 2013, an inter-well comparison is no longer feasible. Instead an intra-well analysis was performed using combined Shewhart-CUSUM charts for conductivity, dissolved zinc, and alkalinity. Table 1 contains a summary of the baseline statistics along with the control limits used.

|                               | Site 29<br>Conductivity<br>(µS/cm) | Site 29<br>Diss. Zinc<br>(µg/L) | Site 29<br>Alkalinity<br>(mg/L) |  |  |  |  |  |  |  |
|-------------------------------|------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Baseline Statistics           |                                    |                                 |                                 |  |  |  |  |  |  |  |
| Baseline Period               | 05/11/00-09/15/05                  | 05/11/00-09/15/05               | 04/27/95-09/13/00               |  |  |  |  |  |  |  |
| Number of Samples             | 12                                 | 12                              | 5                               |  |  |  |  |  |  |  |
| Mean (x)                      | 122.27                             | 3.60                            | 1.56                            |  |  |  |  |  |  |  |
| Standard Deviation            | 24.8                               | 0.43                            |                                 |  |  |  |  |  |  |  |
| Shewhart-CUSUM Control Limits | (SCL)                              |                                 |                                 |  |  |  |  |  |  |  |
| Control Limit (mean x+ 2s)    | 171.9                              | 6.3                             | 2.4                             |  |  |  |  |  |  |  |
| Control Limit (mean x + 3s)   | 196.7                              | 7.6                             | 2.8                             |  |  |  |  |  |  |  |
| Control Limit (mean x + 4s)   | 221.4                              | 9.0                             | 3.3                             |  |  |  |  |  |  |  |
| Control Limit (mean x + 4.5s) | 233.8                              | 9.7                             | 3.5                             |  |  |  |  |  |  |  |
| CUSUM Control Limits          | CUSUM Control Limits               |                                 |                                 |  |  |  |  |  |  |  |
| Cumulative increase – h       | 5                                  | 5                               | 5                               |  |  |  |  |  |  |  |

# Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br/>Summary Statistics and Various Control Limits

Site 29 was installed in 1988 and has an extensive sampling history, however establishing a baseline has been difficult. Since the installation of the well a number of the monitored parameters (*i.e.* alkalinity, specific conductance, total sulfate, and etc...) have been in constant flux. Because the CUSUM process compares the mean and standard deviation of the chosen baseline to the collected data it is possible to detect continual changes in the analytes without having a background data set. After reviewing the data for the three parameters, data periods were chosen based upon the data having a period of minimal flux. This period was then used for the calculation of the baseline statistics.

All three of three of the parameters examined (Figure 1) eventually went out of control with respects to the chosen baseline data statistics. If the pore /contact water from inside the facility was not contained, the well water would have high conductivity, high dissolved zinc, and high alkalinity. Two of the three charts in figure 1 have long term decreasing trends; it is dissolved

zinc that has periodically had higher values. As previously discussed it is hypothesized that the increase in dissolved zinc results from the accumulation of fugitive dust in the snow pack during the winter. In the spring when the snow pack melts this material is released as a pulse. Most years the deposited material is not present by the fall sampling. With the implementation of additional best management practices, HGCMC expects to decrease the amount of fugitive dust leaving the tailings disposal facility.

The long term decreasing trends in specific conductance and alkalinity are potentially the result of the weathering of the rock originally used to build the tailings facility. In recent years HGCMC has reported on water chemistry changes in the FWMP directly related to construction activities in the tailings facility. As previously discussed in the report, with regards to Site 27, there was an increase in total sulfate and conductivity after the pad was built east of Pond 7. In the 5-6years after this pad was built the values for these parameters are still elevated though trending towards pre –disturbance conditions. A similar sort of change was also recorded at Site 60 after the construction of Pond 7. Until the pump back collection system was brought online there were substantial increases for specific conductivity and alkalinity at Site 60. These are two examples of where the construction of the improvement has resulted in changes to the water chemistry. Therefore, the decreasing trends in alkalinity and specific conductance seen at Site 29 are potentially the result of weathering of the initial improvements made in the area for tailings disposal.



Figure 1. Observed Measurements for Specific Conductance, Dissolved Zinc, and Alkalinity from Site 29 Compared to the Shewhart-CUSUM Control Limits From Table 1

|                           |          |          |          |          | _        |          | 5        |          |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          | 6.7      |          |          |          |          |          | 5.8      |          | 6.4      |          | 7.1      | 6.6      |
| Conductivity-Field(µmho)  |          | 48       |          |          |          |          |          | 38       |          | 51       |          | 38       | 43.0     |
| Conductivity-Lab (µmho)   |          | 34       |          |          |          |          |          | 36       |          | 34       |          | 34       | 34       |
| pH Lab (standard units)   |          | 4.8      |          |          |          |          |          | 4.82     |          | 5.11     |          | 4.99     | 4.91     |
| pH Field (standard units) |          | 5.48     |          |          |          |          |          | 5.06     |          | 5.19     |          | 4.82     | 5.13     |
| Total Alkalinity (mg/L)   |          | 7.3      |          |          |          |          |          | 7.9      |          | 7.7      |          | 12.3     | 7.8      |
| Total Sulfate (mg/L)      |          | 1.3      |          |          |          |          |          | 2.5      |          | 2.5      |          | 1.3      | 1.9      |
| Hardness (mg/L)           |          | 12.8     |          |          |          |          |          | 14.5     |          | 16.1     |          | 21.8     | 15.3     |
| Dissolved As (ug/L)       |          | 5.46     |          |          |          |          |          | 5.94     |          | 6.29     |          | 8.29     | 6.115    |
| Dissolved Ba (ug/L)       |          | 5.1      |          |          |          |          |          | 5.3      |          | 5.7      |          | 7.4      | 5.5      |
| Dissolved Cd (ug/L)       |          | 0.0036   |          |          |          |          |          | 0.0018   |          | 0.0018   |          | 0.0018   | 0.0018   |
| Dissolved Cr (ug/L)       |          | 0.945    |          |          |          |          |          | 0.687    |          | 0.697    |          | 1.6      | 0.821    |
| Dissolved Cu (ug/L)       |          | 0.16     |          |          |          |          |          | 0.093    |          | 0.146    |          | 0.228    | 0.153    |
| Dissolved Pb (ug/L)       |          | 0.129    |          |          |          |          |          | 0.073    |          | 0.0913   |          | 0.11     | 0.1007   |
| Dissolved Ni (ug/L)       |          | 1.13     |          |          |          |          |          | 0.911    |          | 1.06     |          | 1.2      | 1.095    |
| Dissolved Ag (ug/L)       |          | 0.003    |          |          |          |          |          | 0.002    |          | 0.003    |          | 0.002    | 0.003    |
| Dissolved Zn (ug/L)       |          | 2.15     |          |          |          |          |          | 1.77     |          | 1.95     |          | 2.01     | 1.98     |
| Dissolved Se (ug/L)       |          | 0.349    |          |          |          |          |          | 0.057    |          | 0.176    |          | 0.152    | 0.164    |
| Dissolved Hg (ug/L)       |          | 0.000813 |          |          |          |          |          | 0.00092  |          | 0.00742  |          | 0.00109  | 0.001005 |

#### Site 029FMG - 'Monitoring Well - 3S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

## **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|---------|-----------|----------------------------|
|          |             |             |               |         |           |                            |
| 29       | 11/14/2012  | 12:00 AM    | Ag diss, µg/l | 0.00337 | J         | Below Quantitative Range   |
|          |             |             | Cd diss, µg/l | 0.00356 | J         | Below Quantitative Range   |
|          |             |             | Zn diss, µg/l | 2.15    | U         | Field Blank Contamination  |
|          |             |             | Se diss, µg/l | 0.34    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 29       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 4.82    | J         | Hold Time Violation        |
|          |             |             | Hg diss, µg/l | 0.00092 | U         | Field Blank Contamination  |
|          |             |             | Cond, µmhos   | 36      | U         | Field Blank Contamination  |
|          |             |             | Alk, mg/L     | 7.9     | U         | Field Blank Contamination  |
|          |             |             | SO4 Tot, mg/l | -5      | UJ        | Sample Receipt Temperature |
|          |             |             |               |         |           |                            |
| 29       | 7/17/2013   | 12:00 AM    | Se diss, µg/l | 0.17    | J         | Below Quantitative Range   |
|          |             |             | Ag diss, µg/l | 0.0032  | J         | Below Quantitative Range   |
|          |             |             | SO4 Tot, mg/l | -5      | UJ        | Sample Receipt Temperature |
|          |             |             |               |         |           |                            |
| 29       | 9/9/2013    | 12:00 AM    | Se diss, µg/l | 0.15    | J         | Below Quantitative Range   |
|          |             |             | SO4 Tot, mg/l | -2.5    | UJ        | Sample receipt temperature |

| Qualifier | D escription                                       |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | Licon Not Detected Abowe Quantitation Limit        |
| UJ        | Not Detected Above Approximate Guantitation Limit  |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

| Site                    | #29                            |                      | Seasonal Kendall analysis for Specific Conductance, Field (µS/cm) |            |      |                  |                |     |                   |           |       |                 |       |
|-------------------------|--------------------------------|----------------------|-------------------------------------------------------------------|------------|------|------------------|----------------|-----|-------------------|-----------|-------|-----------------|-------|
| Row label               | Water Year                     | Oct                  | Nov                                                               | Dec        | Jan  | Feb              | Mar            | Apr | Мау               | Jun       | Jul   | Aug             | Sep   |
| а                       | WY2008                         |                      |                                                                   |            |      |                  |                |     | 78.8              |           |       |                 | 48    |
| b                       | WY2009                         |                      |                                                                   |            |      |                  |                |     | 123.8             |           |       |                 | 84.5  |
| с                       | WY2010                         |                      |                                                                   |            |      |                  |                |     | 61.5              |           | 61.6  |                 | 49.4  |
| d                       | WY2011                         |                      | 46.5                                                              |            |      |                  |                |     | 64                |           | 51.6  |                 | 46    |
| e                       | WY2012                         |                      | 53                                                                |            |      |                  |                |     | 54.7              |           | 40.8  |                 | 59    |
|                         | W12013                         | 0                    | 40                                                                | 0          | 0    | 0                | 0              | 0   | 30                | 0         | 51    | 0               | 30    |
|                         |                                | 0                    | 5                                                                 | 0          | 0    | 0                | 0              | 0   | 0                 | 0         | 4     | 0               | 0     |
|                         | t,                             | 0                    | 3                                                                 | 0          | 0    | 0                | 0              | 0   | 6                 | 0         | 4     | 0               | 6     |
|                         | t <sub>2</sub>                 | 0                    | 0                                                                 | 0          | 0    | 0                | 0              | 0   | 0                 | 0         | 0     | 0               | 0     |
|                         | t <sub>3</sub>                 | 0                    | 0                                                                 | 0          | 0    | 0                | 0              | 0   | 0                 | 0         | 0     | 0               | 0     |
|                         | t <sub>4</sub>                 | 0                    | 0                                                                 | 0          | 0    | 0                | 0              | 0   | 0                 | 0         | 0     | 0               | 0     |
| 1                       | ι <sub>5</sub>                 | 0                    | 0                                                                 | 0          | 0    | 0                | 0              | 0   | 0                 | 0         | 0     | 0               | 0     |
| 1                       | b-a                            |                      |                                                                   |            |      |                  |                |     | 1                 |           |       |                 | 1     |
|                         | c-a                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | 1     |
|                         | d-a                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | e-a                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | 1     |
|                         | f-a                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | c-b                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | d-b                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | e-b                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | t-b                            |                      |                                                                   |            |      |                  |                |     | -1                |           |       |                 | -1    |
|                         | d-c                            |                      |                                                                   |            |      |                  |                |     | 1                 |           | -1    |                 | -1    |
|                         | 6-C                            |                      |                                                                   |            |      |                  |                |     | -1                |           | -1    |                 | -1    |
|                         | e-d                            |                      | 1                                                                 |            |      |                  |                |     | -1                |           | -1    |                 | -1    |
|                         | f-d                            |                      | 1                                                                 |            |      |                  |                |     | -1                |           | -1    |                 | -1    |
|                         | f-e                            |                      | -1                                                                |            |      |                  |                |     | -1                |           | 1     |                 | -1    |
|                         | S <sub>k</sub>                 | 0                    | 1                                                                 | 0          | 0    | 0                | 0              | 0   | -11               | 0         | -4    | 0               | -5    |
|                         | 2.=                            |                      | 3.67                                                              |            |      |                  |                |     | 28.33             |           | 8 67  |                 | 28.33 |
| 7 -                     | s-                             |                      | 0.57                                                              |            |      |                  |                |     | 20.00             |           | 1.26  |                 | 0.04  |
| <b>Z</b> <sub>k</sub> = | 3 <sub>k</sub> /0 <sub>S</sub> |                      | 0.52                                                              |            |      |                  |                |     | -2.07             |           | -1.30 |                 | -0.94 |
|                         | Z <sup>2</sup> <sub>k</sub>    |                      | 0.27                                                              |            |      |                  |                |     | 4.27              |           | 1.85  |                 | 0.88  |
|                         | $\Sigma Z_{\nu} =$             | -3 84                | Г                                                                 | Tie Extent | t,   | t <sub>2</sub>   | t <sub>3</sub> | t.  | t <sub>5</sub>    |           |       | Σn              | 19    |
|                         | $\Sigma Z^2 =$                 | 7 27                 |                                                                   | Count      | 10   | 0                | 0              | 0   | 0                 |           |       | ΣS.             | _10   |
| -                       | $Z = \frac{1}{K}$              | 0.06                 | L                                                                 | oount      | 15   | 0                | 0              | 0   | 0                 |           |       | 20 <sub>K</sub> | 15    |
| 2                       |                                | -0.90                |                                                                   |            |      |                  |                |     |                   |           |       |                 |       |
|                         | $\alpha^2 - \Sigma 7^2$        | $K(7 \text{ bar})^2$ | 2.59                                                              |            | @~-5 | $9/(\alpha^2) =$ | 7 01           | То  | at for station ha | mogonoity |       |                 |       |

| $\chi^2_h = \Sigma Z^2_k$ | $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 3.58$ |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81 | Test for station homogeneity      |        |
|---------------------------|---------------------------------------------------|-------|-----------------------------------------|------|-----------------------------------|--------|
|                           | р                                                 | 0.310 | -                                       |      | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$                               | -2.17 | @α/2=2.5% <b>Z</b> =                    | 1.96 | H <sub>0</sub> (No trend)         | REJECT |
| 69.00                     | р                                                 | 0.015 |                                         |      | H <sub>A</sub> (± trend)          | ACCEPT |



| Row label     Water Year     Oct     Nov     Dec     Jan     Feb     Mar     Apr     May     Jun     Jul     Jul | Aug0         | Sep<br>5.0<br>5.4<br>4.9<br>5.2<br>5.0<br>4.8<br>6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|
| a WY2008 5.3   b WY2009 5.4   c WY2010 4.5 4.8   d WY2011 4.9 5.1 4.1   e WY2012 5.7 4.5 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | 5.0<br>5.4<br>4.9<br>5.2<br>5.0<br>4.8             |
| b     WY2009     5.4       c     WY2010     4.5     4.8       d     WY2011     4.9     5.1     4.1       e     WY2012     5.7     4.5     5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0            | 5.4<br>4.9<br>5.2<br>5.0<br>4.8                    |
| c WY2010 4.5 4.8   d WY2011 4.9 5.1 4.1   e WY2012 5.7 4.5 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0            | 4.9<br>5.2<br>5.0<br>4.8                           |
| d WY2011 4.9 5.1 4.1<br>e WY2012 5.7 4.5 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0            | 5.2<br>5.0<br>4.8                                  |
| e WY2012 5.7 4.5 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 5.0<br>4.8<br>6                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            | 4.8                                                |
| t WY2013 5.5 5.1 5.1 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0            | 6                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0            | ~                                                  |
| t, 0 3 0 0 0 0 6 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | 6                                                  |
| t <sub>2</sub> 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | C                                                  |
| t <sub>3</sub> 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            | C                                                  |
| t, 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            | C                                                  |
| $t_5$ 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0            | l                                                  |
| b-a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 1                                                  |
| c-a -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| d-a -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 1                                                  |
| e-a -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 1                                                  |
| f-a -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| c-b -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| d-b -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| e-b -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| f-D -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -1                                                 |
| 0-C 1 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 1                                                  |
| e-c 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 1                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | - 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | - 1                                                |
| f-e -1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | -1                                                 |
| S <sub>k</sub> 0 1 0 0 0 0 -5 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0            | -5                                                 |
| <b>n<sup>2</sup></b> - 3.67 28.33 8.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 28.33                                              |
| <b>7</b> - S / m 0.52 0.01 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 20.00                                              |
| $Z_k = S_k O_S$ 0.52 -0.94 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | -0.94                                              |
| Z <sup>2</sup> <sub>k</sub> 0.27 0.88 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 0.88                                               |
| $\Sigma Z_{k} = 0.00$ Tie Extent $t_1$ $t_2$ $t_3$ $t_4$ $t_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Σn           | 19                                                 |
| $\Sigma Z_{k}^{2} = 3.88$ Count 19 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Sigma S_k$ | -5                                                 |
| Z-har=57./K= 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N            | -                                                  |

| $\gamma^{2}_{\mu} = \Sigma 7^{2}_{\mu} - K (7 - har)^{2} =$ | 3.88 | $@\alpha = 5\% \gamma^2 = 0$ | 7 81 |
|-------------------------------------------------------------|------|------------------------------|------|

| $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K(Z-bar)^{2} = 3.88$ |                     | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81                 | Test for station home | ogeneity                    |        |
|---------------------------------------------------------|---------------------|-----------------------------------------|----------------------|-----------------------|-----------------------------|--------|
|                                                         | р                   | 0.274                                   |                      |                       | $\chi^2_h < \chi^2_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$                                       | $\mathbf{Z}_{calc}$ | -0.48                                   | @α/2=2.5% <b>Z</b> = | 1.96                  | H <sub>0</sub> (No trend)   | ACCEPT |
| 69.00                                                   | р                   | 0.315                                   |                      |                       | H <sub>A</sub> (± trend)    | REJECT |



| Seasonal-Kendall Slope Confidence Intervals |       |       |       |  |  |  |  |  |  |  |
|---------------------------------------------|-------|-------|-------|--|--|--|--|--|--|--|
|                                             | Lower | Sen's | Upper |  |  |  |  |  |  |  |
| α                                           | Limit | Slope | Limit |  |  |  |  |  |  |  |
| 0.010                                       | -0.19 |       | 0.15  |  |  |  |  |  |  |  |
| 0.050                                       | -0.15 | -0.04 | 0.09  |  |  |  |  |  |  |  |
| 0.100                                       | -0.13 | -0.04 | 0.04  |  |  |  |  |  |  |  |
| 0.200                                       | -0.09 |       | 0.01  |  |  |  |  |  |  |  |
|                                             |       |       |       |  |  |  |  |  |  |  |

| Site                               | #29                                                                                                   |                             |                                       |                       | Seasona          | al Kenda                            | all analys                      | sis for To            | otal Alk,                                                                       | (mg/l)                   |                                          |                                    |                                                                         |
|------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|-----------------------|------------------|-------------------------------------|---------------------------------|-----------------------|---------------------------------------------------------------------------------|--------------------------|------------------------------------------|------------------------------------|-------------------------------------------------------------------------|
| Row label<br>a<br>b<br>c<br>d<br>e | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012                                          | Oct                         | Nov<br>0.0<br>19.9                    | Dec                   | Jan              | Feb                                 | Mar                             | Apr                   | May<br>22.4<br>26.4<br>8.7<br>19.1<br>0.0                                       | Jun                      | Jul<br>10.5<br>0.0<br>7.1                | Aug                                | Sep<br>10.5<br>27.0<br>0.0<br>31.0<br>18.3                              |
| f                                  | WY2013<br>n                                                                                           | 0                           | 7.3                                   | 0                     | 0                | 0                                   | 0                               | 0                     | 7.9<br>6                                                                        | 0                        | 7.7                                      | 0                                  | 12.3<br>6                                                               |
|                                    | t,<br>t2<br>t3<br>t4<br>t5                                                                            | 0<br>0<br>0<br>0            | 3<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0                                                                | 0<br>0<br>0<br>0<br>0    | 4<br>0<br>0<br>0<br>0                    | 0<br>0<br>0<br>0<br>0              | 6<br>0<br>0<br>0                                                        |
|                                    | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-e<br>S_k | 0                           | 1<br>1<br>-1<br>1                     | 0                     | 0                | 0                                   | 0                               | 0                     | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | 0                        | -1<br>-1<br>-1<br>1<br>1<br>1<br>1<br>0  | 0                                  | 1<br>-1<br>1<br>-1<br>-1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 |
|                                    | σ² <sub>s</sub> =                                                                                     |                             | 3.67                                  |                       |                  |                                     |                                 |                       | 28.33                                                                           |                          | 8.67                                     |                                    | 28.33                                                                   |
| Z <sub>k</sub>                     | = S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>                                       |                             | 0.52<br>0.27                          |                       |                  |                                     |                                 |                       | -1.69<br>2.86                                                                   |                          | 0.00<br>0.00                             |                                    | 0.19<br>0.04                                                            |
|                                    | $\Sigma Z_k = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$                                                  | -0.98<br>3.17<br>-0.25      | [                                     | Tie Extent<br>Count   | t,<br>19         | t <sub>2</sub><br>0                 | t <sub>3</sub><br>0             | t4<br>0               | t <sub>s</sub><br>O                                                             |                          |                                          | $\Sigma$ n $\Sigma$ S <sub>k</sub> | 19<br>-7                                                                |
|                                    | $\chi^2_h = \Sigma Z^2_k$ -                                                                           | K(Z-bar) <sup>2</sup> =     | 2.93                                  |                       | @α=5%            | 6 χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81                            | 1                     | Fest for stat                                                                   | tion homoge              | neity                                    |                                    |                                                                         |
|                                    | ΣVAR(S <sub>k</sub> )<br>69.00                                                                        | p<br>Z <sub>calc</sub><br>p | <b>0.403</b><br>-0.72<br><b>0.235</b> |                       | @α/2=            | 2.5% <b>Z</b> =                     | 1.96                            | 2                     | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$<br>H <sub>0</sub> (No<br>H <sub>A</sub> (± t  | A<br>trend) A<br>rend) F | ACCEPT<br>ACCEPT<br>REJECT               |                                    |                                                                         |
| 35<br>30<br>()/60)<br>25           |                                                                                                       | $ \land $                   |                                       |                       |                  |                                     |                                 |                       |                                                                                 | Seasonal-<br>α<br>0.010  | Kendall Slope<br>Lower<br>Limit<br>-6.14 | Confidence Ir<br>Sen's<br>Slope    | Upper<br>Limit<br>3.87                                                  |
| 20 <b>Total Alk</b><br>15          | WY2008                                                                                                | 3 WY2                       | 2009                                  | × /<br>WY2010         | WY2              | 011                                 | WY2012                          | WY2                   | 2013                                                                            | 0.050<br>0.100<br>0.200  | -5.37<br>-4.58<br>-3.67                  | -1.70                              | 1.97<br>0.56<br>-0.27                                                   |
|                                    | Oc<br>+ Ap                                                                                            | or —                        | - No∨<br>- May                        | <u> </u>              |                  | Jan<br>Jul                          | <mark>—∗—</mark> Feb<br>—∎— Aug | ) <u>-</u>            | – Mar<br><b>–</b> Sep                                                           |                          |                                          |                                    |                                                                         |

| Site                                    | #29                                                                                                   |                         |                           | S                     | easonal               | Kendall                             | analysis              | for Zinc              | , Dissolv                                                                       | /ed (ug/l)                                   |                                                            |                                             |                                                                                                  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-----------------------|-----------------------|-------------------------------------|-----------------------|-----------------------|---------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| Row label<br>a<br>b<br>c<br>d<br>e<br>f | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012<br>WY2013                                | Oct                     | Nov<br>6.0<br>27.9<br>2.2 | Dec                   | Jan                   | Feb                                 | Mar                   | Apr                   | May<br>17.0<br>10.1<br>3.7<br>51.3<br>2.6<br>1.8                                | Jun                                          | 3.4<br>36.7<br>2.1<br>2.0                                  | Aug                                         | Sep<br>4.2<br>10.9<br>2.8<br>5.6<br>1.9<br>2.0                                                   |
|                                         | n                                                                                                     | 0                       | 3                         | 0                     | 0                     | 0                                   | 0                     | 0                     | 6                                                                               | 0                                            | 4                                                          | 0                                           | 6                                                                                                |
|                                         | t <sub>1</sub><br>t <sub>2</sub><br>t <sub>3</sub><br>t <sub>4</sub><br>t <sub>5</sub>                | 0<br>0<br>0<br>0<br>0   | 3<br>0<br>0<br>0<br>0     | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0<br>0                                                           | 0<br>0<br>0<br>0<br>0                        | 4<br>0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                            | (<br>(<br>(<br>(                                                                                 |
|                                         | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-d<br>f-e | 0                       | 1<br>-1<br>-1             | 0                     | 0                     | 0                                   | 0                     | 0                     | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>- | 0                                            | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1                      | 0                                           | ر<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲ |
|                                         | 3 <sub>k</sub>                                                                                        | 0                       | -1                        | 0                     | 0                     | 0                                   | 0                     | 0                     | -9                                                                              | 0                                            | -4                                                         | 0                                           | -/                                                                                               |
| 0<br>Z <sub>k</sub> =                   | $\sigma_{s}^{2}$ s=<br>S <sub>k</sub> / $\sigma_{s}$<br>Z <sup>2</sup> <sub>k</sub>                   |                         | 3.67<br>-0.52<br>0.27     |                       |                       |                                     |                       |                       | 28.33<br>-1.69<br>2.86                                                          |                                              | 8.67<br>-1.36<br>1.85                                      |                                             | 28.33<br>-1.32<br>1.73                                                                           |
| Z                                       | $\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K = $                                  | -4.89<br>6.71<br>-1.22  |                           | Tie Extent<br>Count   | t₁<br>19              | t <sub>2</sub><br>0                 | t <sub>3</sub><br>0   | t4<br>0               | t <sub>s</sub><br>0                                                             |                                              |                                                            | $\Sigma$ n $\Sigma$ S <sub>k</sub>          | 19<br>-21                                                                                        |
|                                         | χ <sup>2</sup> <sub>h</sub> =ΣΖ <sup>2</sup> <sub>k</sub> -ł                                          | K(Z-bar) <sup>2</sup> = | 0.74<br>0.865             | L                     | @α=5°                 | % χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81                  |                       | Test for star<br>$\gamma^{2} < \gamma^{2} (x_{1})$                              | tion homoge                                  | eneity                                                     |                                             |                                                                                                  |
|                                         | ΣVAR(S <sub>k</sub> )<br>69.00                                                                        | Z <sub>calc</sub>       | -2.41<br>0.008            |                       | @α/2=                 | =2.5% <b>Z</b> =                    | 1.96                  |                       | H <sub>0</sub> (No<br>H <sub>A</sub> (± 1                                       | trend) F<br>rend) <mark>/</mark>             | REJECT<br>ACCEPT                                           |                                             |                                                                                                  |
| 60<br><b>(5</b> 50                      |                                                                                                       |                         |                           |                       |                       | 5                                   |                       |                       |                                                                                 |                                              |                                                            |                                             |                                                                                                  |
| <b>inc, Dissolved (u</b><br>30<br>10    |                                                                                                       |                         |                           |                       | `<br> `               |                                     |                       |                       |                                                                                 | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | Kendall Slope<br>Lower<br>-4.17<br>-3.02<br>-2.61<br>-2.22 | e Confidence Sen's Slope<br>-0.84<br>-22.9% | Upper       Limit       -0.24       -0.49       -0.55       -0.63                                |
| 0                                       | WY2008                                                                                                | 3 WY                    | 2009<br>Nov               | WY2010                | WY2                   | 2011<br>Jan <u>*</u>                | WY2012<br>-Feb -      | WY2<br>• Mar          | 2013                                                                            |                                              |                                                            |                                             |                                                                                                  |

## **INTERPRETIVE REPORT SITE 32**

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past six years are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date      | Parameter             | Value            | Qualifier    | Notes                          |  |
|------------------|-----------------------|------------------|--------------|--------------------------------|--|
| No outliers have | been identified by HG | CMC for the peri | od of Octobe | r 2007 through September 2013. |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Twelve results exceeding these criteria have been identified as listed in the table below.

|             |                |            | Lin   | nits  |           |
|-------------|----------------|------------|-------|-------|-----------|
| Sample Date | Parameter      | Value      | Lower | Upper | Hardness  |
| 14-Nov-12   | Alkalinity     | 18.6 mg/L  | 20    |       |           |
| 6-May-13    | Alkalinity     | 14.3 mg/L  | 20    |       |           |
| 17-Jul-13   | Alkalinity     | 14.5 mg/L  | 20    |       |           |
| 14-Nov-12   | Lead Dissolved | 1.01 µg/L  |       | 0.54  | 8.56 mg/L |
| 6-May-13    | Lead Dissolved | 0.861 µg/L |       | 0.54  | 8.05 mg/L |
| 17-Jul-13   | Lead Dissolved | 0.694 µg/L |       | 0.54  | 8.62 mg/L |
| 9-Sep-13    | Lead Dissolved | 1.11 μg/L  |       | 0.54  | 8.19 mg/L |
| 14-Nov-12   | pH Field       | 5.73 su    | 6.5   | 8.5   |           |
| 6-May-13    | pH Field       | 5.45 su    | 6.5   | 8.5   |           |
| 17-Jul-13   | pH Field       | 5.18 su    | 6.5   | 8.5   |           |
| 9-Sep-13    | pH Field       | 5.04 su    | 6.5   | 8.5   |           |

#### Table of Exceedance for Water Year 2013

All four of the annual sampling events were in exceedance for total alkalinity, dissolved lead, and field pH. Due to the low hardness for this site, 42 of the past 43 samples have returned lead

values higher than the AWQS. As noted in the interpretive section for Site 29 fugitive tailings dust may be contributing to the elevated lead levels monitored at Site 32.

Dissolved chromium concentrations for the current water year, which were in exceedance during the May 2009 and May 2010 sampling, were well below the AWQS limit. A mechanism has yet to be established to explain the two elevated chromium results in those years.

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. These plots have been visually analyzed for the appearance of any trend in concentration. No obvious trends are apparent except for dissolved lead which has generally decreased the last five water years from a peak in water year 2006. A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The adjacent table summarizes the results on the data collected between Oct-07 and Sep-13(WY2008-WY2013).

|                    | Mann-Ker | ndall test  | Sen's slope estimate |               |         |
|--------------------|----------|-------------|----------------------|---------------|---------|
| Parameter          | n*       | <b>p</b> ** | Trend                | Q             | Q(%)    |
| Conductivity Field | 6        | 0.07        |                      |               |         |
| pH Field           | 6        | 0.41        |                      |               |         |
| Alkalinity, Total  | 6        | 0.14        |                      |               |         |
| Sulfate, Total     | 6        |             | Inconsistent         | detection lin | mits    |
| Zinc, Dissolved    | 6        | 0.01        | -                    | -1.4          | -13.725 |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

There was a significant negative (p=0.01) trend in dissolved zinc slope of -1.4 su/yr or a -13.7% this analysis. Trend analysis was not performed on the total sulfate dataset because of a change in the method detection limit used by Analytica Laboratories. A primary assumption of the Mann-Kendall test is "... only one censoring threshold exists. When more than one detection limit exists, the Mann-Kendall test cannot be performed without further censoring the data." In order to prevent this from occurring HGCMC has worked to establish a consistent MDL for sulfate from the laboratory.

With the discontinuation of sampling at Site 58 during water year 2013, an inter-well comparison is no longer feasible. Instead an intra-well analysis was performed using combined Shewhart-CUSUM charts for conductivity, dissolved zinc, and alkalinity. Table 1 contains a summary of the baseline statistics along with the control limits used.

Site 32 was installed in 1988 and has an extensive sampling history, however establishing a baseline has been difficult. Since the installation of the well a number of the monitored parameters (*i.e.* alkalinity, specific conductance, total sulfate, and etc...) have been in constant flux. Because the CUSUM process compares the mean and standard deviation of the chosen baseline to the collected data it is possible to detect continual changes in the analytes without having a background data set. After reviewing the data for the three parameters, data periods

were chosen based upon the data having a period of minimal flux. This period was then used for the calculation of the baseline statistics.

|                               | Site 32<br>Conductivity<br>(µS/cm) | Site 32<br>Diss. Zinc<br>(μg/L) | Site 32<br>Alkalinity<br>(mg/L) |
|-------------------------------|------------------------------------|---------------------------------|---------------------------------|
| Baseline Statistics           |                                    |                                 |                                 |
| Baseline Period               | 09/18/95-09/10/03                  | 05/11/00-09/15/05               | 04/27/95-09/13/00               |
| Number of Samples             | 12                                 | 12                              | 12                              |
| Mean (x)                      | 57.5                               | 9.17                            | 18.7                            |
| Standard Deviation            | 2.86                               | 3.72                            | 2.02                            |
| Shewhart-CUSUM Control Limits | (SCL)                              |                                 |                                 |
| Control Limit (mean x+ 2s)    | 63.3                               | 16.6                            | 22.1                            |
| Control Limit (mean x + 3s)   | 66.1                               | 20.3                            | 24.1                            |
| Control Limit (mean x + 4s)   | 69.0                               | 24.0                            | 26.1                            |
| Control Limit (mean x + 4.5s) | 70.4                               | 25.9                            | 27.1                            |
| CUSUM Control Limits          |                                    |                                 |                                 |
| Cumulative increase – h       | 5                                  | 5                               | 5                               |

# Table 1.Specific Conductance, Dissolved Zinc, and Total Sulfate Baseline Periods,<br/>Summary Statistics and Various Control Limits

Site 32 was installed in 1988 and has an extensive sampling history; though this well has similar completion as Site 29, there has not been an analogous long term flux in these parameters. This makes establishing the baseline less difficult. Because the CUSUM process compares the mean and standard deviation of the chosen baseline to the collected data it possible to detect continual changes in the analytes without having a background data set. After reviewing the data for the three parameters, data periods were chosen based upon the data having a period of stability. This period was then used for the calculation of the baseline statistics.

All three of three of the parameters examined (Figure 1) eventually went out of control with respects to the chosen baseline data statistics. If the pore /contact water from inside the facility was not contained, the well water would have high conductivity, high dissolved zinc, and high alkalinity. Specific conductance has shown the least amount of variability only going out of control after the last sampling in water year 2013. Alkalinity has mostly gone out of control as there has been a minor decrease in the parameter. It was only out of control at the end of water year 2013 when the measured value was at least twice the mean value. Because alkalinity and specific conductance do not have a similar pattern to going out of control as dissolved zinc, it is not thought that these changes are a result of contact water leaching from containment. Dissolved zinc has periodically had higher values than the mean. As previous discussed it is hypothesized that the increase in dissolved zinc results from the accumulation of fugitive dust in the snow pack during the winter. In the spring when the snow pack melts this material is released as a pulse. Most years the deposited material is not present by the fall sampling. With the implementation of additional best management practices, HGCMC expects to decrease the amount of fugitive dust leaving the tailings disposal facility.



Figure 1. Observed Measurements for Specific Conductance, Dissolved Zinc, and Alkalinity from Site 32 Compared to the Shewhart-CUSUM Control Limits From Table 1

|                           |          |          | -        |          |          |          |          |          |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          | 7.2      |          |          |          |          |          | 6.2      |          | 7.1      |          | 7.7      | 7.2      |
| Conductivity-Field(µmho)  |          | 55       |          |          |          |          |          | 66       |          | 66       |          | 65       | 65.5     |
| Conductivity-Lab (µmho)   |          | 56       |          |          |          |          |          | 55       |          | 53       |          | 18       | 54       |
| pH Lab (standard units)   |          | 5.16     |          |          |          |          |          | 5.03     |          | 5.19     |          | 4.89     | 5.10     |
| pH Field (standard units) |          | 5.73     |          |          |          |          |          | 5.45     |          | 5.18     |          | 5.04     | 5.32     |
| Total Alkalinity (mg/L)   |          | 18.6     |          |          |          |          |          | 14.3     |          | 14.5     |          | 46.3     | 16.6     |
| Total Sulfate (mg/L)      |          | 2.5      |          |          |          |          |          | 5        |          | 5        |          | 2.5      | 3.8      |
| Hardness (mg/L)           |          | 8.6      |          |          |          |          |          | 8.1      |          | 8.6      |          | 8.2      | 8.4      |
| Dissolved As (ug/L)       |          | 4.01     |          |          |          |          |          | 3.58     |          | 3.45     |          | 3.27     | 3.515    |
| Dissolved Ba (ug/L)       |          | 13.7     |          |          |          |          |          | 12.8     |          | 14.6     |          | 20.4     | 14.2     |
| Dissolved Cd (ug/L)       |          | 0.006    |          |          |          |          |          | 0.0063   |          | 0.0076   |          | 0.0113   | 0.0070   |
| Dissolved Cr (ug/L)       |          | 2.13     |          |          |          |          |          | 1.26     |          | 1.58     |          | 1.76     | 1.670    |
| Dissolved Cu (ug/L)       |          | 0.859    |          |          |          |          |          | 0.501    |          | 0.744    |          | 0.632    | 0.688    |
| Dissolved Pb (ug/L)       |          | 1.01     |          |          |          |          |          | 0.861    |          | 0.694    |          | 1.11     | 0.9355   |
| Dissolved Ni (ug/L)       |          | 3.33     |          |          |          |          |          | 2.96     |          | 2.94     |          | 2.94     | 2.950    |
| Dissolved Ag (ug/L)       |          | 0.01     |          |          |          |          |          | 0.003    |          | 0.011    |          | 0.002    | 0.007    |
| Dissolved Zn (ug/L)       |          | 6.41     |          |          |          |          |          | 5.46     |          | 6.69     |          | 8.91     | 6.55     |
| Dissolved Se (ug/L)       |          | 0.664    |          |          |          |          |          | 0.057    |          | 0.402    |          | 0.057    | 0.230    |
| Dissolved Hg (ug/L)       |          | 0.00142  |          |          |          |          |          | 0.00137  |          | 0.00672  |          | 0.00144  | 0.001430 |

#### Site 032FMG - 'Monitoring Well - 5S'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

## **Qualified Data by QA Reviewer**

### Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|---------|-----------|----------------------------|
|          |             |             |               |         |           |                            |
| 32       | 11/14/2012  | 12:00 AM    | Ag diss, µg/l | 0.00958 | J         | Below Quantitative Range   |
|          |             |             | Cd diss, µg/l | 0.00603 | J         | Below Quantitative Range   |
|          |             |             | Zn diss, µg/l | 6.41    | U         | Field Blank Contamination  |
|          |             |             | Se diss, µg/l | 0.66    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 32       | 5/6/2013    | 12:00 AM    | Ag diss, µg/l | 0.00324 | J         | Below Quantitative Range   |
|          |             |             | Cd diss, µg/l | 0.00628 | J         | Below Quantitative Range   |
|          |             |             | pH Lab, su    | 5.03    | J         | Hold Time Violation        |
|          |             |             | Cond, µmhos   | 55.1    | U         | Field Blank Contamination  |
|          |             |             | Alk, mg/L     | 14.3    | U         | Field Blank Contamination  |
|          |             |             | SO4 Tot, mg/l | -10     | UJ        | Sample Receipt Temperature |
|          |             | 1           |               |         |           |                            |
| 32       | 7/17/2013   | 12:00 AM    | Cd diss, µg/l | 0.0076  | J         | Below Quantitative Range   |
|          |             |             | SO4 Tot, mg/l | -10     | UJ        | Sample Receipt Temperature |
|          |             |             |               |         | -         |                            |
| 32       | 9/9/2013    | 12:00 AM    | Cond, µmhos   | 17.7    | J         | Below Quantitative Range   |
|          |             |             | SO4 Tot, mg/l | -5      | UJ        | Sample receipt temperature |

| Qualifier | D escription                                       |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | HCCMCNotDetected Aboxe Quantitation Limit          |
| UJ        | Not Detected Above Approximate Quantitation Limit  |



Site 32 – Water Temperature




Site 32 – Conductivity Field



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 32 – Copper Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 32 – Mercury Dissolved

| #3Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Seasonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kendali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cific Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iuctance, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ieia (µ5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012<br>WY2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nov<br>73.8<br>58<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | May<br>105.6<br>71.5<br>72<br>74<br>120.6<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jul<br>67<br>78.1<br>64.5<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aug                                                    | Sep<br>67.4<br>75.4<br>66.5<br>58<br>64<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| t₁<br>t₂<br>t₃<br>t₄<br>t₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0<br>0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>d-b<br>d-b<br>d-b<br>d-b<br>d-c<br>e-c<br>f-c<br>d-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1<br>-1<br>-1<br>1<br>-1<br>1<br>1<br>-1<br>1<br>-1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>-1<br>-1<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f-d<br>f-e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S <sub>k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2<br>s=<br>S <sub>k</sub> /σ <sub>s</sub><br>2 <sup>2</sup> -k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.67<br>-1.57<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.33<br>-0.19<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.67<br>-0.68<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | 28.33<br>-1.32<br>1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K = Z_k/K $ | -3.75<br>4.68<br>-0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tie Extent<br>Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t,<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>2</sub><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t <sub>3</sub><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t4<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t₅<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Sigma$ n<br>$\Sigma$ S <sub>k</sub>                  | 19<br>-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\chi^2_h = \Sigma Z^2_k$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K(Z-bar) <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | @α=5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % χ <sup>2</sup> <sub>(K-1)</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | est for station ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | omogeneity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACCEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ΣVAR(S <sub>k</sub> )<br>69.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z <sub>calc</sub><br>p                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.44<br><b>0.074</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | @α/2=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =2.5% <b>Z</b> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H₀ (No tre<br>H <sub>A</sub> (± trer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd)<br>nd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACCEPT<br>REJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 140<br>120<br>100<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Seasonal<br>α<br>0.010<br>0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -Kendall Slope<br>Lower<br>Limit<br>-8.53<br>-4.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Confidence Ir<br>Sen's<br>Slope<br>-1.25             | Upper<br>Limit<br>1.29<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c c c c c c } \hline W32 \\ \hline Water Year \\ \hline WY2008 \\ \hline WY2009 \\ \hline WY2010 \\ \hline WY2010 \\ \hline WY2011 \\ \hline WY2012 \\ \hline WY2013 \\ \hline m \\ \hline n \\ \hline t_1 \\ t_2 \\ t_3 \\ \hline t_4 \\ t_5 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | Water Year         Oct           Wy2008         WY2009           WY2010         WY2011           WY2011         WY2012           WY2013         n           n         0 $t_1$ 0 $t_2$ 0 $t_3$ 0 $t_4$ 0 $t_5$ 0           b-a         c-a           d-a         e-a           f-a         c-b           d-b         e-b           f-b         d-c-c           e-c         f-c           f-b         d-c-c           e-c         f-c           e-d         f-f-e           Sk         0 $2^2 s=$ Sk/Gs $2^2 s=$ Sk/Gs $2^2 s=$ Sk/Gs $2^2 s=$ Q $2^2 s=$ $2 z = x/K/K = -0.94$ $\chi^2 s= \Sigma Z_k/K = -0.94$ $Z_{calc}$ $p$ $2 VAR(S_k)$ $Z_{calc}$ $p$ $2 VAR(S_k)$ $Z_{calc}$ $69.00$ p | Water Year         Oct         Nov           WY2008         WY2009         WY2010           WY2012         58           WY2013         55           n         0         3           t <sub>1</sub> 0         3           t <sub>2</sub> 0         0           t <sub>3</sub> 0         0         0           t <sub>4</sub> 0         0         0           t <sub>4</sub> 0         0         0           t <sub>4</sub> 0         0         0           t <sub>5</sub> 0         0         0           t <sub>6</sub> 0         -0         0           t <sub>6</sub> -1         -1         -1           Sk         0         -3         -3           2 <sup>s</sup> =         3.67         -1.57         -2 | Water Year         Oct         Nov         Dec           WY2008         WY2010         73.8         WY2011         73.8           WY2012         55         55 $n$ 0         3         0           t,         0         3         0 $t_{i}$ 0         0         0           t,         0         3         0         0         0         0         0           t,         0         0         0         0         0         0         0           t,         0         0         0         0         0         0         0           b-a         -         -         0         0         0         0         0         0           t,         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | water Year         Oct         Nov         Dec         Jan           WY2009         WY2010         73.8         WY2012         58           MY2012         58         55         0         0         0 $t_1$ 0         3         0         0         0         0 $t_2$ 0         0         0         0         0         0         0 $t_4$ 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>Water Year         Oct         Nov         Dec         Jan         Feb           WY2009         WY2011         73.8         Feb         Feb           WY2012         58         S5         -         -           m         0         3         0         0         0           t,         0         3         0         0         0           t,         0         0         0         0         0           t,         0         -1         -1         -1           t,         -1         -1         -1         -1           t,         -1.57         -2         -2         -1.57           2/k         2.45         -1.57</td></t<> <td>With Year         Oct         Nov         Dec         Jan         Feb         Mar           WY2008         WY2010         73.8         WY2011         73.8         WY2013         55         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <td< td=""><td>Water Year       Oct       Nov       Dec       Jan       Feb       Mar       Apr         WY2008       WY2010       73.8       WY2011       73.8       WY2012       55       <math>0</math> <td< td=""><td>Work       Dec       Jan       Feb       Mar       Apr       May         WY2008       715.5       72       74       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71</td><td>W1200       Nov       Dec       Jan       Feb       Mar       Apr       May       Jun         WY2009       71.5       72       WY201       73.8       74       10.5       72         WY2010       73.8       74       10.0       74       10.0       74       10.0       74         WY2012       53       120.6       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <t< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>Point         Oet         Nov         Dec         Jan         Feb         Mar         Apr         Mar         Jun         Jun         Jul         Aug           WY2009         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5</td></t<></td></td<></td></td<></td> | Water Year         Oct         Nov         Dec         Jan         Feb           WY2009         WY2011         73.8         Feb         Feb           WY2012         58         S5         -         -           m         0         3         0         0         0           t,         0         3         0         0         0           t,         0         0         0         0         0           t,         0         -1         -1         -1           t,         -1         -1         -1         -1           t,         -1.57         -2         -2         -1.57           2/k         2.45         -1.57 | With Year         Oct         Nov         Dec         Jan         Feb         Mar           WY2008         WY2010         73.8         WY2011         73.8         WY2013         55         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>Water Year       Oct       Nov       Dec       Jan       Feb       Mar       Apr         WY2008       WY2010       73.8       WY2011       73.8       WY2012       55       <math>0</math> <td< td=""><td>Work       Dec       Jan       Feb       Mar       Apr       May         WY2008       715.5       72       74       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71</td><td>W1200       Nov       Dec       Jan       Feb       Mar       Apr       May       Jun         WY2009       71.5       72       WY201       73.8       74       10.5       72         WY2010       73.8       74       10.0       74       10.0       74       10.0       74         WY2012       53       120.6       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <t< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>Point         Oet         Nov         Dec         Jan         Feb         Mar         Apr         Mar         Jun         Jun         Jul         Aug           WY2009         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5</td></t<></td></td<></td></td<> | Water Year       Oct       Nov       Dec       Jan       Feb       Mar       Apr         WY2008       WY2010       73.8       WY2011       73.8       WY2012       55 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ <td< td=""><td>Work       Dec       Jan       Feb       Mar       Apr       May         WY2008       715.5       72       74       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71</td><td>W1200       Nov       Dec       Jan       Feb       Mar       Apr       May       Jun         WY2009       71.5       72       WY201       73.8       74       10.5       72         WY2010       73.8       74       10.0       74       10.0       74       10.0       74         WY2012       53       120.6       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <t< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>Point         Oet         Nov         Dec         Jan         Feb         Mar         Apr         Mar         Jun         Jun         Jul         Aug           WY2009         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5</td></t<></td></td<> | Work       Dec       Jan       Feb       Mar       Apr       May         WY2008       715.5       72       74       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71       71 | W1200       Nov       Dec       Jan       Feb       Mar       Apr       May       Jun         WY2009       71.5       72       WY201       73.8       74       10.5       72         WY2010       73.8       74       10.0       74       10.0       74       10.0       74         WY2012       53       120.6       6       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>Point         Oet         Nov         Dec         Jan         Feb         Mar         Apr         Mar         Jun         Jun         Jul         Aug           WY2009         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5</td></t<> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Point         Oet         Nov         Dec         Jan         Feb         Mar         Apr         Mar         Jun         Jun         Jul         Aug           WY2009         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5         71.5 |

#22 Field (uS/a c dall ...... .

WY2008

-Oct

-+- Apr

WY2009

— May

WY2010

<u> </u>— Dec

---• Jun

WY2011

— Jan

——>— Jul

WY2012

WY2013 **⊸**– Mar

— Sep

| Site             | #32                       |      |      | Sea        | sonal K | endall ar      | nalysis f      | or pH, F | ield, Star        | dard Un | its  |              |                   |
|------------------|---------------------------|------|------|------------|---------|----------------|----------------|----------|-------------------|---------|------|--------------|-------------------|
| Row label<br>a   | Water Year<br>WY2008      | Oct  | Nov  | Dec        | Jan     | Feb            | Mar            | Apr      | <b>May</b><br>5.2 | Jun     | Jul  | Aug          | <b>Sep</b><br>5.1 |
| b                | WY2009                    |      |      |            |         |                |                |          | 5.3               |         |      |              | 5.3               |
| С                | WY2010                    |      |      |            |         |                |                |          | 4.6               |         | 4.8  |              | 5.2               |
| d                | WY2011                    |      | 5.2  |            |         |                |                |          | 5.2               |         | 4.5  |              | 5.0               |
| e                | WY2012                    |      | 5.3  |            |         |                |                |          | 4.6               |         | 5.2  |              | 5.0               |
| t                | WY2013                    |      | 5.7  |            | 0       |                |                |          | 5.5               | 0       | 5.2  | -            | 5.0               |
|                  | n                         | 0    | 3    | 0          | 0       | 0              | 0              | 0        | 6                 | 0       | 4    | 0            | 6                 |
|                  | t <sub>1</sub>            | 0    | 3    | 0          | 0       | 0              | 0              | 0        | 6                 | 0       | 4    | 0            | 6                 |
|                  | t <sub>2</sub>            | 0    | 0    | 0          | 0       | 0              | 0              | 0        | 0                 | 0       | 0    | 0            | 0                 |
|                  | t <sub>3</sub>            | 0    | 0    | 0          | 0       | 0              | 0              | 0        | 0                 | 0       | 0    | 0            | 0                 |
|                  | t <sub>4</sub>            | 0    | 0    | 0          | 0       | 0              | 0              | 0        | 0                 | 0       | 0    | 0            | 0                 |
|                  | ι <sub>5</sub>            | 0    | 0    | 0          | 0       | 0              | 0              | 0        | 0                 | 0       | 0    | 0            | 0                 |
|                  | b-a                       |      |      |            |         |                |                |          | 1                 |         |      |              | 1                 |
|                  | c-a                       |      |      |            |         |                |                |          | -1                |         |      |              | 1                 |
|                  | d-a                       |      |      |            |         |                |                |          | -1                |         |      |              | -1                |
|                  | e-a                       |      |      |            |         |                |                |          | -1                |         |      |              | -1                |
|                  | t-a                       |      |      |            |         |                |                |          | 1                 |         |      |              | -1                |
|                  | C-D                       |      |      |            |         |                |                |          | -1                |         |      |              | -1                |
|                  | u-b                       |      |      |            |         |                |                |          | -1                |         |      |              | -1                |
|                  | f-b                       |      |      |            |         |                |                |          | -1                |         |      |              | -1                |
|                  | d-c                       |      |      |            |         |                |                |          | 1                 |         | -1   |              | -1                |
|                  | e-c                       |      |      |            |         |                |                |          | -1                |         | 1    |              | -1                |
|                  | f-c                       |      |      |            |         |                |                |          | 1                 |         | 1    |              | -1                |
|                  | e-d                       |      | 1    |            |         |                |                |          | -1                |         | 1    |              | -1                |
|                  | f-d                       |      | 1    |            |         |                |                |          | 1                 |         | 1    |              | 1                 |
|                  | f-e                       |      | 1    |            |         |                |                |          | 1                 |         | -1   |              | 1                 |
|                  | S <sub>k</sub>            | 0    | 3    | 0          | 0       | 0              | 0              | 0        | -1                | 0       | 2    | 0            | -7                |
|                  | $p_{s=}^{2}$              |      | 3.67 |            |         |                |                |          | 28.33             |         | 8.67 |              | 28.33             |
| Z <sub>2</sub> = | $S_{\nu}/\sigma_{s}$      |      | 1.57 |            |         |                |                |          | -0.19             |         | 0.68 |              | -1.32             |
|                  | $Z_k^2$                   |      | 2.45 |            |         |                |                |          | 0.04              |         | 0.46 |              | 1.73              |
|                  |                           |      |      |            |         |                |                |          |                   |         |      |              |                   |
|                  | $\Sigma Z_k =$            | 0.74 |      | Tie Extent | t1      | t <sub>2</sub> | t <sub>3</sub> | t₄       | t <sub>5</sub>    |         |      | Σn           | 19                |
|                  | $\Sigma Z_{k}^{2} =$      | 4.68 |      | Count      | 19      | 0              | 0              | 0        | 0                 |         |      | $\Sigma S_k$ | -3                |
| Z                | Z-bar=ΣZ <sub>k</sub> /K= | 0.19 |      |            |         |                |                |          |                   |         |      |              |                   |

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 4.54  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81 | Test for station hom              | ogeneity |
|---------------------------|-------------------------|-------|-----------------------------------------|------|-----------------------------------|----------|
|                           | р                       | 0.209 |                                         |      | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | -0.24 | @α/2=2.5% <b>Ζ</b> =                    | 1.96 | H <sub>0</sub> (No trend)         | ACCEPT   |
| 69.00                     | р                       | 0.405 |                                         |      | H <sub>A</sub> (± trend)          | REJECT   |



| Seasona | Seasonal-Kendall Slope Confidence Intervals |                |                |  |  |  |  |  |
|---------|---------------------------------------------|----------------|----------------|--|--|--|--|--|
| α       | Lower<br>Limit                              | Sen's<br>Slope | Upper<br>Limit |  |  |  |  |  |
| 0.010   | -0.11                                       | •              | 0.14           |  |  |  |  |  |
| 0.050   | -0.06                                       | -0.01          | 0.06           |  |  |  |  |  |
| 0.100   | -0.04                                       | -0.01          | 0.05           |  |  |  |  |  |
| 0.200   | -0.03                                       |                | 0.04           |  |  |  |  |  |

| Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012                                                        | Oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Nov</b><br>3.9<br>16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Feb                                                    | Mar                                                   | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May<br>15.2<br>16.7<br>6.4<br>16.4<br>8.5                                      | Jun                                                   | 0.0<br>11.4<br>5.9                                                 | Aug                                                   | Sep<br>15.5<br>14.7<br>0.0<br>15.9<br>15.5                                           |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| WY2013<br>n                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.6<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                      | 0                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.3<br>6                                                                      | 0                                                     | 14.5<br>4                                                          | 0                                                     | 46.3<br>6                                                                            |
| t.                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                      | 0                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                              | 0                                                     | 4                                                                  | 0                                                     | 4                                                                                    |
| t <sub>2</sub><br>t <sub>3</sub><br>t <sub>4</sub><br>t <sub>5</sub>                                                | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                               | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                                   | 0<br>0<br>0<br>0                                      | 1<br>0<br>0<br>0                                                                     |
| b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-d<br>f-g<br>S_k | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                      | 0                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | 0                                                     | 1<br>1<br>-1<br>1<br>1<br>1<br>4                                   | 0                                                     | -1<br>-1<br>1<br>0<br>1<br>-1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>6 |
| <b>σ<sup>2</sup>s=</b><br>= S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.67<br>1.57<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.33<br>-0.56<br>0.32                                                         |                                                       | 8.67<br>1.36<br>1.85                                               |                                                       | 27.33<br>1.15<br>1.32                                                                |
| $\Sigma Z_k = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$                                                                | 3.51<br>5.94<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tie Extent<br>Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t,<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t₂<br>1                                                | t <sub>3</sub><br>0                                   | t <sub>4</sub><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>s</sub><br>O                                                            |                                                       |                                                                    | Σn<br>ΣS <sub>k</sub>                                 | 19<br>10                                                                             |
| $\frac{\chi^2_{h}=\Sigma Z^2_{k}}{\Sigma VAR(S_k)}$ 68.00                                                           | $\frac{K(Z-bar)^2}{p}$ $\frac{Z_{calc}}{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.86<br>0.414<br>1.09<br>0.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @α=5%<br>@α/2=:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>2.5% <b>Ζ</b> = | 7.81                                                  | ד<br>ג                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>c</sup> est for sta                                                       | tion homoge<br>A<br>trend) A<br>trend) F              | neity<br>ACCEPT<br>ACCEPT<br>REJECT                                |                                                       |                                                                                      |
| WY2008                                                                                                              | s WY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2009<br>- Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WY2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 011<br>- Jan                                           | WY2012<br>———————————————————————————————————         | WY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e013                                                                           | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200          | Kendall Slope<br>Lower<br>Limit<br>-0.82<br>-0.24<br>-0.12<br>0.14 | 2 Confidence Ir<br>Sen's<br>Slope<br>1.05             | Upper<br>Limit<br>7,39<br>5.11<br>2.88<br>2.08                                       |
|                                                                                                                     | $\begin{array}{c} & \forall Y2008 \\ \forall Y2009 \\ \forall Y2010 \\ \forall Y2011 \\ \forall Y2012 \\ \hline \\ \psi Y2013 \\ \hline \\ n \\ \hline \\ t_1 \\ t_2 \\ t_3 \\ t_4 \\ \hline \\ t_5 \\ \hline \\ t_6 \\ \hline \\ t_7 \\ t_7 \\ \hline \\ t_7 \\ t_7 \\ t_7 \\ \hline \\ t_7 \\ t_7$ | wy 2008         wy 2010         wy 2011         wy 2012         wy 2013         n       0         t <sub>1</sub> 0         t <sub>2</sub> 0         t <sub>3</sub> 0         t <sub>4</sub> 0         t <sub>5</sub> 0         t <sub>4</sub> 0         t <sub>5</sub> 0         t <sub>6</sub> 0         t <sub>7</sub> 0         t <sub>6</sub> 0         t <sub>7</sub> 0         t <sub>6</sub> 0         t <sub>7</sub> | WY2008         WY2010         WY2011       3.9         WY2012       16.5         WY2013       18.6         n       0       3 $t_1$ 0       3 $t_2$ 0       0 $t_3$ 0       0 $t_4$ 0       0 $t_4$ 0       0 $t_4$ 0       0 $t_6$ 0       0 $t_7$ 0       0 $t_6$ 0       0 $t_7$ 0       3 $t_7$ 0       0 <td>wy2009         wy2010         wy2011       3.9         wy2012       16.5         wy2013       18.6         n       0       3       0         t,       0       3       0         t,       0       0       0       0         t,       0       3       0       0</td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td>wy 2009<br/>wy 2010<br/>wy 2011       3.9<br/>wy 2013         n       0       3       0       0       0       0         t       0       3       0       0       0       0       0         t       0       3       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       3       0       0       0       0       0       0       0         t       0       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> | wy2009         wy2010         wy2011       3.9         wy2012       16.5         wy2013       18.6         n       0       3       0         t,       0       3       0         t,       0       0       0       0         t,       0       3       0       0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | wy 2009<br>wy 2010<br>wy 2011       3.9<br>wy 2013         n       0       3       0       0       0       0         t       0       3       0       0       0       0       0         t       0       3       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0       0         t       0       0       0       0       0       0       0       0         t       0       3       0       0       0       0       0       0       0         t       0       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                |

| kow label Wa<br>a W<br>b W<br>c W<br>d W<br>e W<br>f W | Jater Year           VY2008           VY2009           VY2010           VY2011           VY2013           n           t,           t2           t3           t4           t5           b-a           c-a           d-a           e-a           f-a           c-b           d-b           e-b           f-b           d-c           e-c           c-c | 0ct 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Nov<br>6.5<br>25.0<br>6.4<br>3<br>3<br>0<br>0<br>0<br>0<br>0 | Dec<br>0<br>0<br>0<br>0<br>0<br>0 | Jan<br>0<br>0<br>0<br>0<br>0<br>0 | Feb<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Mar<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Apr<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | May           20.5           12.7           11.9           42.7           7.5           5.5           6           0           0           0           0           0 | Jun<br>0<br>0<br>0<br>0<br>0                 | 9.9<br>13.1<br>6.2<br>6.7<br>4<br>4<br>0<br>0<br>0                  | Aug<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | Sep<br>15.<br>14.<br>8.<br>10.<br>10.<br>8.                    |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|
| _                                                      | n<br>t₁<br>t₂<br>t₃<br>t₄<br>t₅<br>b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0                        | 3<br>3<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0                            | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0<br>0                                 | 6<br>0<br>0<br>0                                                                                                                                                    | 0<br>0<br>0<br>0                             | 4<br>0<br>0<br>0                                                    | 0<br>0<br>0<br>0<br>0                             |                                                                |
| _                                                      | t,<br>t <sub>2</sub><br>t <sub>3</sub><br>t <sub>4</sub><br>t <sub>5</sub><br>b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c                                                                                                                                                                                              | 0<br>0<br>0<br>0                        | 3<br>0<br>0<br>0                                             | 0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                       | 0<br>0<br>0<br>0                                      | 6<br>0<br>0                                                                                                                                                         | 0<br>0<br>0<br>0                             | 4<br>0<br>0<br>0                                                    | 0<br>0<br>0<br>0                                  |                                                                |
| _                                                      | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c                                                                                                                                                                                                                                                                            |                                         |                                                              |                                   |                                   |                                                  |                                             |                                                       | 0                                                                                                                                                                   | 0                                            | 0                                                                   | 0                                                 |                                                                |
| _                                                      | f-c<br>e-d<br>f-d<br>f-e                                                                                                                                                                                                                                                                                                                             |                                         | 1<br>-1<br>-1                                                |                                   |                                   |                                                  |                                             |                                                       | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1                                                                                                |                                              | 1<br>-1<br>-1<br>-1<br>1<br>1                                       |                                                   |                                                                |
| S <sub>k</sub>                                         |                                                                                                                                                                                                                                                                                                                                                      | 0                                       | -1                                                           | 0                                 | 0                                 | 0                                                | 0                                           | 0                                                     | -9                                                                                                                                                                  | 0                                            | -2                                                                  | 0                                                 |                                                                |
| $\sigma_{s}^{2}$ = $Z_{k} = S_{k}/c$<br>$Z_{k}^{2}$    | σs                                                                                                                                                                                                                                                                                                                                                   |                                         | 3.67<br>-0.52<br>0.27                                        |                                   |                                   |                                                  |                                             |                                                       | 28.33<br>-1.69<br>2.86                                                                                                                                              |                                              | 8.67<br>-0.68<br>0.46                                               |                                                   | 27.:<br>-1.:<br>2.:                                            |
| Z-bar                                                  | $\Sigma Z_k = \Sigma Z_k^2 = \Sigma Z_k^2 = Mr = \Sigma Z_k / K = Mr = \Sigma Z_k / K = Mr = \Sigma Z_k / K = Mr = $                                                                                                                                                                                                   | -4.42<br>5.93<br>-1.11                  |                                                              | Tie Extent<br>Count               | t₁<br>17                          | t₂<br>1                                          | t <sub>3</sub><br>0                         | t₄<br>O                                               | t₅<br>0                                                                                                                                                             |                                              |                                                                     | $\Sigma$ n<br>$\Sigma$ S <sub>k</sub>             | 19<br>-20                                                      |
| )                                                      | χ² <sub>h</sub> =ΣΖ² <sub>k</sub> -Κ                                                                                                                                                                                                                                                                                                                 | ((Z-bar) <sup>2</sup> =                 | 1.04                                                         |                                   | @α=5°                             | % χ <sup>2</sup> <sub>(K-1)</sub> =              | 7.81                                        | Т                                                     | est for stat                                                                                                                                                        | ion homoge                                   | neity                                                               |                                                   |                                                                |
| Σν                                                     | VAR(S <sub>k</sub> )<br>68.00                                                                                                                                                                                                                                                                                                                        | Z <sub>calc</sub>                       | -2.30<br><b>0.011</b>                                        | L                                 | @α/2=                             | =2.5% <b>Z</b> =                                 | 1.96                                        | /                                                     | H <sub>0</sub> (No t<br>H <sub>A</sub> (± ti                                                                                                                        | trend) R<br>rend) A                          |                                                                     |                                                   |                                                                |
| 45<br>40<br>35<br>30<br>25<br>20<br>15<br>10<br>5      | 9                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                              |                                   |                                   |                                                  |                                             |                                                       | =                                                                                                                                                                   | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | Kendall Slope<br>Lower<br>Limit<br>-3.21<br>-2.16<br>-2.08<br>-1.82 | Confidence  <br>Sen's<br>Slope<br>-1.40<br>-13.7% | ntervals<br>Upper<br>Limit<br>-0.05<br>-0.99<br>-1.22<br>-1.34 |

## **INTERPRETIVE REPORT SITE 9**

The Tributary Creek site was initially chosen to monitor the effects on water quality caused by the originally planned, larger slurry tailings impoundment. It is approximately one mile downstream from the present dry stack tailings site. The site was monitored from 1981 – 1993 when it was temporarily suspended by administrative agreement with the USFS. The site was reactivated in 2001 as a biological monitoring site for the Tailings Pile. HGCMC recommenced collection of water chemistry samples after receiving a suggestion to do so from ADNR personnel. It was noted that should the required annual biomonitoring show significant changes, an understanding of any related water chemistry variations would enhance the interpretation of those results. During the 2013 water year, samples were collected in conjunction with the normal monthly FWMP sampling run during the months of November, May, July, and September and analyzed for Suite Q analytes.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Routine water chemistry data collection was reinstated May 2006. All data collected at the site since then are included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date     | Parameter            | Value         | Qualifier    | r Notes                                 |
|-----------------|----------------------|---------------|--------------|-----------------------------------------|
| No outliers hav | e been identified by | y HGCMC for t | he period of | of October 2007 through September 2013. |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Two results exceeding these criteria have been identified, and listed in the table below. The results were for total alkalinity values of 18.6 mg/L, and 11.5 mg/L for the November 2012, May 2013, sampling events respectively, which exceeds the AWQS lower limit of 20 mg/L.

|             |            |           | Lin   | nits  |          |
|-------------|------------|-----------|-------|-------|----------|
| Sample Date | Parameter  | Value     | Lower | Upper | Hardness |
| 14-Nov-12   | Alkalinity | 18.6 mg/L | 20    |       |          |
| 6-May-13    | Alkalinity | 11.5 mg/L | 20    |       |          |

#### Table of Exceedance for Water Year 2013

As stated in past reports, the currently limited dataset for this site makes definitive interpretation of these exceedances difficult. Last water year there were two exceedances for dissolved lead, the first recorded exceedances in the past four years. In last year's report it was speculated that these exceedances may have resulted from HGCMC changing the area in which tailings were placed, higher and to the south. If this was the sole reason for the exceedances in water year 2012, then it would have been expected that these exceedances would have also occurred during the current water year, with placement occurring in higher and to the south also.

X-Y plots have been generated to graphically present the data for each of the analytes that are listed in Suite Q. Given the short record, no clear determination can be made as to if any trends are present. Comparisons made between the current dataset and an analysis of data from the prior monitoring period from 1981 to 1993 indicates that no major changes in water chemistry for the listed analytes appears to have occurred.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13 (WY2008-WY2013). There were no statistically significant ( $\alpha/2=2.5\%$ ) trends identified for the current water year. This marks the first time that there were a sufficient number years (n=6) of data for conducting these calculations.

|                    | Mann-Ker | ndall test st | atistics | Sen's slope | e estimate |
|--------------------|----------|---------------|----------|-------------|------------|
| Parameter          | n*       | <b>p</b> **   | Trend    | Q           | Q(%)       |
| Conductivity Field | 6        | 0.20          |          |             |            |
| pH Field           | 6        | 0.12          |          |             |            |
| Alkalinity, Total  | 6        | 0.08          |          |             |            |
| Sulfate, Total     | 6        | 0.26          |          |             |            |
| Zinc, Dissolved    | 6        | 0.04          |          |             |            |

#### **Table of Summary Statistics for Trend Analysis**

\* Number of Years \*\* Significance level

HGCMC will continue to monitor Site 9 during May, July, September, and November for the Suite Q analytes. This sampling is in addition to the already scheduled July biomonitoring. HGCMC feels that this schedule will adequately characterize the water quality parameters while addressing safety concerns associated with winter access down the steep slope that leads to the site and the increased potential for bear encounters during salmon spawning season.

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           |          | 1.5      |          |          |          |          |          | 4.3      |          | 15.6     |          | 10.9     | 7.6      |
| Conductivity-Field(µmho)  |          | 82       |          |          |          |          |          | 68       |          | 102      |          | 92       | 87.0     |
| Conductivity-Lab (µmho)   |          | 85       |          |          |          |          |          | 64       |          | 95       |          | 72       | 79       |
| pH Lab (standard units)   |          | 7.19     |          |          |          |          |          | 6.87     |          | 7.18     |          | 7.09     | 7.14     |
| pH Field (standard units) |          | 7.58     |          |          |          |          |          | 7.19     |          | 7.23     |          | 7.03     | 7.21     |
| Total Alkalinity (mg/L)   |          | 18.6     |          |          |          |          |          | 11.5     |          | 28.1     |          | 20.5     | 19.6     |
| Total Sulfate (mg/L)      |          | 15.2     |          |          |          |          |          | 9.2      |          | 9.6      |          | 11.6     | 10.6     |
| Hardness (mg/L)           |          | 34.8     |          |          |          |          |          | 23       |          | 41.1     |          | 37.8     | 36.3     |
| Dissolved As (ug/L)       |          | 0.848    |          |          |          |          |          | 0.52     |          | 1.11     |          | 1.18     | 0.979    |
| Dissolved Ba (ug/L)       |          | 35.6     |          |          |          |          |          | 28       |          | 43.6     |          | 48.2     | 39.6     |
| Dissolved Cd (ug/L)       |          | 0.0269   |          |          |          |          |          | 0.0291   |          | 0.0246   |          | 0.0447   | 0.0280   |
| Dissolved Cr (ug/L)       |          | 0.617    |          |          |          |          |          | 0.515    |          | 0.599    |          | 0.94     | 0.608    |
| Dissolved Cu (ug/L)       |          | 1.51     |          |          |          |          |          | 1.37     |          | 1.7      |          | 2.04     | 1.605    |
| Dissolved Pb (ug/L)       |          | 0.447    |          |          |          |          |          | 0.294    |          | 0.433    |          | 0.592    | 0.4400   |
| Dissolved Ni (ug/L)       |          | 2.14     |          |          |          |          |          | 1.6      |          | 2.44     |          | 3.23     | 2.290    |
| Dissolved Ag (ug/L)       |          | 0.008    |          |          |          |          |          | 0.009    |          | 0.014    |          | 0.002    | 0.009    |
| Dissolved Zn (ug/L)       |          | 5.91     |          |          |          |          |          | 5.05     |          | 3.1      |          | 5.33     | 5.19     |
| Dissolved Se (ug/L)       |          | 0.248    |          |          |          |          |          | 0.057    |          | 0.284    |          | 0.178    | 0.213    |
| Dissolved Hg (ug/L)       |          | 0.00358  |          |          |          |          |          | 0.00418  |          | 0.00394  |          | 0.00516  | 0.004060 |

### Site 009FMS - 'Lower Tributary Creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

## Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|---------|-----------|----------------------------|
|          |             |             |               |         |           |                            |
| 9        | 11/14/2012  | 12:00 AM    | Ag diss, µg/l | 0.00804 | J         | Below Quantitative Range   |
|          |             |             | Zn diss, µg/l | 5.91    | U         | Field Blank Contamination  |
|          |             |             | Se diss, µg/l | 0.24    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 9        | 5/6/2013    | 12:00 AM    | SO4 Tot, mg/l | 9.23    | J         | Sample Receipt Temperature |
|          |             |             | Ag diss, µg/l | 0.00927 | J         | Below Quantitative Range   |
|          |             |             | pH Lab, su    | 6.87    | J         | Hold Time Violation        |
|          |             |             | Cond, µmhos   | 63.6    | U         | Field Blank Contamination  |
|          |             |             | Alk, mg/L     | 11.5    | U         | Field Blank Contamination  |
|          |             |             |               |         |           |                            |
| 9        | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 9.6     | J         | Sample Receipt Temperature |
|          |             |             | Se diss, µg/l | 0.28    | J         | Below Quantitative Range   |
|          |             |             |               |         |           |                            |
| 9        | 9/9/2013    | 12:00 AM    | Se diss, µg/l | 0.17    | J         | Below Quantitative Range   |
|          |             |             | SO4 Tot, mg/l | 11.6    | J         | Sample receipt temperature |

| Qualifier | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N         | Presumptive Evidence For Tentative Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NJ        | Tentatively Identified - Approximate Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| R         | Rejected - Cannot be Verified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| U         | HCCMCNOT Detected Apply |
| UJ        | Not Detected Above Approximate Quantitation Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 9 – Nickel Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Site 9 – Mercury Dissolved

| Site      | #9                        |                         |                    | Seasonal k   | Kendall        | analysis                            | for Spec         | cific Condu | uctance, F                        | ield (µS  | /cm)            |              |          |
|-----------|---------------------------|-------------------------|--------------------|--------------|----------------|-------------------------------------|------------------|-------------|-----------------------------------|-----------|-----------------|--------------|----------|
| Row label | Water Year                | Oct                     | Nov                | Dec          | Jan            | Feb                                 | Mar              | Apr         | May                               | Jun       | Jul             | Aug          | Sep      |
| а         | WY2008                    |                         |                    |              |                |                                     |                  | 79          | 61.5                              |           | 87.6            |              | 71       |
| b         | WY2009                    |                         |                    |              |                |                                     |                  |             | 53.5                              |           | 93.5            |              | 71.8     |
| C         | WY2010                    |                         | 05.6               |              |                |                                     |                  |             | 89.5                              |           | 91.7            |              | 91.5     |
| u         | WY2012                    |                         | 95.6               |              |                |                                     |                  |             | 90<br>72.1                        |           | 132.7           |              | 00<br>52 |
| f         | WY2012                    |                         | 82                 |              |                |                                     |                  |             | 68                                |           | 102             |              | 92       |
|           | n                         | 0                       | 3                  | 0            | 0              | 0                                   | 0                | 1           | 6                                 | 0         | 6               | 0            | 6        |
| •         | t,                        | 0                       | 1                  | 0            | 0              | 0                                   | 0                | 1           | 6                                 | 0         | 6               | 0            | 6        |
|           | t <sub>2</sub>            | 0                       | 1                  | 0            | 0              | 0                                   | 0                | 0           | 0                                 | 0         | 0               | 0            | 0        |
|           | t <sub>3</sub>            | 0                       | 0                  | 0            | 0              | 0                                   | 0                | 0           | 0                                 | 0         | 0               | 0            | 0        |
|           | t <sub>4</sub>            | 0                       | 0                  | 0            | 0              | 0                                   | 0                | 0           | 0                                 | 0         | 0               | 0            | 0        |
|           | l5                        | 0                       | 0                  | 0            | 0              | 0                                   | 0                | 0           | 0                                 | 0         | 0               | 0            | 0        |
|           | b-a                       |                         |                    |              |                |                                     |                  |             | -1                                |           | 1               |              | 1        |
|           | c-a                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | 1               |              | 1        |
|           | d-a                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | 1               |              | 1        |
|           | e-a<br>f-a                |                         |                    |              |                |                                     |                  |             | 1                                 |           | -1              |              | -1       |
|           | c-b                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | -1              |              | 1        |
|           | d-b                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | 1               |              | 1        |
|           | e-b                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | -1              |              | -1       |
|           | f-b                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | 1               |              | 1        |
|           | d-c                       |                         |                    |              |                |                                     |                  |             | 1                                 |           | 1               |              | -1       |
|           | e-c                       |                         |                    |              |                |                                     |                  |             | -1                                |           | -1              |              | -1       |
|           | 1-C                       |                         | -1                 |              |                |                                     |                  |             | -1                                |           | -1              |              | -1       |
|           | f-d                       |                         | -1                 |              |                |                                     |                  |             | -1                                |           | -1              |              | -1       |
|           | f-e                       |                         | 0                  |              |                |                                     |                  |             | -1                                |           | 1               |              | 1        |
|           | S <sub>k</sub>            | 0                       | -2                 | 0            | 0              | 0                                   | 0                | 0           | 3                                 | 0         | 3               | 0            | 5        |
| σ         | <sup>2</sup> c=           |                         | 2.67               |              |                |                                     |                  |             | 28.33                             |           | 28.33           |              | 28.33    |
| Z. =      | s./o                      |                         | -1 22              |              |                |                                     |                  |             | 0.56                              |           | 0.56            |              | 0.94     |
|           | <b>7</b> <sup>2</sup> .   |                         | 1 50               |              |                |                                     |                  |             | 0.32                              |           | 0.32            |              | 0.88     |
|           | - к                       |                         | 1100               |              |                |                                     |                  |             | 0.02                              |           | 0.02            |              | 0.00     |
|           | $\Sigma Z_k =$            | 0.84                    |                    | Tie Extent   | t,             | t <sub>2</sub>                      | t <sub>3</sub>   | t4          | t <sub>5</sub>                    |           |                 | Σn           | 22       |
|           | $\Sigma Z_{k}^{2} =$      | 3.02                    |                    | Count        | 20             | 1                                   | 0                | 0           | 0                                 |           |                 | $\Sigma S_k$ | 9        |
| Z         | Z-bar=ΣZ <sub>k</sub> /K= | 0.21                    |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
|           |                           |                         |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
| -         |                           |                         |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
|           | $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 2.84               |              | @α=5°          | % χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81             | Tes         | st for station ho                 | mogeneity |                 |              |          |
|           |                           | р                       | 0.417              |              |                |                                     |                  | 2           | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ |           | ACCEPT          |              |          |
|           | $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.85               |              | @α/2=          | =2.5% <b>Z</b> =                    | 1.96             |             | H <sub>0</sub> (No trei           | nd)       | ACCEPT          |              |          |
|           | 87.67                     | р                       | 0.804              | L            |                |                                     |                  |             | H <sub>A</sub> (± tren            | id)       | REJECT          |              |          |
|           |                           |                         |                    |              |                |                                     |                  |             |                                   | ·         |                 |              |          |
| -         |                           |                         |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
| , ielc    | 140                       |                         |                    |              |                | ×                                   |                  |             |                                   |           |                 |              |          |
| Ë,        | 120                       |                         |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
| e         | Ē                         |                         |                    |              |                | $\sim$                              |                  |             | =                                 | Seasona   | I-rendall Slope | Sen's        | linner   |
| Ű.        | 100 🗄 🗕 🚽                 |                         |                    | /            |                |                                     |                  | ×           | <                                 | a         | Lower           | Slope        | Limit    |
| Ξ ̈́́t    | i.                        | X                       | X                  |              |                |                                     |                  | //          | .   -                             | 0.010     | -6.77           |              | 6.17     |
| j i       | 80                        | +                       |                    |              |                |                                     |                  | $\neq$      | 1                                 | 0.050     | -4.96           | 2.00         | 4.53     |
| N2 ST     | Ē                         |                         |                    |              |                |                                     | $\checkmark$     | /           |                                   | 0.100     | -4.10           | 2.09         | 3.62     |
| ຮູ        | 60                        |                         |                    |              |                |                                     | $\rightarrow$    | •           |                                   | 0.200     | 0.01            |              | 3.40     |
| <u>o</u>  | 40                        |                         |                    |              |                |                                     | •                |             |                                   |           |                 |              |          |
| cifi      | 40                        |                         |                    |              |                |                                     |                  |             |                                   |           |                 |              |          |
| sper      | 20                        |                         |                    | 1            |                |                                     |                  | I           |                                   |           |                 |              |          |
| 0)        | W                         | /2008                   | WY2009             | WY2010       | WY             | 2011                                | WY2012           | 2 WY2       | 2013                              |           |                 |              |          |
|           |                           | -Oct                    | <del>-∎-</del> Nov | <u>⊸</u> Dec | -0-            | -Jan                                | <del>_∗</del> Fe | b — —       | Mar                               |           |                 |              |          |
|           | -+                        | – Apr                   | —— May             | ● Jun        | <del>_</del> × | – Jul                               | –∎– Au           | g —         | Sep                               |           |                 |              |          |

| Site      | #9                        |      | Seasonal Kendall analysis for pH, Field, Standard Units |            |     |                |                |     |                |     |       |              |       |  |
|-----------|---------------------------|------|---------------------------------------------------------|------------|-----|----------------|----------------|-----|----------------|-----|-------|--------------|-------|--|
| Row label | Water Year                | Oct  | Nov                                                     | Dec        | Jan | Feb            | Mar            | Apr | May            | Jun | Jul   | Aug          | Sep   |  |
| а         | WY2008                    |      |                                                         |            |     |                |                | 7.2 | 7.1            |     | 6.9   |              | 6.7   |  |
| b         | WY2009                    |      |                                                         |            |     |                |                |     | 6.2            |     | 6.3   |              | 6.6   |  |
| С         | WY2010                    |      |                                                         |            |     |                |                |     | 6.2            |     | 6.5   |              | 7.2   |  |
| d         | WY2011                    |      | 6.8                                                     |            |     |                |                |     | 6.8            |     | 5.9   |              | 6.7   |  |
| e         | WY2012                    |      | 7.6                                                     |            |     |                |                |     | 6.2            |     | 7.0   |              | 6.6   |  |
| t         | WY2013                    | 0    | 7.6                                                     |            | 0   | 0              | 0              |     | 7.2            | 0   | 7.2   | 0            | 7.0   |  |
|           | n                         | 0    | 3                                                       | 0          | 0   | 0              | 0              | 1   | 6              | 0   | 6     | 0            | 6     |  |
|           | t,                        | 0    | 3                                                       | 0          | 0   | 0              | 0              | 1   | 6              | 0   | 6     | 0            | 6     |  |
|           | t <sub>2</sub>            | 0    | 0                                                       | 0          | 0   | 0              | 0              | 0   | 0              | 0   | 0     | 0            | 0     |  |
|           | t <sub>3</sub>            | 0    | 0                                                       | 0          | 0   | 0              | 0              | 0   | 0              | 0   | 0     | 0            | 0     |  |
|           | t <sub>4</sub>            | 0    | 0                                                       | 0          | 0   | 0              | 0              | 0   | 0              | 0   | 0     | 0            | 0     |  |
|           | t <sub>5</sub>            | 0    | 0                                                       | 0          | 0   | 0              | 0              | 0   | 0              | 0   | 0     | 0            | 0     |  |
|           | b-a                       |      |                                                         |            |     |                |                |     | -1             |     | -1    |              | -1    |  |
|           | c-a                       |      |                                                         |            |     |                |                |     | -1             |     | -1    |              | 1     |  |
|           | d-a                       |      |                                                         |            |     |                |                |     | -1             |     | -1    |              | 1     |  |
|           | e-a                       |      |                                                         |            |     |                |                |     | -1             |     | 1     |              | -1    |  |
|           | f-a                       |      |                                                         |            |     |                |                |     | 1              |     | 1     |              | 1     |  |
|           | c-b                       |      |                                                         |            |     |                |                |     | -1             |     | 1     |              | 1     |  |
|           | d-b                       |      |                                                         |            |     |                |                |     | 1              |     | -1    |              | 1     |  |
|           | e-b<br>f b                |      |                                                         |            |     |                |                |     | 1              |     | 1     |              | 1     |  |
|           | d-I                       |      |                                                         |            |     |                |                |     | 1              |     | 1     |              | 1     |  |
|           | 0-C                       |      |                                                         |            |     |                |                |     | 1              |     | -1    |              | -1    |  |
|           | f-c                       |      |                                                         |            |     |                |                |     | 1              |     | 1     |              | -1    |  |
|           | e-d                       |      | 1                                                       |            |     |                |                |     | -1             |     | 1     |              | -1    |  |
|           | f-d                       |      | 1                                                       |            |     |                |                |     | 1              |     | 1     |              | 1     |  |
|           | f-e                       |      | -1                                                      |            |     |                |                |     | 1              |     | 1     |              | 1     |  |
|           | S <sub>k</sub>            | 0    | 1                                                       | 0          | 0   | 0              | 0              | 0   | 3              | 0   | 5     | 0            | 3     |  |
|           | 2 <sub>s=</sub>           |      | 3.67                                                    |            |     |                |                |     | 28.33          |     | 28.33 |              | 28.33 |  |
| 7. =      | S./m                      |      | 0.52                                                    |            |     |                |                |     | 0.56           |     | 0.94  |              | 0.56  |  |
|           | 7 <sup>2</sup>            |      | 0.27                                                    |            |     |                |                |     | 0.32           |     | 0.88  |              | 0.32  |  |
|           | ĸ                         |      | 0.21                                                    |            |     |                |                |     | 0.02           |     | 0.00  |              | 0.02  |  |
|           | $\Sigma Z_k =$            | 2.59 |                                                         | Tie Extent | t₁  | t <sub>2</sub> | t <sub>3</sub> | t4  | t <sub>5</sub> |     |       | Σn           | 22    |  |
|           | $\Sigma Z_{k}^{2} =$      | 1.79 |                                                         | Count      | 22  | 0              | 0              | 0   | 0              |     |       | $\Sigma S_k$ | 12    |  |
| Z         | Z-bar=ΣZ <sub>k</sub> /K= | 0.65 |                                                         |            |     |                |                |     |                |     |       |              |       |  |

| $\chi^2_{h} = \Sigma Z^2_{k} - K(Z-bar)^2 = 0.11$ |                     |       | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81                 | Test for station home | ogeneity                    |        |
|---------------------------------------------------|---------------------|-------|-----------------------------------------|----------------------|-----------------------|-----------------------------|--------|
|                                                   | р                   | 0.990 |                                         |                      |                       | $\chi^2_h < \chi^2_{(K-1)}$ | ACCEPT |
| $\Sigma VAR(S_k)$                                 | $\mathbf{Z}_{calc}$ | 1.17  |                                         | @α/2=2.5% <b>Z</b> = | 1.96                  | H <sub>0</sub> (No trend)   | ACCEPT |
| 88.67                                             | р                   | 0.879 | -                                       |                      |                       | H <sub>A</sub> (± trend)    | REJECT |



| Seasona | Seasonal-Kendall Slope Confidence Intervals |       |       |  |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------|-------|-------|--|--|--|--|--|--|--|--|--|
| α       | Lower                                       | Sen's | Upper |  |  |  |  |  |  |  |  |  |
|         | Limit                                       | Slope | Limit |  |  |  |  |  |  |  |  |  |
| 0.010   | -0.10                                       | 0.04  | 0.24  |  |  |  |  |  |  |  |  |  |
| 0.050   | -0.04                                       |       | 0.21  |  |  |  |  |  |  |  |  |  |
| 0.100   | -0.01                                       | 0.04  | 0.18  |  |  |  |  |  |  |  |  |  |
| 0.200   | 0.01                                        |       | 0.12  |  |  |  |  |  |  |  |  |  |

| Site                                                                            | #9                                                                                                           |                                       |                                | :                     | Seasona               | al Kenda                                                          | all analys            | is for To             | tal Alk,                                                                | (mg/l)                                       |                                                                    |                                           |                                                                   |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| Row labe<br>a<br>b<br>c<br>d<br>e                                               | Water Year<br>WY2008<br>WY2009<br>WY2010<br>WY2011<br>WY2012                                                 | Oct                                   | Nov<br>14.1<br>15.3            | Dec                   | Jan                   | Feb                                                               | Mar                   | Apr                   | May<br>11.0<br>10.0<br>18.2<br>13.0<br>13.6                             | Jun                                          | Jul<br>17.5<br>25.0<br>18.7<br>20.9<br>15.0                        | Aug                                       | Sep<br>11.6<br>8.6<br>21.3<br>18.6<br>11.9                        |
| T                                                                               | n n                                                                                                          | 0                                     | 18.6                           | 0                     | 0                     | 0                                                                 | 0                     | 0                     | 11.5                                                                    | 0                                            | 28.1                                                               | 0                                         | 20.5                                                              |
|                                                                                 | t <sub>1</sub><br>t2<br>t3<br>t4<br>t5                                                                       | 0<br>0<br>0<br>0<br>0                 | 3<br>0<br>0<br>0<br>0          | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                                             | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0<br>0                        | 6<br>0<br>0<br>0<br>0                                              | 0<br>0<br>0<br>0<br>0                     | 6<br>0<br>0<br>0<br>0                                             |
|                                                                                 | b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-d<br>f-d<br>f-e<br>S_k | 0                                     | 1<br>1<br>1<br>3               | 0                     | 0                     | 0                                                                 | 0                     | 0                     | -1<br>1<br>1<br>1<br>1<br>1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>3     | 0                                            | 1<br>1<br>-1<br>-1<br>-1<br>-1<br>1<br>1<br>-1<br>1<br>1<br>1<br>3 | 0                                         | -1<br>1<br>1<br>1<br>1<br>1<br>1<br>-1<br>-1<br>-1<br>1<br>1<br>5 |
| Z <sub>k</sub>                                                                  | $\sigma_{s}^{2}$ = $S_{k}/\sigma_{s}$<br>$Z_{k}^{2}$                                                         |                                       | 3.67<br>1.57<br>2.45           |                       |                       |                                                                   |                       |                       | 28.33<br>0.56<br>0.32                                                   |                                              | 28.33<br>0.56<br>0.32                                              |                                           | 28.33<br>0.94<br>0.88                                             |
|                                                                                 | $\Sigma Z_k = \Sigma Z_k^2 = Z-bar = \Sigma Z_k/K =$                                                         | 3.63<br>3.97<br>0.91                  |                                | Tie Extent<br>Count   | t,<br>21              | t <sub>2</sub><br>0                                               | t <sub>3</sub><br>0   | t <sub>4</sub><br>0   | t₅<br>0                                                                 |                                              |                                                                    | $\Sigma$ n $\Sigma$ S <sub>k</sub>        | 21<br>14                                                          |
| 20                                                                              | $\frac{\chi^2_{h}=\Sigma Z^2_{k}}{\Sigma VAR(S_k)}$ 88.67                                                    | $\frac{K(Z-bar)^2}{p}$ $Z_{calc}$ $p$ | 0.67<br>0.880<br>1.38<br>0.916 |                       | @α=5%<br>@α/2=2       | <sup>6</sup> χ <sup>2</sup> <sub>(K-1)</sub> =<br>2.5% <b>Ζ</b> = | 7.81                  | τ<br>χ                | Test for sta<br>$\chi^2 h < \chi^2_{(K-1)}$<br>$H_0$ (No<br>$H_A$ (± 1) | tion homoge<br>A<br>trend) A<br>trend) F     | neity<br>ACCEPT<br>ACCEPT<br>REJECT                                |                                           |                                                                   |
| 30<br>28<br>26<br>24<br>22<br>20<br>01<br>8<br>18<br>16<br>16<br>14<br>12<br>10 | WY2008                                                                                                       | 3 WY2                                 | 2009                           | WY2010                | WY2                   | 011                                                               | WY2012                | WY2                   |                                                                         | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | Kendall Slope<br>Lower<br>-1.81<br>-0.53<br>0.06<br>0.38           | e Confidence In<br>Sen's<br>Slope<br>0.72 | tervals<br>Upper<br>Limit<br>2.25<br>1.71<br>1.21<br>1.13         |
|                                                                                 | —— Oc<br>—+— Ap                                                                                              | st <del>−</del><br>•r <del>−</del>    | – Nov<br>– May                 | — <u> </u>            |                       | Jan<br>Jul                                                        | —∗— Feb<br>—∎— Aug    | ) — <del>•</del> –    | - Mar<br><b>-</b> Sep                                                   |                                              |                                                                    |                                           |                                                                   |

Seasonal Kendall analysis for Total Alk, (mg/l)

| Water Year<br>WY2008<br>WY2009                                                                                             | Oct                                                                                                                                                                               | Nov                                                                                                                                    | Dec                                                   | Jan                                                   | Feb                                                   | Mar                                                    | Apr                                                   | May                                                                          | Jun                                                   | Jul                                                                             | Aug                                                   | Sep                                                                                |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|
| WY2010<br>WY2011<br>WY2012<br>WY2013                                                                                       |                                                                                                                                                                                   | 19.3<br>0.0<br>15.2                                                                                                                    |                                                       |                                                       |                                                       |                                                        |                                                       | 8.8<br>9.2<br>18.0<br>16.5<br>12.8<br>9.2                                    |                                                       | 15.2<br>16.9<br>12.0<br>18.0<br>8.5<br>9.6                                      |                                                       | 12.0<br>15.6<br>18.3<br>18.0<br>7.4<br>11.6                                        |
| n                                                                                                                          | 0                                                                                                                                                                                 | 3                                                                                                                                      | 0                                                     | 0                                                     | 0                                                     | 0                                                      | 0                                                     | 6                                                                            | 0                                                     | 6                                                                               | 0                                                     | 6                                                                                  |
| t₁<br>t₂<br>t₃<br>t₄<br>t₅                                                                                                 | 0<br>0<br>0<br>0                                                                                                                                                                  | 3<br>0<br>0<br>0<br>0                                                                                                                  | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0                                      | 4<br>1<br>0<br>0<br>0                                                        | 0<br>0<br>0<br>0                                      | 6<br>0<br>0<br>0                                                                | 0<br>0<br>0<br>0                                      | 6<br>0<br>0<br>0<br>0                                                              |
| b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-c<br>f-c<br>f-d<br>f-d<br>f-e<br>S_k | 0                                                                                                                                                                                 | -1<br>-1<br>1<br>-1                                                                                                                    | 0                                                     | 0                                                     | 0                                                     | 0                                                      | 0                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>-1<br>-1<br>-1<br>-1<br>-1<br>2 | 0                                                     | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | 0                                                     | 1<br>1<br>-1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>- |
| <b>σ<sup>2</sup>s=</b><br>= S <sub>k</sub> /σ <sub>S</sub><br>Z <sup>2</sup> <sub>k</sub>                                  |                                                                                                                                                                                   | 3.67<br>-0.52<br>0.27                                                                                                                  |                                                       |                                                       |                                                       |                                                        |                                                       | 27.33<br>0.38<br>0.15                                                        |                                                       | 28.33<br>-0.94<br>0.88                                                          |                                                       | 28.33<br>-0.56<br>0.32                                                             |
| $\Sigma Z_{k} = \Sigma Z_{k}^{2} = Z-bar = \Sigma Z_{k}/K =$                                                               | -1.64<br>1.62<br>-0.41                                                                                                                                                            |                                                                                                                                        | Tie Extent<br>Count                                   | t₁<br>19                                              | t <sub>2</sub><br>1                                   | t <sub>3</sub><br>0                                    | t₄<br>O                                               | t <sub>5</sub><br>0                                                          |                                                       |                                                                                 | Σn<br>ΣS <sub>k</sub>                                 | 21<br>-7                                                                           |
| $\chi^2_h = \Sigma Z^2_k$ -                                                                                                | K(Z-bar) <sup>2</sup> =                                                                                                                                                           | 0.94                                                                                                                                   |                                                       | @α=5°                                                 | % χ <sup>2</sup> <sub>(K-1)</sub> =                   | 7.81                                                   | Т                                                     | est for stat                                                                 | ion homogei                                           | neity                                                                           |                                                       |                                                                                    |
| ΣVAR(S <sub>k</sub> )<br>87.67                                                                                             | p<br>Z <sub>calc</sub><br>p                                                                                                                                                       | 0.815<br>-0.64<br>0.261                                                                                                                |                                                       | @α=                                                   | 2.5% <b>Z</b> =                                       | 1.96                                                   | )                                                     | $\frac{\chi^{2}_{h} < \chi^{2}_{(K-1)}}{H_{0} (No)}$                         | A<br>trend) A<br>rend) R                              | CCEPT<br>CCEPT<br>EJECT                                                         |                                                       |                                                                                    |
| 25<br>20<br>15<br>10<br>5<br>0                                                                                             |                                                                                                                                                                                   | ×                                                                                                                                      | ×                                                     |                                                       |                                                       |                                                        |                                                       | ×                                                                            | <u>α</u><br>0.010<br>0.050<br>0.100<br>0.200          | -Kendall Slope<br>Lower<br>Limit<br>-2.72<br>-1.98<br>-1.75<br>-1.59            | e Confidence In<br>Sen's<br>Slope<br>-0.90            | tervals<br>Limit<br>1.18<br>0.36<br>0.00                                           |
|                                                                                                                            | $\begin{array}{c} \text{WY2012} \\ \text{WY2013} \\ \hline n \\ \hline t_1 \\ t_2 \\ t_3 \\ \hline t_4 \\ \hline t_5 \\ \hline c \\ c \\ c \\ d \\ c \\ c \\ c \\ d \\ c \\ c \\$ | $\begin{array}{c c} WY2012 \\ WY2013 \\ \hline n & 0 \\ \hline t_{2} & 0 \\ t_{3} & 0 \\ t_{4} & 0 \\ t_{5} & 0 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                              |

#### HGCMC 2013 Water Year FWMP Annual Report

| $\begin{array}{c} \mbox{Water Year} \\ \mbox{WY2008} \\ \mbox{WY2009} \\ \mbox{WY2010} \\ \mbox{WY2011} \\ \mbox{WY2013} \\ \hline \\ \mbox{r} \\ \mbox{t}_1 \\ \mbox{t}_2 \\ \mbox{t}_3 \\ \mbox{t}_4 \\ \mbox{t}_5 \\ \end{array}$ | Oct<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nov<br>6.9<br>6.9<br>5.9<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Dec</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jan                                                   | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar                                                   | Apr                                                   | May<br>6.4<br>8.4<br>5.2<br>6.2                                                                         | Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jul<br>7.0<br>4.1<br>6.7                                                 | Aug                                                   | <b>Sep</b><br>10.8<br>12.4<br>6.0                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------|
| WY2013           n           t1           t2           t3           t4           t5                                                                                                                                                  | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.9<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                       | 6.5                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0<br>7.7                                                               |                                                       | 6.6<br>8.7                                                                      |
| t <sub>1</sub><br>t <sub>2</sub><br>t <sub>3</sub><br>t <sub>4</sub><br>t <sub>5</sub>                                                                                                                                               | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                     | 0                                                     | 5.1<br>6                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1<br>6                                                                 | 0                                                     | 5.3                                                                             |
|                                                                                                                                                                                                                                      | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0                                      | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0<br>0                                 | 0<br>0<br>0<br>0<br>0                                 | 6<br>0<br>0<br>0                                                                                        | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>0<br>0<br>0                                                         | 0<br>0<br>0<br>0<br>0                                 | (<br>(<br>(<br>(                                                                |
| b-a<br>c-a<br>d-a<br>e-a<br>f-a<br>c-b<br>d-b<br>e-b<br>f-b<br>d-c<br>e-c<br>f-c<br>e-c<br>f-c<br>f-d<br>f-d<br>f-e                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1<br>-1<br>-1<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                     | 0                                                     | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-5                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1<br>-1<br>-1<br>1<br>-1<br>1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-3 | 0                                                     | ،<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر<br>بر |
| =<br><sub>k</sub> /σ <sub>s</sub>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.67<br>-1.57<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                       | 28.33<br>-0.94<br>0.88                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.33<br>-0.56<br>0.32                                                   |                                                       | 28.33<br>-1.32<br>1.73                                                          |
| $\Sigma Z_{k} = \Sigma Z_{k}^{2} = 0$ $\Sigma Z_{k}^{2} = \Sigma Z_{k} / K = 0$                                                                                                                                                      | -4.38<br>5.38<br>-1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tie Extent<br>Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t,<br>21                                              | t <sub>2</sub><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>3</sub><br>0                                   | t₄<br>0                                               | t <sub>5</sub><br>0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          | Σn<br>ΣS <sub>k</sub>                                 | 21<br>-18                                                                       |
| $\chi^{2}_{h} = \Sigma Z^{2}_{k} - K$ $\Sigma VAR(S_{k})$ 88.67                                                                                                                                                                      | ((Z-bar) <sup>2</sup> =<br>p<br>Z <sub>calc</sub><br>p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.58<br><b>0.902</b><br>-1.81<br><b>0.036</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | @α=5'<br>@α/2=                                        | % χ <sup>2</sup> <sub>(K-1)</sub> =<br>=2.5% <b>Ζ</b> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.81                                                  | 7                                                     | Γest for stat<br>χ <sup>2</sup> h<χ <sup>2</sup> (κ-1)<br><b>H₀</b> (No †<br><b>H<sub>۵</sub></b> (± ti | ion homoge<br>A<br>trend) A<br>rend) R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | neity<br>CCEPT<br>CCEPT<br>REJECT                                        |                                                       |                                                                                 |
| ×                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                                                       |                                                                                                         | <u>x</u><br>0.010<br>0.050<br>0.100<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kendall Slope<br>Lower<br>-1.19<br>-0.94<br>-0.78<br>-0.65               | e <u>Confidence Ir</u><br>Sen's<br>Slope<br>-0.51     | tervals<br>Upper<br>Limit<br>0.17<br>-0.05<br>-0.16<br>-0.24                    |
|                                                                                                                                                                                                                                      | $\frac{f-a}{c-b}$ $\frac{d-b}{f-b}$ $\frac{d-c}{f-c}$ $\frac{e-c}{f-c}$ $\frac{f-d}{f-d}$ $\frac{f-d}{f-e}$ $\frac{zZ_{k}}{z}$ | $\begin{array}{c c} f \text{-a} & & \\ c \text{-b} & \\ d \text{-b} & \\ e \text{-b} & \\ f \text{-b} & \\ d \text{-c} & \\ e \text{-c} & \\ f \text{-c} & \\ \hline f \text{-c} & \\ \hline f \text{-d} & \\ f \text{-e} & \\ \hline \\ \chi^2_{\text{F}} = \Sigma Z_k^2 = 5.38 \\ \text{ar} = \Sigma Z_k^2$ | f-a       c-b         d-b       e-b         f-b       d-c         e-c       f-c         e-d       -1         f-d       -1         f-d       -1         f-d       -1         f-d       -1         f-c       e-d         e-d       -1         f-d       -1.57         ZZ_k = 5.38       -1.0         ZVAR(S_k)       Z_calc       -1.81         g       0.036       -1.00         V       -1.0       -1.0         VY2008       WY2009       -1.00 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | f-a       c-b         d-b       e-b         f-b       d-c         e-c       f-d         f-d       -1         f-d       -1         f-e       -1         f-e       -1         f-c       e-d         e-d       -1         f-d       -1         f-e       -1.57         2.45       2.45 $\Sigma Z_k = -4.38$ Tie Extent t,<br>Count 21 $\chi^2_n = \Sigma Z_k^2 K (Z-bar)^2 = 0.58$ @a=5         p       0.902         EVAR(S_k) $Z_{calc}$ g8.67       p         0.036 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                   | fa       -1         cb       -1         dc       -1         eb       -1         fb       -1         dc       -1         ec       1         fc       -1         ec       -1         fc       -1         ec       -1         fc       -1         ec       -1         fd       -1.57         2.45       0.88 $\Sigma Z_k = -4.38$ Count $\Sigma Z_k = 5.38$ $\mathbb{Q}a = 5\%, \chi^2_{(K-1) = 7.81}$ restforstat $\chi^2_h \in \chi^2_{(K-1) = 7.81}$ restforstat $\mathbb{Q}a = 0.58$ $\chi^2_h \in \chi^2_{(K-1) = 7.81}$ Test for stat <t< td=""><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></t<> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           |

# **INTERPRETIVE REPORT SITE 60**

Sampling at this site was initiated during background investigations conducted by HGCMC for the Stage II Tailings EIS. The two sampling events that occurred in 2003 were submitted to Analytica Alaska Laboratories for analysis and subject to standard QAQC procedures. The detection limits achieved during this analysis were slightly higher for some analytes than are currently achieved under FWMP sampling protocols. The two sample events that occurred in the 2006 water year were analyzed in parallel with standard FWMP samples and thus subject to the same analytical procedures.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

Both ADEC and the USFS requested during the WY2006 annual meeting that an additional monitoring point be added to monitor potential impacts from Pond 7 on the western, downgradient drainage. Greens Creek proposed the current site on lower Althea, and after review by ADEC and USFS during a site visit (June 2, 2007 – USFS Inspection #259) the new site was added to the routine monitoring schedule.

As shown in the table below, there were no data outliers.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|--|--|--|--|
| No outliers have been identified by HGCMC for the period of October 2007 through September 2013. |           |       |           |       |  |  |  |  |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Seven results exceeding these criteria have been identified, as listed in the table below. One of the exceedances is for field pHs with value of 6.48 su (September 2013), this was below the AWQS limit of 6.50 su. Historical sampling for this site in 2003, prior to any disturbance that would directly impact Althea Creek, indicates that the natural background pH ranged from 4.1 su to 4.8 su. Also, for all four sampling events total alkalinity was in exceedance at Site 60, however this is a continuation of the visual trend of decreasing alkalinity, towards pre-disturbance values. The two exceedances were for dissolved mercury, see discussion below.

#### Table of Exceedance for Water Year 2013

|             |                   |             | Lin   | nits  |          |
|-------------|-------------------|-------------|-------|-------|----------|
| Sample Date | Parameter         | Value       | Lower | Upper | Hardness |
| 14-Nov-12   | Alkalinity        | 10.8 mg/L   | 20    |       |          |
| 6-May-13    | Alkalinity        | 10.7 mg/L   | 20    |       |          |
| 17-Jul-13   | Alkalinity        | 14.5 mg/L   | 20    |       |          |
| 9-Sep-13    | Alkalinity        | 11.7 mg/L   | 20    |       |          |
| 17-Jul-13   | Mercury Dissolved | 0.0174 µg/L |       | 0.01  |          |
| 9-Sep-13    | Mercury Dissolved | 0.0174 μg/L |       | 0.01  |          |
| 9-Sep-13    | pH Field          | 6.48 su     | 6.5   | 8.50  |          |

X-Y plots have been generated to graphically present the data for each of the analytes requested in the Statistical Information Goals for this site. Site 60 was added to the FWMP as a monitoring point for potential impacts from Pond 7. Some analytes (*e.g.* sulfate, barium) and measurements (*e.g.* pH, conductivity, hardness, and alkalinity) have similar decreasing visual trends over water years 2007 - 2012. Initially, after the construction of Pond 7 there was a spike in these analytes and measurements. With the completion of the Pond 7 under drain caisson pump back system, these values have begun to decrease and normalize.

The notable exception to this is the elevated dissolved mercury levels seen in the past several years. It is theorized that this too is an artifact from the construction of Pond 7. When the natural waters shifted to a more alkaline state after the disturbance caused by Pond 7 construction, this caused dissolved mercury that naturally existed at a low level to adsorb on to other particles and come out of solution. With the success of the pump back system the area is beginning to return to its natural state as previously mentioned. Because there is this fundamental chemistry shift in the pH the adsorbed mercury is now going back into solution causing the increased values. As the 'pool' of adsorbed mercury is depleted, mercury levels should return to levels recorded in 2006 (mean =  $0.00395\mu$ g/L). As a result of data collected in Water Year 2013 the above hypothesis is being revised slightly. It is still HGCMC hypothesis that the issue is being driven by the adsorbed mercury once and depleting it, this process has occurred several times. Though overall the pH of the system is headed to lower values there has been great fluctuations. It is believed that these fluctuations 'see saw' about the equilibrium point of the adsorption desorption mechanism.

Additional sampling in adjacent drainages during water year 2009 and Water Year 2012 showed that this issue was isolated to only the Site 60 watershed. HGCMC proposed that during the water year 2013 a pH survey of the muskeg region to the west of Pond 7 and also the drainage above Site 60 would be conducted in order to better understand the pH dynamics of the system. This work was not conducted in the prior water year and is now scheduled for the water year 2014. Along with this work an evaluation of the catchment and pump back system at Pond 7 will be conducted.

A non-parametric statistical analysis for trend was performed for specific conductivity, field pH, total alkalinity, total sulfate, and dissolved zinc. Calculation details of the Seasonal Kendall analyses are presented in detail on the pages following this interpretive section. The following table summarizes the results on the data collected between Oct-07 and Sep-13 (WY2008-WY2013). This is the second time that there were a sufficient number of years (n=6) of data for conducting these calculations.

| Mann-Ker | ndall test sta                                                  | atistics                                                                                                                                                                                              | Sen's slope estimate                                                                                                                                                                                                |                                                                                                          |  |  |
|----------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| n*       | <b>p</b> **                                                     | Trend                                                                                                                                                                                                 | Q                                                                                                                                                                                                                   | Q(%)                                                                                                     |  |  |
| 6        | 0.35                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                          |  |  |
| 6        | 0.26                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                          |  |  |
| 6        | 0.35                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                          |  |  |
| 6        | 0.17                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                                                                                                          |  |  |
| 6        | < 0.01                                                          | +                                                                                                                                                                                                     | 0.39                                                                                                                                                                                                                | 7.0                                                                                                      |  |  |
|          | <u>Mann-Ker</u><br><b>n*</b><br>6<br>6<br>6<br>6<br>6<br>6<br>6 | Mann-Kendall test sta           n*         p**           6         0.35           6         0.26           6         0.35           6         0.35           6         0.17           6         <0.01 | Mann-Kendall test statistics $n^*$ $p^{**}$ Trend           6         0.35         6           6         0.26         6           6         0.35         6           6         0.17         6           6 $<0.01$ + | Mann-Kendall test statistics         Sen's slope $n^*$ $p^{**}$ Trend         Q           6         0.35 |  |  |

\* Number of Years \*\* Significance level

There was one statistically significant ( $\alpha/2=2.5\%$ ) trend identified for the current water year, associated with an increasing trend in dissolved zinc with a Sen's slope estimate of 0.39 µg/L/yr. The current zinc values are approximately 12% of the AWQS. HGCMC feels that the current sampling schedule adequately characterizes the water quality parameters at this site.

| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Water Temp (°C)           |          | 2.4      |          |          |          |          |          | 4.4      |          | 10.4     |          | 11       | 7.4      |
| Conductivity-Field(µmho)  |          | 43       |          |          |          |          |          | 64       |          | 60       |          | 63       | 61.5     |
| Conductivity-Lab (µmho)   |          | 43       |          |          |          |          |          | 59       |          | 53       |          | 47       | 50       |
| pH Lab (standard units)   |          | 6.72     |          |          |          |          |          | 6.54     |          | 6.84     |          | 6.42     | 6.63     |
| pH Field (standard units) |          | 8.37     |          |          |          |          |          | 6.85     |          | 6.58     |          | 6.48     | 6.72     |
| Total Alkalinity (mg/L)   |          | 10.8     |          |          |          |          |          | 10.7     |          | 14.5     |          | 11.7     | 11.3     |
| Total Sulfate (mg/L)      |          | 1.3      |          |          |          |          |          | 2.5      |          | 5        |          | 3.6      | 3.1      |
| Hardness (mg/L)           |          | 19.1     |          |          |          |          |          | 20.4     |          | 25       |          | 27.8     | 22.7     |
| Dissolved As (ug/L)       |          | 2.05     |          |          |          |          |          | 1.63     |          | 2.3      |          | 3.38     | 2.175    |
| Dissolved Ba (ug/L)       |          | 17.3     |          |          |          |          |          | 19       |          | 24.5     |          | 31.1     | 21.8     |
| Dissolved Cd (ug/L)       |          | 0.0134   |          |          |          |          |          | 0.0161   |          | 0.0234   |          | 0.0253   | 0.0198   |
| Dissolved Cr (ug/L)       |          | 1.16     |          |          |          |          |          | 0.878    |          | 2.15     |          | 1.74     | 1.450    |
| Dissolved Cu (ug/L)       |          | 0.94     |          |          |          |          |          | 0.935    |          | 1.21     |          | 1.32     | 1.075    |
| Dissolved Pb (ug/L)       |          | 0.343    |          |          |          |          |          | 0.232    |          | 0.318    |          | 0.444    | 0.3305   |
| Dissolved Ni (ug/L)       |          | 1.21     |          |          |          |          |          | 1.06     |          | 1.83     |          | 1.92     | 1.520    |
| Dissolved Ag (ug/L)       |          | 0.01     |          |          |          |          |          | 0.014    |          | 0.017    |          | 0.008    | 0.012    |
| Dissolved Zn (ug/L)       |          | 4.92     |          |          |          |          |          | 4.93     |          | 6        |          | 8.05     | 5.47     |
| Dissolved Se (ug/L)       |          | 0.318    |          |          |          |          |          | 0.057    |          | 0.321    |          | 0.261    | 0.290    |
| Dissolved Hg (ug/L)       |          | 0.0114   |          |          |          |          |          | 0.0107   |          | 0.0174   |          | 0.0174   | 0.014400 |

### Site 060FMS - 'Lower Althea creek'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# Qualified Data by QA Reviewer

## Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value   | Qualifier | Reason for Qualifier                                 |
|----------|-------------|-------------|---------------|---------|-----------|------------------------------------------------------|
|          |             |             |               |         |           |                                                      |
| 60       | 11/14/2012  | 12:00 AM    | Zn diss, µg/l | 4.92    | U         | Field Blank Contamination                            |
|          |             |             | Se diss, µg/l | 0.31    | U         | Field Blank Contamination                            |
|          |             |             |               |         |           |                                                      |
| 60       | 5/6/2013    | 12:00 AM    | pH Lab, su    | 6.54    | J         | Hold Time Violation                                  |
|          |             |             | Cond, µmhos   | 58.7    | U         | Field Blank Contamination                            |
|          |             |             | Alk, mg/L     | 10.7    | U         | Field Blank Contamination                            |
|          |             |             | SO4 Tot, mg/l | -5      | UJ        | Sample Receipt Temperature                           |
|          |             |             |               |         |           |                                                      |
| 60       | 7/17/2013   | 12:00 AM    | Se diss, µg/l | 0.32    | J         | Below Quantitative Range                             |
|          |             |             | SO4 Tot, mg/l | -10     | UJ        | Sample Receipt Temperature                           |
|          |             |             |               |         |           |                                                      |
| 60       | 9/9/2013    | 12:00 AM    | Se diss, µg/l | 0.26    | J         | Below Quantitative Range                             |
|          |             |             | Ag diss, µg/l | 0.00846 | J         | Below Quantitative Range                             |
|          |             |             | SO4 Tot, mg/l | 3.62    | J         | Below Quantitative Range, Sample receipt temperature |

| Qualifier | Description                                        |
|-----------|----------------------------------------------------|
| J         | PositivelyIdentified - Approximate concentration   |
| N         | Presumptive Evidence For Tentative Identification  |
| NJ        | Tentatively Identified - Approximate Concentration |
| R         | Rejected - Cannot be Verified                      |
| U         | HCCM_NotDetected_Aboxe@wanttationLinit             |
| UJ        | Not Detected Above Approximate Quantitation Limit  |
| UJ        | Not Detected Above Approximate Guantitation Limit  |



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis







Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis


Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis

| Site      | #60                              |                       |          | Seasonal   | Kendall | analysis         | s for Spe      | cific Cond | luctance, F                            | ield (µS   | /cm)            |               |              |
|-----------|----------------------------------|-----------------------|----------|------------|---------|------------------|----------------|------------|----------------------------------------|------------|-----------------|---------------|--------------|
| Row label | Water Year                       | Oct                   | Nov      | Dec        | Jan     | Feb              | Mar            | Apr        | May                                    | Jun        | Jul             | Aug           | Sep          |
| a<br>b    | WY2008<br>WY2009                 |                       |          |            |         |                  |                |            | 0<br>59.1                              |            |                 |               | 60.1<br>74.2 |
| c         | WY2010                           |                       |          |            |         |                  |                |            |                                        |            | 54.7            |               | 51.6         |
| d         | WY2011                           |                       | 48.3     |            |         |                  |                |            | 85<br>55 2                             |            | 71<br>47 1      |               | 61           |
| f         | WY2012<br>WY2013                 |                       | 50<br>43 |            |         |                  |                |            | 55.3<br>64                             |            | 47.1            |               | 45<br>63     |
|           | n                                | 0                     | 3        | 0          | 0       | 0                | 0              | 0          | 5                                      | 0          | 4               | 0             | 6            |
| •         | t1                               | 0                     | 3        | 0          | 0       | 0                | 0              | 0          | 5                                      | 0          | 4               | 0             | 6            |
|           | t <sub>2</sub>                   | 0                     | 0        | 0          | 0       | 0                | 0              | 0          | 0                                      | 0          | 0               | 0             | 0            |
|           | ι <sub>3</sub><br>t <sub>4</sub> | 0                     | 0        | 0          | 0       | 0                | 0              | 0          | 0                                      | 0          | 0               | 0             | 0            |
|           | t <sub>5</sub>                   | 0                     | 0        | 0          | 0       | 0                | 0              | 0          | 0                                      | 0          | 0               | 0             | 0            |
| •         | b-a                              |                       |          |            |         |                  |                |            | 1                                      |            |                 |               | 1            |
|           | c-a<br>d-a                       |                       |          |            |         |                  |                |            | 1                                      |            |                 |               | -1<br>1      |
|           | e-a                              |                       |          |            |         |                  |                |            | 1                                      |            |                 |               | -1           |
|           | f-a<br>c-b                       |                       |          |            |         |                  |                |            | 1                                      |            |                 |               | -1           |
|           | d-b                              |                       |          |            |         |                  |                |            | 1                                      |            |                 |               | -1           |
|           | e-b                              |                       |          |            |         |                  |                |            | -1                                     |            |                 |               | -1           |
|           | d-t                              |                       |          |            |         |                  |                |            | 1                                      |            | 1               |               | -1           |
|           | e-c                              |                       |          |            |         |                  |                |            |                                        |            | -1              |               | -1           |
|           | t-c<br>e-d                       |                       | 1        |            |         |                  |                |            | -1                                     |            | 1<br>-1         |               | 1<br>-1      |
|           | f-d                              |                       | -1       |            |         |                  |                |            | -1                                     |            | -1              |               | 1            |
| -         | f-e<br>Si                        | 0                     | -1       | 0          | 0       | 0                | 0              | 0          | 1                                      | 0          | 1               | 0             |              |
|           | O <sub>K</sub>                   | 0                     | -1       | 0          | 0       | 0                | 0              | 0          | 4                                      | 0          | 0               | 0             | -1           |
| σ         | <sup>2</sup> s=                  |                       | 3.67     |            |         |                  |                |            | 16.67                                  |            | 8.67            |               | 28.33        |
| $Z_k =$   | S <sub>k</sub> /σ <sub>s</sub>   |                       | -0.52    |            |         |                  |                |            | 0.98                                   |            | 0.00            |               | -0.19        |
| Z         | 7 <sup>2</sup><br>- k            |                       | 0.27     |            |         |                  |                |            | 0.96                                   |            | 0.00            |               | 0.04         |
|           | $\Sigma Z_k =$                   | 0.27                  | Г        | Tie Extent | t1      | t <sub>2</sub>   | t <sub>3</sub> | t4         | t <sub>5</sub>                         |            |                 | Σn            | 18           |
|           | $\Sigma Z_{k}^{2} =$             | 1.27                  |          | Count      | 18      | 0                | 0              | 0          | 0                                      |            |                 | $\Sigma S_k$  | 2            |
| Z         | Z-bar=ΣZ <sub>k</sub> /K=        | 0.07                  |          |            |         |                  |                |            |                                        |            |                 |               |              |
|           |                                  |                       |          |            |         |                  |                |            |                                        |            |                 |               |              |
| I         | $\chi^2 - \Sigma 7^2$            | $K/(7 \text{ bor})^2$ | 1.25     |            | @~-F    | $0/\alpha^2 -$   | 7 01           | Та         | ot for station be                      | mogonoity  |                 |               |              |
|           | λ h=ΔΖ k <sup>-</sup>            | n(z-bai) —            | 0 741    | L          | @α=3    | 70 χ (K-1)=      | 7.01           | 16         | $\gamma^2 \propto \gamma^2 (\kappa_1)$ | mogeneity  | ACCEPT          |               |              |
|           | ΣVAR(S <sub>k</sub> )            | Zcalc                 | 0.13     |            | @α/2=   | =2.5% <b>Z</b> = | 1.96           |            | H <sub>o</sub> (No tre                 | nd)        | ACCEPT          |               |              |
|           | 57.33                            | р                     | 0.553    |            |         |                  |                |            | H <sub>A</sub> (± tren                 | id)        | REJECT          |               |              |
| -         |                                  |                       |          |            |         |                  |                |            |                                        |            |                 |               |              |
| σ         | 00                               |                       |          |            |         |                  |                |            |                                        |            |                 |               |              |
| le l      | 90                               |                       |          |            |         | R                |                |            |                                        |            |                 |               |              |
| аĵ        | 80                               |                       |          |            |         | $\overline{}$    |                |            |                                        | Seasona    | I-Kendall Slope | Confidence In | tervals      |
| nc        | 70                               |                       | $\frown$ |            |         | ×                |                |            |                                        |            | Lower           | Sen's         | Upper        |
| n) cta    | 60                               |                       |          |            |         |                  |                |            | - 🔍                                    | α<br>0.010 | -6.39           | Slope         | 12.15        |
| du<br>%   | 50                               |                       |          |            |         |                  |                |            |                                        | 0.050      | -3.90           | 0.44          | 4.91         |
| u Sul     | 50                               |                       | /        |            |         | 3                | $\overline{}$  |            |                                        | 0.100      | -3.70<br>-2.89  |               | 1.76         |
| 0         | 40                               | /                     | /        |            |         |                  |                |            |                                        | 0.200      | -2.03           |               | 1.01         |
| ific      | 30                               | /                     |          |            |         |                  |                |            |                                        |            |                 |               |              |
| bec       | 20                               |                       |          |            |         |                  |                |            |                                        |            |                 |               |              |
| S         | WY                               | /2008                 | WY2009   | WY2010     | ) Wi    | (2011            | WY201          | 2 WY       | 2013                                   |            |                 |               |              |

---Oct ---Nov ---Dec -->-Jan ---Feb -->-Mar -+-Apr ---May --->-Jun ----Jun ----Aug ----Sep

| Site             | #60                         | Seasonal Kendall analysis for pH, Field, Standard Units |      |            |                |                |                |     |       |     |          |              |       |
|------------------|-----------------------------|---------------------------------------------------------|------|------------|----------------|----------------|----------------|-----|-------|-----|----------|--------------|-------|
| Row label        | Water Year                  | Oct                                                     | Nov  | Dec        | Jan            | Feb            | Mar            | Apr | May   | Jun | Jul      | Aug          | Sep   |
| а                | WY2008                      |                                                         |      |            |                |                |                |     | 0.0   |     |          |              | 6.5   |
| b                | WY2009                      |                                                         |      |            |                |                |                |     | 6.9   |     |          |              | 6.2   |
| С                | WY2010                      |                                                         |      |            |                |                |                |     |       |     | 5.5      |              | 6.5   |
| d                | WY2011                      |                                                         | 6.4  |            |                |                |                |     | 6.8   |     | 7.2      |              | 5.0   |
| e                | WY2012                      |                                                         | 6.4  |            |                |                |                |     | 5.8   |     | 6.6      |              | 6.1   |
| t                | WY2013                      |                                                         | 8.4  |            |                | 0              |                | -   | 6.9   |     | 6.6      | 0            | 6.5   |
|                  | n                           | 0                                                       | 3    | 0          | 0              | 0              | 0              | 0   | 5     | 0   | 4        | 0            | 6     |
|                  | t,                          | 0                                                       | 3    | 0          | 0              | 0              | 0              | 0   | 5     | 0   | 4        | 0            | 6     |
|                  | t <sub>2</sub>              | 0                                                       | 0    | 0          | 0              | 0              | 0              | 0   | 0     | 0   | 0        | 0            | 0     |
|                  | t <sub>3</sub>              | 0                                                       | 0    | 0          | 0              | 0              | 0              | 0   | 0     | 0   | 0        | 0            | 0     |
|                  | t <sub>4</sub>              | 0                                                       | 0    | 0          | 0              | 0              | 0              | 0   | 0     | 0   | 0        | 0            | 0     |
|                  | t <sub>5</sub>              | 0                                                       | 0    | 0          | 0              | 0              | 0              | 0   | 0     | 0   | 0        | 0            | 0     |
|                  | b-a                         |                                                         |      |            |                |                |                |     | 1     |     |          |              | -1    |
|                  | c-a                         |                                                         |      |            |                |                |                |     |       |     |          |              | -1    |
|                  | d-a                         |                                                         |      |            |                |                |                |     | 1     |     |          |              | -1    |
|                  | e-a                         |                                                         |      |            |                |                |                |     | 1     |     |          |              | -1    |
|                  | f-a                         |                                                         |      |            |                |                |                |     | 1     |     |          |              | -1    |
|                  | c-b                         |                                                         |      |            |                |                |                |     |       |     |          |              | 1     |
|                  | d-b                         |                                                         |      |            |                |                |                |     | -1    |     |          |              | -1    |
|                  | e-b                         |                                                         |      |            |                |                |                |     | -1    |     |          |              | -1    |
|                  | f-b                         |                                                         |      |            |                |                |                |     | -1    |     |          |              | 1     |
|                  | d-c                         |                                                         |      |            |                |                |                |     |       |     | 1        |              | -1    |
|                  | e-c                         |                                                         |      |            |                |                |                |     |       |     | 1        |              | -1    |
|                  | T-C                         |                                                         | 4    |            |                |                |                |     | 4     |     | 1        |              | 1     |
|                  | e-u<br>f d                  |                                                         | -1   |            |                |                |                |     | -1    |     | -1       |              | 1     |
|                  | f-e                         |                                                         | 1    |            |                |                |                |     | 1     |     | -1<br>-1 |              | 1     |
|                  | S <sub>k</sub>              | 0                                                       | 1    | 0          | 0              | 0              | 0              | 0   | 2     | 0   | 0        | 0            | -3    |
|                  | $r^2 =$                     |                                                         | 3.67 |            |                |                |                |     | 16.67 |     | 8.67     |              | 28.33 |
| 7 -              | S /G                        |                                                         | 0.52 |            |                |                |                |     | 0.40  |     | 0.00     |              | 0.56  |
| ∠ <sub>k</sub> = | -3k/0s                      |                                                         | 0.52 |            |                |                |                |     | 0.49  |     | 0.00     |              | -0.50 |
|                  | Z <sup>2</sup> <sub>k</sub> |                                                         | 0.27 |            |                |                |                |     | 0.24  |     | 0.00     |              | 0.32  |
|                  | $\Sigma Z_k =$              | 0.45                                                    |      | Tie Extent | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t₄  | t₅    |     |          | Σn           | 18    |
|                  | $\Sigma Z_{k}^{2} =$        | 0.83                                                    |      | Count      | 18             | 0              | 0              | 0   | 0     |     |          | $\Sigma S_k$ | 0     |
| Z                | Z-bar=ΣZ <sub>k</sub> /K=   | 0.11                                                    | I    |            |                |                |                |     |       |     |          |              |       |

|  | Seasonal Kendall | analysi | s for pH | . Field. | Standard | Units |
|--|------------------|---------|----------|----------|----------|-------|
|--|------------------|---------|----------|----------|----------|-------|

| $\chi^2_h = \Sigma Z^2_k$ | K(Z-bar) <sup>2</sup> = | 0.78  | @α=5% χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81 | Test for station hom              | ogeneity |
|---------------------------|-------------------------|-------|-----------------------------------------|------|-----------------------------------|----------|
|                           | р                       | 0.854 |                                         |      | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ | ACCEPT   |
| $\Sigma VAR(S_k)$         | $\mathbf{Z}_{calc}$     | 0.00  | @α/2=2.5% <b>Z</b> =                    | 1.96 | H <sub>0</sub> (No trend)         | ACCEPT   |
| 57.33                     | р                       | 0.500 |                                         |      | H <sub>A</sub> (± trend)          | REJECT   |



| Seasona | al-Kendall Slop | e Confidence   | Intervals      |
|---------|-----------------|----------------|----------------|
| α       | Lower<br>Limit  | Sen's<br>Slope | Upper<br>Limit |
| 0.010   | -0.26           |                | 0.93           |
| 0.050   | -0.08           | 0.00           | 0.41           |
| 0.100   | -0.06           | 0.00           | 0.33           |
| 0.200   | -0.03           |                | 0.12           |

| Site                | #60                                                         |                         |               |            | Seasona    | al Kenda                | all analys  | sis for To         | otal Alk,             | (mg/l)       |               |              |             |
|---------------------|-------------------------------------------------------------|-------------------------|---------------|------------|------------|-------------------------|-------------|--------------------|-----------------------|--------------|---------------|--------------|-------------|
| Row label           | Water Year                                                  | Oct                     | Nov           | Dec        | Jan        | Feb                     | Mar         | Apr                | Мау                   | Jun          | Jul           | Aug          | Sep         |
| a<br>b              | WY2008<br>WY2009                                            |                         |               |            |            |                         |             |                    | 0.0<br>12.8           |              |               |              | 12.6<br>7 2 |
| c                   | WY2010                                                      |                         |               |            |            |                         |             |                    | 12.0                  |              | 11.3          |              | 10.7        |
| d                   | WY2011                                                      |                         | 5.6           |            |            |                         |             |                    | 7.9                   |              | 10.3          |              | 9.9         |
| e<br>f              | WY2012<br>WY2013                                            |                         | 9.7<br>10.8   |            |            |                         |             |                    | 7.0<br>10.7           |              | 9.0<br>14.5   |              | 8.9<br>11.7 |
|                     | n                                                           | 0                       | 3             | 0          | 0          | 0                       | 0           | 0                  | 5                     | 0            | 4             | 0            | 6           |
|                     | t.                                                          | 0                       | 3             | 0          | 0          | 0                       | 0           | 0                  | 5                     | 0            | 4             | 0            | 6           |
|                     | t <sub>2</sub>                                              | 0                       | 0             | 0          | 0          | 0                       | 0           | 0                  | 0                     | 0            | 0             | 0            | 0           |
|                     | t₃<br>+                                                     | 0                       | 0             | 0          | 0          | 0                       | 0           | 0                  | 0                     | 0            | 0             | 0            | 0           |
|                     | t₅                                                          | 0                       | 0             | 0          | 0          | 0                       | 0           | 0                  | 0                     | 0            | 0             | 0            | 0           |
|                     | h a                                                         |                         |               |            |            |                         |             |                    | 4                     |              |               |              | 4           |
|                     | р-а<br>с-а                                                  |                         |               |            |            |                         |             |                    | 1                     |              |               |              | -1<br>-1    |
|                     | d-a                                                         |                         |               |            |            |                         |             |                    | 1                     |              |               |              | -1          |
|                     | e-a<br>f-a                                                  |                         |               |            |            |                         |             |                    | 1                     |              |               |              | -1<br>-1    |
|                     | c-b                                                         |                         |               |            |            |                         |             |                    | ·                     |              |               |              | 1           |
|                     | d-b                                                         |                         |               |            |            |                         |             |                    | -1                    |              |               |              | 1           |
|                     | f-b                                                         |                         |               |            |            |                         |             |                    | -1                    |              |               |              | 1           |
|                     | d-c                                                         |                         |               |            |            |                         |             |                    |                       |              | -1            |              | -1          |
|                     | e-c<br>f-c                                                  |                         |               |            |            |                         |             |                    |                       |              | -1<br>1       |              | -1<br>1     |
|                     | e-d                                                         |                         | 1             |            |            |                         |             |                    | -1                    |              | -1            |              | -1          |
|                     | f-d<br>f-e                                                  |                         | 1             |            |            |                         |             |                    | 1                     |              | 1             |              | 1           |
|                     | S <sub>k</sub>                                              | 0                       | 3             | 0          | 0          | 0                       | 0           | 0                  | 2                     | 0            | 0             | 0            | -1          |
|                     | <sup>2</sup> c=                                             |                         | 3 67          |            |            |                         |             |                    | 16 67                 |              | 8 67          |              | 28.33       |
| Z <sub>k</sub> =    | S <sub>k</sub> /σ <sub>s</sub>                              |                         | 1.57          |            |            |                         |             |                    | 0.49                  |              | 0.00          |              | -0.19       |
| 2                   | Z <sup>2</sup> <sub>k</sub>                                 |                         | 2.45          |            |            |                         |             |                    | 0.24                  |              | 0.00          |              | 0.04        |
|                     | 57 -                                                        | 1.07                    | Г             | Tio Evtent | +          | +                       | t           | +                  | +                     | 1            |               | Σn           | 40          |
|                     | $\Sigma Z_{k}^{2}$                                          | 2.73                    |               |            | 18         | 0                       | 0           | 0                  | 0                     |              |               | ΣS           | 4           |
| Z                   | -bar=ΣZ <sub>k</sub> /K=                                    | 0.47                    | L.            | oount      |            | 0                       | •           | •                  |                       |              |               | K            | •           |
|                     |                                                             |                         |               |            |            |                         |             |                    |                       |              |               |              |             |
|                     | 2 _2                                                        |                         |               |            |            | 2                       |             |                    |                       |              |               |              |             |
|                     | χ <sup>-</sup> <sub>h</sub> =ΣΖ <sup>-</sup> <sub>k</sub> - | K(Z-bar) <sup>2</sup> = | 1.86          | L          | @α=5%      | 6 χ <sup>2</sup> (K-1)= | 7.81        | 1                  | Test for stand        | ition homoge | neity         |              |             |
|                     | TVAD(C)                                                     | р<br>7                  | 0.603         |            | o /0       | 0.50/ 7                 | 1.00        |                    | λh<λ(K-1)             |              |               |              |             |
|                     | 2VAR(S <sub>k</sub> )<br>57.33                              | L <sub>calc</sub>       | 0.40<br>0.654 | L          | @0/Z=      | 2.5% <b>Z</b> =         | 1.96        |                    | $H_0$ (NO<br>$H_A$ (± | trend) A     | REJECT        |              |             |
|                     |                                                             | F                       |               |            |            |                         |             |                    | - A (-                |              |               |              |             |
| 15 -                |                                                             |                         |               |            |            |                         |             |                    |                       |              |               |              |             |
| 14.5                |                                                             |                         |               |            |            |                         |             |                    | ×                     |              |               |              |             |
| 14 -                |                                                             |                         |               |            |            |                         |             |                    |                       | Seasonal     | Kendall Slone | Confidence l | atonials    |
| $\mathbf{c}_{13.5}$ |                                                             |                         |               |            |            |                         |             |                    |                       | ocusonal     | Lower         | Sen's        | Upper       |
|                     | ,                                                           |                         | ٢             |            |            |                         |             |                    |                       | α            | Limit         | Slope        | Limit       |
| ¥ 10                |                                                             |                         |               |            |            |                         |             |                    |                       | 0.010        | -0.95         | 0.72         | 1.48        |
|                     |                                                             |                         |               |            |            |                         |             |                    | ,                     | 0.100        | -0.89         | 0.73         | 1.32        |
|                     |                                                             |                         |               | ×          |            |                         |             |                    |                       | 0.200        | -0.58         |              | 1.10        |
|                     |                                                             |                         |               |            |            |                         | /           |                    | 7                     |              |               |              |             |
| 10.5 -              |                                                             |                         |               | $\land$    | $\searrow$ |                         |             | <u> </u>           |                       |              |               |              |             |
|                     | WY2008                                                      | WY2                     | 2009          | WY2010     | WY2        | 011                     | WY2012      | WY2                | 2013                  |              |               |              |             |
|                     | —— Oc                                                       | :t — 🗗                  | - Nov         | — <u> </u> | -0-        | Jan                     | <del></del> | ) — <del>•</del> - | - Mar                 |              |               |              |             |
|                     | —+— Ap                                                      | r                       | - May         | • Jun      | X          | Jul                     |             | g <u> </u>         | -Sep                  |              |               |              |             |

| Row label | Water Year                         | Oct               | Nov                  | Dec                       | Jan                 | Feb                   | Mar            | Apr            | Мау                               | Jun               | Jul              | Aug             | Sep         |
|-----------|------------------------------------|-------------------|----------------------|---------------------------|---------------------|-----------------------|----------------|----------------|-----------------------------------|-------------------|------------------|-----------------|-------------|
| a<br>b    | WY2008<br>WY2009                   |                   |                      |                           |                     |                       |                |                | 0.0<br>6.2                        |                   |                  |                 | 0.0<br>20.3 |
| c         | WY2010                             |                   |                      |                           |                     |                       |                |                | 0.2                               |                   | 0.0              |                 | 0.0         |
| d         | WY2011                             |                   | 0.0                  |                           |                     |                       |                |                | 6.2                               |                   | 0.0              |                 | 0.0         |
| f         | WY2012<br>WY2013                   |                   | 0.0                  |                           |                     |                       |                |                | 0.0                               |                   | 0.0              |                 | 4.1<br>3.6  |
|           | n                                  | 0                 | 3                    | 0                         | 0                   | 0                     | 0              | 0              | 5                                 | 0                 | 4                | 0               | 6           |
|           | t,                                 | 0                 | 0                    | 0                         | 0                   | 0                     | 0              | 0              | 2                                 | 0                 | 0                | 0               | 3           |
|           | t <sub>2</sub>                     | 0                 | 0                    | 0                         | 0                   | 0                     | 0              | 0              | 0                                 | 0                 | 0                | 0               | 0           |
|           | ι₃<br>t₄                           | 0                 | 0                    | 0                         | 0                   | 0                     | 0              | 0              | 0                                 | 0                 | 1                | 0               | 0           |
|           | t <sub>5</sub>                     | 0                 | 0                    | 0                         | 0                   | 0                     | 0              | 0              | 0                                 | 0                 | 0                | 0               | 0           |
|           | b-a                                |                   |                      |                           |                     |                       |                |                | 1                                 |                   |                  |                 | 1           |
|           | c-a<br>d-a                         |                   |                      |                           |                     |                       |                |                | 1                                 |                   |                  |                 | 0           |
|           | e-a                                |                   |                      |                           |                     |                       |                |                | 0                                 |                   |                  |                 | 1           |
|           | f-a                                |                   |                      |                           |                     |                       |                |                | 0                                 |                   |                  |                 | 1           |
|           | c-b<br>d-b                         |                   |                      |                           |                     |                       |                |                | -1                                |                   |                  |                 | -1<br>-1    |
|           | e-b                                |                   |                      |                           |                     |                       |                |                | -1                                |                   |                  |                 | -1          |
|           | f-b                                |                   |                      |                           |                     |                       |                |                | -1                                |                   | 0                |                 | -1          |
|           | e-c                                |                   |                      |                           |                     |                       |                |                |                                   |                   | 0                |                 | 1           |
|           | f-c                                |                   |                      |                           |                     |                       |                |                |                                   |                   | 0                |                 | 1           |
|           | e-d<br>f-d                         |                   | 0                    |                           |                     |                       |                |                | -1<br>-1                          |                   | 0                |                 | 1           |
|           | f-e                                |                   | 0                    |                           |                     |                       |                |                | 0                                 |                   | 0                |                 | -1          |
|           | Sk                                 | 0                 | 0                    | 0                         | 0                   | 0                     | 0              | 0              | -3                                | 0                 | 0                | 0               | 2           |
| σ         | <sup>2</sup> s=                    |                   | 0.00                 |                           |                     |                       |                |                | 13.00                             |                   | 0.00             |                 | 24.67       |
| $Z_k =$   | S <sub>k</sub> /σ <sub>s</sub>     |                   | #DIV/0!              |                           |                     |                       |                |                | -0.83                             |                   | #DIV/0!          |                 | 0.40        |
| 4         | Ź <sup>r</sup> k                   |                   | #DIV/0!              |                           |                     |                       |                |                | 0.69                              |                   | #DIV/0!          |                 | 0.16        |
|           | $\Sigma Z_k =$                     | #DIV/0!           | F                    | Tie Extent                | t,                  | t <sub>2</sub>        | t <sub>3</sub> | t <sub>4</sub> | t₅                                |                   |                  | Σn              | 18          |
|           | $\Sigma Z_{k}^{2} =$               | #DIV/0!           |                      | Count                     | 5                   | 0                     | 3              | 1              | 0                                 |                   |                  | $\Sigma S_k$    | -1          |
| Z         | '-bar=ΣZ <sub>k</sub> /K=          | #DIV/0!           |                      |                           |                     |                       |                |                |                                   |                   |                  |                 |             |
|           |                                    |                   |                      |                           |                     |                       |                |                |                                   |                   |                  |                 |             |
|           | $\gamma^2 = \Sigma \overline{7}^2$ | $K(7-har)^2 =$    | #DIV/0!              |                           | @a=5°               | $\sqrt{\gamma^2} = 1$ | 7 81           |                | Test for stat                     | tion homor        | reneity          |                 |             |
|           | λ n κ                              | n(_ 200)          | #DIV/0!              | L                         | 0                   | ~ ~ (K-1)             |                |                | $\chi^{2}_{h} < \chi^{2}_{(K-1)}$ |                   | #DIV/0!          |                 |             |
|           | $\Sigma VAR(S_k)$                  | Z <sub>calc</sub> | 0.00                 |                           | @α=                 | 2.5% <b>Z</b> =       | 1.96           |                | H <sub>0</sub> (No                | trend)            | ACCEPT           |                 |             |
|           | 37.67                              | р                 | 0.500                |                           |                     |                       | I              |                | H <sub>A</sub> (± t               | rend)             | #DIV/0!          |                 |             |
|           |                                    |                   |                      |                           |                     |                       |                |                |                                   |                   | _                |                 |             |
|           | 25                                 |                   |                      |                           |                     |                       |                |                |                                   | Ъ                 |                  |                 |             |
| <u> </u>  | -                                  |                   |                      |                           |                     |                       |                |                |                                   |                   |                  |                 |             |
| l/gr      | 20                                 |                   | - <b>^</b>           |                           |                     |                       |                |                |                                   | Seaso             | nal-Kendall Slop | e Confidence Ir | tervals     |
| Ľ)        | -                                  |                   |                      |                           |                     |                       |                |                |                                   |                   | Lower            | Sen's           | Upper       |
| otal      | 15                                 |                   | $/ \rightarrow$      |                           |                     |                       |                |                |                                   | <u>α</u><br>0.010 | -0.07            | ыоре            | 0.00        |
| Ĕ         | -                                  |                   | ′ \                  |                           |                     |                       |                |                |                                   | 0.050             | 0.00             | 0.00            | 0.00        |
| lte,      | 10                                 | /                 |                      | \                         |                     |                       |                |                |                                   | 0.100             | 0.00             | 0.00            | 0.00        |
| ılfa      | E                                  | /                 |                      | $\mathbf{N}$              |                     |                       |                |                |                                   | 0.200             | 0.00             |                 | 0.00        |
| ຣ         | 5 [                                | _/                |                      | $\rightarrow$             |                     | _                     | -              |                |                                   | 4                 |                  | #DIV/0!         |             |
|           | -                                  | 1/                |                      |                           |                     |                       |                |                |                                   |                   |                  |                 |             |
|           | 0                                  |                   | 140/0000             | <u> </u>                  |                     |                       |                |                | X                                 | ļ                 |                  |                 |             |
|           | WY                                 | 2008              | VVY2009              | WY201                     | U W                 | Y2011                 | WY20           | 12 V           | VY2013                            |                   |                  |                 |             |
|           |                                    |                   | – <del>⊔</del> – Nov | / — <u>▲</u> Deo<br>/●lur | c —— Ja<br>n ——— Ja | an ————<br>⊔I —————   |                | ⊢Mar<br>—Sen   |                                   |                   |                  |                 |             |
|           |                                    | · · · PI          | inag                 | , - 001                   |                     |                       |                | <b>0</b> 0p    |                                   |                   |                  |                 |             |

#60

Site

| Row label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                         |                      | 0                   | casonai        | Kendan                              | anaryoio            |         | , DISSUN                                    | eu (ug/i)                                                       | /                                                                |                                                |                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------|----------------------|---------------------|----------------|-------------------------------------|---------------------|---------|---------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|
| a<br>b<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water Year<br>WY2008<br>WY2009<br>WY2010 | Oct                     | Nov                  | Dec                 | Jan            | Feb                                 | Mar                 | Apr     | May<br>0.0<br>3.2                           | Jun                                                             | Jul<br>5.2                                                       | Aug                                            | <b>Sep</b><br>6<br>7<br>5<br>7                              |
| e<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WY2012<br>WY2012<br>WY2013               |                         | 5.5<br>5.8<br>4.9    |                     |                |                                     |                     |         | 5.5<br>4.8<br>4.9                           |                                                                 | 5.7<br>6.3<br>6.0                                                |                                                | 7<br>8<br>8                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                                        | 0                       | 3                    | 0                   | 0              | 0                                   | 0                   | 0       | 5                                           | 0                                                               | 4                                                                | 0                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <sub>1</sub><br>t <sub>2</sub>         | 0                       | 3<br>0               | 0                   | 0              | 0                                   | 0                   | 0       | 5<br>0                                      | 0<br>0                                                          | 4                                                                | 0                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t <sub>3</sub><br>t <sub>4</sub><br>t-   | 0                       | 0                    | 0                   | 0              | 0                                   | 0<br>0              | 0<br>0  | 0                                           | 0<br>0                                                          | 0                                                                | 0                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b-a                                      | 0                       | 0                    | 0                   | 0              | 0                                   | 0                   | 0       | 1                                           | 0                                                               | 0                                                                | 0                                              |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c-a<br>d-a                               |                         |                      |                     |                |                                     |                     |         | 1                                           |                                                                 |                                                                  |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e-a<br>f-a                               |                         |                      |                     |                |                                     |                     |         | 1<br>1                                      |                                                                 |                                                                  |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c-b<br>d-b                               |                         |                      |                     |                |                                     |                     |         | 1                                           |                                                                 |                                                                  |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | е-b<br>f-b<br>d-c                        |                         |                      |                     |                |                                     |                     |         | 1                                           |                                                                 | 1                                                                |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e-c<br>f-c                               |                         |                      |                     |                |                                     |                     |         |                                             |                                                                 | 1<br>1                                                           |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e-d<br>f-d                               |                         | 1<br>-1              |                     |                |                                     |                     |         | -1<br>-1                                    |                                                                 | 1                                                                |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r-e<br>S <sub>k</sub>                    | 0                       | -1<br>-1             | 0                   | 0              | 0                                   | 0                   | 0       | 1<br>6                                      | 0                                                               | -1<br>4                                                          | 0                                              |                                                             |
| _ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sigma^2_{\rm S}=$                      |                         | 3.67                 |                     |                |                                     |                     |         | 16.67                                       |                                                                 | 8.67                                                             |                                                | 28.3                                                        |
| Z <sub>k</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Z_{k}^{2}$                              |                         | -0.52<br>0.27        |                     |                |                                     |                     |         | 1.47<br>2.16                                |                                                                 | 1.36<br>1.85                                                     |                                                | 4.2                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Sigma Z_{k} = \Sigma Z_{k}^{2} =$      | 4.37<br>8.55            |                      | Tie Extent<br>Count | t₁<br>18       | t <sub>2</sub><br>0                 | t <sub>3</sub><br>0 | t₄<br>0 | t₅<br>0                                     |                                                                 |                                                                  | Σn<br>ΣS <sub>k</sub>                          | 18<br>20                                                    |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z-bar=ΣZ <sub>k</sub> /K=                | 1.09                    |                      |                     |                |                                     |                     |         |                                             |                                                                 |                                                                  |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\chi^2_h = \Sigma Z^2_k - k$            | K(Z-bar) <sup>2</sup> = | 3.77                 |                     | @α=5°          | % χ <sup>2</sup> <sub>(K-1)</sub> = | 7.81                |         | Test for stat                               | tion homoge                                                     | eneity                                                           |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Sigma VAR(S_{1})$                      | p<br>Z <sub>colo</sub>  | <b>0.287</b><br>2.51 |                     | @a/2=          | 2.5% <b>Z</b> =                     | 1 96                |         | χ <sub>h</sub> <χ <sub>(K-1)</sub><br>Η₀(No | trend) F                                                        | ACCEPT<br>REJECT                                                 |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta V/((O_k))$                       | -caic                   | -                    |                     | 807 <b>L</b> - |                                     | 1.00                |         |                                             |                                                                 |                                                                  |                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.33                                    | p                       | 0.994                |                     | 6072-          |                                     | 1.00                |         | H <sub>A</sub> (± t                         | rend) <mark>/</mark>                                            | ACCEPT                                                           |                                                |                                                             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.33                                    | p                       | 0.994                |                     |                |                                     | 1.00                |         | H <sub>A</sub> (± t                         | rend) <mark>/</mark>                                            | ACCEPT                                                           |                                                |                                                             |
| 9<br>8<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.33                                    | p                       | 0.994                |                     |                |                                     |                     |         | H <sub>A</sub> (± t                         | rend) /                                                         | ACCEPT                                                           | e Confidence                                   | Intervals                                                   |
| 9 ( <b>1/0)</b><br>7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.33                                    | p                       | 0.994                |                     |                |                                     | ×                   | >       |                                             | rend) <mark>/</mark><br>Seasonal                                | -Kendall Slope<br>Lower<br>Limit                                 | e Confidence<br>Sen's<br>Slope                 | Intervals<br>Upper<br>Limit                                 |
| 9 8 7 6 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.33                                    | p                       | 0.994                |                     |                |                                     | X                   |         | H <sub>A</sub> (± t                         | rend) /<br>Seasonal<br>α<br>0.010<br>0.050                      | -Kendall Slope<br>Lower<br>Limit<br>0.02<br>0.15                 | e Confidence<br>Sen's<br>Slope<br>0 39         | Intervals<br>Upper<br>Limit<br>0.88<br>0.55                 |
| 9 8 7 6 5 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.33                                    | p                       | 0.994                |                     |                |                                     | ×                   | *       | H <sub>A</sub> (± t                         | rend) /<br>Seasonal<br>0.010<br>0.050<br>0.100<br>0.200         | -Kendall Slope<br>Lower<br>Limit<br>0.02<br>0.15<br>0.24<br>0.28 | e Confidence<br>Sen's<br>Slope<br>0.39         | Intervals<br>Upper<br>Limit<br>0.88<br>0.55<br>0.51<br>0.44 |
| 2 1 1 2 2 2 3 7 2 9 8 9 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 |                                          | P                       | 0.994                |                     |                |                                     | ×                   |         | H <sub>A</sub> (± t                         | rend) /<br>Seasonal<br>0.010<br>0.050<br>0.100<br>0.200         | -Kendall Slope<br>Lower<br>Limit<br>0.02<br>0.15<br>0.24<br>0.28 | e Confidence<br>Sen's<br>Slope<br>0.39<br>7.0% | Intervals<br>Upper<br>Limit<br>0.88<br>0.55<br>0.51<br>0.44 |
| 2 1 0 2 2 1 0 2 2 2 2 2 2 2 0 2 1 0 2 1 0 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                         | 0.994                |                     |                |                                     | ×                   |         |                                             | <u>seasonal</u><br><u>α</u><br>0.010<br>0.050<br>0.100<br>0.200 | -Kendall Slope<br>Lower<br>Limit<br>0.02<br>0.15<br>0.24<br>0.28 | e Confidence<br>Sen's<br>Slope<br>0.39<br>7.0% | Upper<br>Limit<br>0.88<br>0.55<br>0.51<br>0.44              |

HGCMC 2013 Water Year FWMP Annual Report

# **INTERPRETIVE REPORT SITE 609**

Sampling at this site was initiated during the spring of water year 2013. This site was added to the FWMP at the request of the state and federal regulators. Site 609 is located west of the tailings disposal facility on a small surface drainage. The sampling location is near the bottom of the drainage, therefore monitoring a larger expanse up gradient from the site.

The data collected during the current water year are listed in the following "Table of Results for Water Year 2013" report. The table includes all the required FWMP analyte data (field and laboratory) collected for the current water year and a series of flags keyed to the summary report "Qualified Data by QA Reviewer". The QA report lists any associated data limitations found during the monthly QA reviews of laboratory data for this site. Median values for all analytes have been calculated and are shown in the right-most column of the table of results. Any value reported as less than MDL has been replaced with a value of ½ MDL for the purpose of median calculation.

All data collected at this site for the past year is included in the data analyses. As shown in the table below, there were no data outliers.

| Sample Date                                                                                      | Parameter | Value | Qualifier | Notes |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|--|--|--|--|
| No outliers have been identified by HGCMC for the period of October 2012 through September 2013. |           |       |           |       |  |  |  |  |

The data for Water Year 2013 have been compared to the strictest fresh water quality criterion for each applicable analyte. Two results exceeding these criteria were identified as listed in the table below.

#### **Table of Exceedance for Water Year 2013**

|             |            |           | Lin   | nits  |          |
|-------------|------------|-----------|-------|-------|----------|
| Sample Date | Parameter  | Value     | Lower | Upper | Hardness |
| 6-May-13    | Alkalinity | 16.8 mg/L | 20    |       |          |
| 9-Sep-13    | Alkalinity | 19 mg/L   | 20    |       |          |

Though two of the three samples were below the minimal limit for alkalinity, the other sample was just at the lower limit. These low alkalinity values are expected, because a portion of the drainage through the site consists of waters originating in the low alkalinity muskegs areas, such as those being monitored at Site 29.

|                           |          |          |          |          |          | untiler  |          |          |          |          |          |          |          |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sample Date/Parameter     | Oct 2012 | Nov 2012 | Dec 2012 | Jan 2013 | Feb 2013 | Mar 2013 | Apr 2013 | May 2013 | Jun 2013 | Jul 2013 | Aug 2013 | Sep 2013 | Median   |
| Water Temp (°C)           |          |          |          |          |          |          |          | 4        |          | 11.1     |          | 10.9     | 10.9     |
| Conductivity-Field(µmho)  |          |          |          |          |          |          |          | 420      |          | 455      |          | 546      | 455.0    |
| Conductivity-Lab (µmho)   |          |          |          |          |          |          |          | 404      |          | 438      |          | 404      | 404      |
| pH Lab (standard units)   |          |          |          |          |          |          |          | 6.77     |          | 6.93     |          | 7.25     | 6.93     |
| pH Field (standard units) |          |          |          |          |          |          |          | 7.06     |          | 6.83     |          | 6.89     | 6.89     |
| Total Alkalinity (mg/L)   |          |          |          |          |          |          |          | 16.8     |          | 20       |          | 19       | 19.0     |
| Total Sulfate (mg/L)      |          |          |          |          |          |          |          | 165.8    |          | 183      |          |          | 174.4    |
| Hardness (mg/L)           |          |          |          |          |          |          |          | 180      |          | 207      |          | 253      | 207.0    |
| Dissolved As (ug/L)       |          |          |          |          |          |          |          | 0.903    |          | 0.944    |          | 1.65     | 0.944    |
| Dissolved Ba (ug/L)       |          |          |          |          |          |          |          | 45.7     |          | 55.1     |          | 63.1     | 55.1     |
| Dissolved Cd (ug/L)       |          |          |          |          |          |          |          | 0.249    |          | 0.146    |          | 0.219    | 0.2190   |
| Dissolved Cr (ug/L)       |          |          |          |          |          |          |          | 0.753    |          | 1.29     |          | 1.62     | 1.290    |
| Dissolved Cu (ug/L)       |          |          |          |          |          |          |          | 0.715    |          | 0.832    |          | 0.949    | 0.832    |
| Dissolved Pb (ug/L)       |          |          |          |          |          |          |          | 0.396    |          | 0.273    |          | 0.561    | 0.3960   |
| Dissolved Ni (ug/L)       |          |          |          |          |          |          |          | 4.83     |          | 5.38     |          | 7.63     | 5.380    |
| Dissolved Ag (ug/L)       |          |          |          |          |          |          |          | 0.004    |          | 0.011    |          | 0.002    | 0.004    |
| Dissolved Zn (ug/L)       |          |          |          |          |          |          |          | 94.2     |          | 59.1     |          | 98.1     | 94.20    |
| Dissolved Se (ug/L)       |          |          |          |          |          |          |          | 1.06     |          | 0.388    |          | 1.46     | 1.060    |
| Dissolved Hg (ug/L)       |          |          |          |          |          |          |          | 0.00303  |          | 0.00382  |          | 0.00508  | 0.003820 |

#### Site 609FMS - 'Further Creek Lower'

For individual sample/analyte qualifier descriptions see "Qualified Data by QA Reviewer" table.

Values reported as less than MDL are replaced by 1/2 MDL for median calculation purposes.

Shaded data has been qualified as an outlier by HGCMC and removed from any further analysis and is not included into the calculation of the median

# **Qualified Data by QA Reviewer**

## Date Range: 10/01/2012 to 09/30/2013

| Site No. | Sample Date | Sample Time | Parameter     | Value  | Qualifier | Reason for Qualifier       |
|----------|-------------|-------------|---------------|--------|-----------|----------------------------|
| 609      | 9/9/2013    | 12:00 AM    | SO4 Tot, mg/l | 236    | J         | Sample receipt temperature |
| 609      | 5/6/2013    | 12:00 AM    | SO4 Tot, mg/l | 165.8  | J         | Sample Receipt Temperature |
|          |             |             | Ag diss, µg/l | 0.0038 | J         | Below Quantitative Range   |
|          |             |             | pH Lab, su    | 6.77   | J         | Hold Time Violation        |
|          |             |             | Alk, mg/L     | 16.8   | U         | Field Blank Contamination  |
|          |             |             |               |        |           |                            |
| 609      | 7/17/2013   | 12:00 AM    | SO4 Tot, mg/l | 183    | J         | Sample Receipt Temperature |

| Qualifier          | Description                                                                                                                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J<br>NJ<br>R<br>UJ | PositivelyIdentified - Approximate concentration<br>Presumptive Evidence For Tentative Identification<br>Tentatively Identified - Approximate Concentration<br>Rejected - Cannot be Verified<br>HGCMC 2013 Water Year FWMP Annuar Report<br>Not Detected Above Approximate Quantitation Limit |



Site 609 – Water Temperature





Site 609 – Conductivity Field







Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 609 – Sulfate Total





Site 609 – Arsenic Dissolved



Site 609 – Barium Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 609 – Chromium Dissolved



Site 609 – Copper Dissolved



Site 609 – Lead Dissolved



Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 609 – Silver Dissolved





Note: the AWQS may not be shown in order to allow greater visual detail of measured values for trend analysis



Site 609 – Mercury Dissolved

| APPENDIX A |
|------------|
|------------|

| 4             | DinkingWater | Stockwater | Irioaion Water | Aquatic Life-Fresh Water                     |    |                                    |                  |                             |    |                                    |                  | Human Health Criteria for<br>NonCarcinogens |                   |
|---------------|--------------|------------|----------------|----------------------------------------------|----|------------------------------------|------------------|-----------------------------|----|------------------------------------|------------------|---------------------------------------------|-------------------|
| mete          |              |            |                | Acute                                        |    |                                    |                  | Chronic                     |    |                                    |                  | Water I                                     | Aquatio           |
| <b>P</b> atar |              |            |                | criteria                                     | as | multilply by conversion factor     | to convert<br>to | criteria                    | as | multiply by conversion factor      | to convert<br>to | Aquatic<br>Organisms                        | Organisms<br>Only |
| alkalinity    |              |            |                |                                              |    |                                    |                  | 20,000 minimum              |    |                                    |                  |                                             |                   |
| As            | 10           | 50         | 100            | 340                                          | TR | 1                                  | D                | 150                         | TR | 1                                  | D                |                                             |                   |
| Ва            | 2,000        |            |                |                                              |    |                                    |                  |                             |    |                                    |                  |                                             |                   |
| Cd            | 5            | 10         | 10             | e^1.0166(In hardness)-3.924                  | TR | 1.136672-[(In hardness)(0.041838)] | D                | e^0.7409(In hardness)-4.719 | TR | 1.101672-[(In hardness)(0.041838)] | D                |                                             |                   |
| Cr            | 100          |            |                |                                              |    |                                    |                  |                             |    |                                    |                  |                                             |                   |
| Cr(total)     |              |            | 100            |                                              |    |                                    |                  |                             |    |                                    |                  |                                             |                   |
| Cr(III)       |              |            |                | e^0.819(In hardness)+3.7256                  | TR | 0.316                              | D                | e^0.819(In hardness)+0.6848 | TR | 0.860                              | D                |                                             |                   |
| Cr(VI)        |              | 50         |                | 16                                           | D  |                                    |                  | 11                          | D  |                                    |                  |                                             |                   |
| Cu            |              |            | 200            | e^0.9422(In hardness)-1.700                  | TR | 0.960                              | D                | e^0.8545(In hardness)-1.702 | TR | 0.960                              | D                | 1,300                                       |                   |
| Pb            |              | 50         | 5,000          | e^1.273(In hardness)-1.460                   | TR | 1.46203-[(In hardness)(0.145712)]  | D                | e^1.273(In hardness)-4.705  | TR | 1.46203-[(In hardness)(0.145712)]  | D                |                                             |                   |
| Hg            | 2            |            |                | 1.4                                          | D  |                                    |                  | 0.012                       | TR |                                    |                  | 0.05                                        | 0.051             |
| Ni            | 100          |            | 200            | e^0.846(In hardness)+2.255                   | TR | 0.998                              | D                | e^0.846(In hardness)+0.0584 | TR | 0.997                              | D                | 610                                         | 4,600             |
| Se            | 50           | 10         | 20             | 1/[([selenite]/185.9)+<br>([selenate]/12.83] | TR | 0.922                              | D                | 5                           | TR | 0.922                              | D                | 170                                         | 11,000            |
| Ag            |              |            |                | e^1.72(In hardness)-6.52                     | TR | 0.850                              | D                |                             |    |                                    |                  |                                             |                   |
| Zn            |              |            | 2,000          | e^0.8473(In hardness)+0.884                  | TR | 0.978                              | D                | e^0.8473(In hardness)+0.884 | TR | 0.986                              | D                | 9,100                                       | 69,000            |

all units in micrograms per liter (ug/L)

TR total recoverable

D dissolved

DENOTES STRICTEST CRITERIA

 $\,{\rm H}\,$  some of the criteria for this parameter are hardness dependant

FWA Fresh Water Acute

FWC Fresh Water Chronic

Source: http://www.dec.state.ak.us/water/wqsar/wqs/toxicsbook.xls

Table formatting was modified by HGCMC to include only parameters include in Suite P and Q and to highlight the strictest standard.

### **APPENDIX B**

## Map Sheets

Map 1-920 Area FWMP Sites Map 2-Tailings Area FWMP Sites Map 3-Site 9, Tributary Creek





